Astronomy&Astrophysicsmanuscriptno.hvc˙paper (cid:13)c ESO2013 December11,2013 The Milky Way halo as a QSO absorption-line system New results from an HST/STIS absorption-line catalogue of Galactic high-velocity clouds P.Herenz1,P.Richter1,2,J.C.Charlton3,andJ.R.Masiero4 1 Institutfu¨rPhysikundAstronomie,Universita¨tPotsdam,Karl-Liebknecht-Strasse24/25,14476Potsdam-Golm,Germanye-mail: [email protected] 2 Leibniz-Institutfu¨rAstrophysikPotsdam(AIP),AnderSternwarte16,14482Potsdam,Germany 3 3 DepartmentofAstronomyandAstrophysics,PennsylvaniaStateUniversity,UniversityPark,PA16802,USA 1 4 JetPropulsionLaboratory,4800OakGroveDrive,Pasadena,CA91109,USA 0 2 AcceptedbyA&Aon17Dec2012 n Abstract a J Weusearchival UVabsorption-linedatafromHST/STIStostatisticallyanalysetheabsorptioncharacteristicsofthehigh-velocity 7 clouds (HVCs) in the Galactic halo towards more than 40 extragalactic background sources. We determine absorption covering O] farnaacltyiosinsswofelcoown-ceanntdraitneteornmeSdiiiaiteabisoonrspt(iOoni,cComii,pSoiniei,nMtsginii,HFVeCii,s,Sifoiiri,wChiivc,hanwdeSiinivve)stiingathteetrhaengdeisftcrib=ut0io.2n0o−f 0co.7l0u.mFnordednestaitiileesd, b-values, and radial velocities. Combining information for Siii and Mgii, and using ageometrical HVC model weinvestigatethe C contributionofHVCstotheabsorptioncrosssectionofstrongMgiiabsorbersinthelocalUniverse.WeestimatethattheGalactic . HVCswouldcontributeonaverage∼ 52percenttothetotalstrongMgiicrosssectionoftheMilkyWay,ifourGalaxyweretobe h observedfromanexteriorvantagepoint.WefurtherestimatethatthemeanprojectedcoveringfractionofstrongMgiiabsorptionin p theMilky Wayhalo anddisc froman exterior vantage point ishf i = 0.31 for ahalo radiusof R = 61kpc. Thesenumbers, o- together withtheobserved number density of strongMgiiabsorbec,rsMsgaIIt low redshift,indicate thatthecontribution of infallinggas r clouds(i.e.,HVCanalogues)inthehalosofMilkyWay-typegalaxiestothecrosssectionofstrongMgiiabsorbersis<34percent. t Thesefindingsareinlinewiththeideathatoutflowinggas(e.g.,producedbygalacticwinds)inthehalosofmoreactivelystar-forming s a galaxiesdominatetheabsorption-crosssectionofstrongMgiiabsorbersinthelocalUniverse. [ Keywords.Galaxy:halo-galaxies:halos-ISM:structure 1 v 5 1. Introduction Collinsetal.(2003);Richteretal.(2005);Richteretal.(2009); 4 Shulletal. (2011)), indicating that HVCs and IVCs have vari- 3 The so-called high-velocity clouds (HVCs) in the halo of the ousorigins.SomeHVCs,inparticularthe“MagellanicStream” 1 . MilkyWayarebelievedtorepresentanimportantphenomenon (MS),mostlikelyoriginatefromgasofsmallersatellitegalaxies 1 related to the ongoing formation and evolution of galaxies that are being accreted by the Milky Way. Other HVCs possi- 0 at z = 0. HVCs (in their original definition) represent neu- blyrepresentmetal-deficientgasthatisinfallingfromtheinter- 3 tral gas clouds seen in Hi 21cm emission that are circulat- galacticmedium.ThemostlikelyoriginfortheIVCs(whichpre- 1 ing with high radial velocities through the inner and outer re- dominantlyhavenearlysolarmetallicities)isthe“galacticfoun- : v gions of the Galactic halo. HVCs in the Milky Way and other tain” (Shapiro&Field (1976); Houck&Bregman (1990)). In Xi galaxies are assumed to connect the central regions of galax- thegalacticfountainmodelhotgasisejectedoutoftheGalactic ieswiththesurroundingintergalacticmedium(IGM).Following disc by supernova explosions. The gas then cools and (partly) r a the usual classification scheme, HVCs in the Milky Way have fallsbacktowardsthediscintheformofcondensed,neutralgas radial velocities of |v | > 90 kms−1 compared to the lo- clouds. LSR cal standard of rest (LSR). Such high velocities are not in Recent distance estimates of several IVCs and HVCs indi- agreement with a standard Galactic disc rotation model. In cate that most of the IVCs appear to be located within 2 kpc the velocity range 40 kms−1 < |v | < 90 kms−1 there from the Galactic disc, in accordance with the scenario that LSR are the so-called intermediate velocity clouds (IVCs), which IVCs represent gas structures related to the galactic fountain complete the classification of Galactic halo clouds. Since their (Wakkeretal.(2008);Smokeretal.(2011)).MostoftheHVCs discovery more than 40 years ago (Mulleretal. (1966)), a appeartobelocatedatdistances<20kpc(Wakkeretal.(2007); lot of progress has been made in understanding the distribu- Thometal.(2006),Thometal.(2008)),withtheprominentex- tion, origin, and physical properties of HVCs and IVCs (see ception of the MS, which most likely is located as far as 50 the reviews by Richter (2006) and Wakkeretal. (1998)). QSO kpc(Gardiner&Noguchi(1996)).Thesedistancesindicatethat absorption-line measurements have shown that HVCs span a HVCsdonotrepresentLocalGroup(LG)objectsthatarerelated relatively large range in metallicities from ∼ 0.1 to 1.0 solar to the missing dark-matter (DM) halos in the LG (Blitzetal. (e.g., Wakkeretal. (1999); Richteretal. (1999); Richteretal. (1999)),butratherindicategascirculationprocessesin the im- (2001);Wakker(2001);Gibsonetal.(2001);Trippetal.(2003); mediateenvironment(d <100kpc)oftheMilkyWay.Yet,with 1 P.Herenz,P.Richter,J.C.Charlton,andJ.R.Masiero:TheMWhaloasQSOabsorber a total Hi mass of ∼ 108 M , HVCs contribute ∼ 0.7M yr−1 Table1.ProminentionsintheHST/STISspectra ⊙ ⊙ to the Milky Way’s gas-accretion rate (Richter (2012);Wakker (2004)). Clearly, detailed studies of IVCs and HVCs are of Grating R=λ/∆λ Ion fundamental importance for our understanding of the past and E140M 45,800 Siii,Siiii,Siiv,Oi,Cii, presentevolutionofourGalaxy. Civ,Alii Hi 21cm observations of nearby spirals (e.g., M31, E230M 30,000 Feii,Mgii NGC891) indicate that the IVC/HVC phenomenon is not re- strictedtotheMilkyWay,butreflectsgas-circulationprocesses ments(e.g.,from FUSE) and from21cmstudies of neutralhy- at large scales that are characteristic of low-redshift galax- drogen,butthestrategiesofhowtousethesesupplementarydata ies in general (Thilkeretal. (2004); Oosterlooetal. (2007); toderivecolumndensitiesandotherparametersarequitediffer- Fraternalietal. (2007)). However, because of the limited sen- ent among the above listed studies. As a result, there currently sitivity and beam size of 21cm observations of more distant does not exist an homogeneous and coherent sample of HVC galaxies it is currently impossible to spatially resolve individ- absorption-lineparameters(columndensities,Dopplerparame- ualgascloudsinthehalosofgalaxiesbeyondtheLocalGroup. ters)forimportantionsobtainedbymulti-componentVoigtpro- As an alternative method, QSO absorption spectroscopy has file fitting based on the same fitting criteria for all HVC sight- turned out to be a powerfultechnique to trace neutraland ion- lines.Acoherentabsorption-linesampleisdesired,however,to ized gas in the extended halos of galaxies at low and at high provide a meaningful comparison between Galactic HVC ab- redshift. For this, absorption lines from low and high ioniza- sorbers and intervening QSO absorbers. This motivated us to tion metals, such as Mgii and Civ in intervening absorbers, reanalyse HST/STIS data of Galactic HVCs using the profile- have been analysed extensively (Bergeron&Boisse´ (1991); fittingtechniqueforallHVCabsorptionfeaturesdetected. Charlton&Churchill(1998); Steideletal. (2002); Nestoretal. (2005);Kacprzaketal.(2010)).However,sincemostoftheion transitions of interest are located in the ultraviolet (UV), QSO 2. Dataaquisitionandanalysismethod absorption spectroscopy of gaseous structures in and around galaxiesandintheintergalacticmedium(IGM)atz=0requires Our HST/STIS data set contains 47 sightlines through the spectroscopic data from space-based UV observatories, such Galactic halo towards QSOs and other AGNs. All spectra are as the Hubble Space Telescope (HST) and the Far Ultraviolet publiclyavailableinthe MikulskiArchiveforSpace Telescope SpectroscopicExplorer(FUSE).Asaconsequence,theamount (MAST). Fig.1 shows the sky distribution of the 47 sightlines andthequality(intermsofsignal-to-noise,S/N)ofabsorption- plotted on a Hi 21cm map of the Galactic HVCs from the line data of intervening metal absorbers rising in the halos of Leiden/Argentine/Bonn(LAB)all-skysurvey(Kalberla&Haud low-redshiftgalaxiesisrelativelylimited. (2006)).Fromaninspectionoftheoriginalobservingproposals Generally,QSO absorption-linemeasurementsindicatethat weconcludethatmorethan70percentofthe47selectedAGN the circumgalactic environment of galaxies is characterized wereselectedbecauseoftheirultraviolet(UV)brightnessand/or by a complex spatial distribution of multiphase gas that re- becauseoftheknownpresenceofinterveningmetal-absorption flects both, the gas accretion processes of galaxies from the systems, as indicated by previous UV data from earlier HST intergalactic medium and from merger events and the outflow spectrographswith lower spectral resolution. We therefore can of gaseous material from galactic winds (e.g., Fanganoetal. assume that the 47 sightlines are not biased towards particular (2007);Bouche´etal.(2012)).Yet,theexactmorphologicalrela- HVCs or HVC regions. Fig.1 indicates, however, that there is tionbetweeninterveningmetalabsorbersandtheGalacticHVC a clear overabundanceofQSO sightlinesin the northernskyat populationhasnotreallybeenestablished. b > 30 deg with both detections and non-detections of high- In this paper, we reanalyse HVC absorption lines from velocityhalogasintheSTISdata.Thisnon-uniformskydistri- archival UV spectral data obtained with the Space Telescope butionoftheQSOsinoursampleisfurtherdiscussedinSect.3. ImagingSpectrograph(STIS)onHST andcomparetheabsorp- All STIS spectra considered in this paper were recorded tion characteristics (absorption cross section, column-density using the E140M (λ = 1150 − 1700 Å) and the E230M distribution function) of several ions with that of intervening (λ = 1600 − 3100 Å) high-resolution Echelle gratings of metal absorption systems at low redshift. We focus on the ab- STIS. These instruments provide a spectral resolution of R ∼ sorption properties of Siii and Mgii in HVCs and QSO ab- 45,800 (E140M) and R ∼ 30,000 (E230M), corresponding sorbers,asthesetwoionshaveverysimilarionizationpotentials to a velocity resolution of ∼ 7 kms−1 and ∼ 10 kms−1 andthusareparticularlywellsuitedforsuchacomparison.From FWHM, respectively. The STIS data were reduced using the this comparisonwe deriveinformationon the relation between standardSTISreductionpipeline(Brown(2002)).Separate ex- GalacticHVCsandQSOabsorbersandprovideanestimatefor posures were combined following the proceduresdescribed by thecrosssectionofneutralandionizedgasstructuresintheha- Narayananetal. (2008). Table 1 lists prominent ions in the losofgalaxies(seealsoRichter(2012);Richteretal.(2011)). two wavelength ranges that can be used to study the absorp- Many of the HVC sightlines studied in this paper have tion properties of Galactic HVCs. The ion transitions consid- been analysed in great detail by various different groups ered in this study include Cii λ1334.5, Civ λλ1548.2,1550.8, (e.g.,Wakkeretal.(1999);Sembachetal.(2001);Richteretal. Oiλ1302.2,Siiiλλ1190.4,1193.3,1260.4,1304.4,1526.7,Siiii (2001); Gibsonetal. (2001); Trippetal. (2003); Collinsetal. λ1206.5, Siiv λλ1393.8,1402.8, Mgii λ2796.4,2803.5, Feii (2003); Foxetal. (2004); Richteretal. (2009); Collinsetal. λλ2382.8,2600.2, and Alii λ1670.8. Laboratory wavelengths (2009);Shulletal.(2009))usingHST/STISdata.Thesegroups and oscillator strengths have been taken from the compilation usedvariousdifferentspectralanalysistechniques(apparentop- ofMorton(2003). ticaldepthmethod,AOD;curve-of-growth;profilefitting)tode- For our study we consider only HVCs, i.e., absorptionfea- rive column densities and Doppler-parameters from their data. tures that have radial velocities|v | ≥ 90 kms−1, but not the LSR In addition, some of these studies (but not all) have incorpo- IVCs.Allinall,28outofthe47sightlinesobservedwithSTIS ratedsupplementaryspectraldata fromlower-resolutioninstru- exhibitsignificantHVCabsorptionfeaturesinatleastoneofthe 2 P.Herenz,P.Richter,J.C.Charlton,andJ.R.Masiero:TheMWhaloasQSOabsorber Figure1.Hi21cmskymapofHVCcomplexes,basedontheLABsurvey(Kalberla(2003),Kalberlaetal.(2005)).Thesymbols mark the STIS sightlines inspected in this paper. Filled circles indicate sightlines with HVC detections, whereas empty squares indicatesightlineswherenoHVCabsorptionwasfound.TheLABall-skymapwaskindlyprovidedbyT.Westmeier. ionslisted above.Table 2 providesa summaryof the HVC de- 3. Results tectionsinourSTISQSOsample.Thisoveralldetectionrateis affectedbythestronglyvaryingS/Nratiosinthespectraandthe 3.1.Coveringfractionsofindividualions resulting differing detection limits for the individual ion lines The physical conditions in the gas, in particular the ionization (seealsoSect.3). conditions,areknowntovarysubstantiallyamongtheGalactic The HVC spectral features have been fitted by multi- HVC population. HVCs span a large range in temperatures component Voigt profiles, from which we obtain column den- andgasdensities,theyare subjecttothermalinstabilities, ram- sitiesandDoppler-parameters(b-values)fortheindividualHVC pressure stripping, photoionization from the Galactic disc and absorptioncomponents.Forthefittingprocesswehaveusedthe from the extragalactic UV background, collisional ionization fitlyman routine implemented in the ESO-MIDAS software from hot material ejected by supernova explosions in the disc, package(Fontana&Ballester(1995)).Afteraninitialinspection gasmixingprocesses,andotherrelatedphenomena.Asaresult, of the velocity structure in each HVC we have simultaneously thecharacteristicabsorptionpatternsofHVCs(i.e,theobserved fitted all low ions (neutral species and singly-ionized species; absorptionfrequencyof metalionsand their relativestrengths) e.g.,Oi,Siii)ineachvelocitycomponentwithasingleb-value. canbeusedtoconstrainthephysicalconditionsinHVCs. Thisapproachisjustified,asthelowionsareexpectedtoreside Allinall,wefit67individualhigh-velocityabsorptioncom- inthesamegasphaseinHVCswherebisdominatedbyturbu- ponents(Voigtcomponents;seeabove)inourdataset.Ofthese, lence (i.e., the thermalcontributionto b is expected to be neg- 47componentshavevelocityseparations∆v > 30kms−1 from ligible). The absorption componentsof intermediate ions (e.g., neighbouringHVC absorptioncomponentsand thuscan be re- Siiii)andhighions(e.g.,Siiv,Civ)werefittedindependentlyof garded as individualentities, hereafter refered to as absorption the low ions(leadingto other b-valuesfor these ions),as these systems. ionsmost likely trace a gasphase differentfromthat tracedby Animportantparameterthatcharacterizesthedistributionof thelowions. neutralandionizedHVCgasintheMilkyWayhaloisthecov- BecausemanyspectrahaverelativelylowS/N,notallHVC ering fraction, f (X), for each ion X that is considered. As in- c velocitycomponentscanberesolvedwiththecurrentHST data dicatedin Table 3, we definethe coveringfractionas the num- set.Moreover,high-resolution,high-S/NopticalspectraofHVC ber of sightlines that exhibitsignificantHVC absorptionin the sightlines indicate that there often are a large number of ve- ion X divided by the total number of sightlines along which locitysub-componentsinHVCswhoseidentificationwouldre- HVC absorption above the limiting column density threshold quireaspectralresolutionmuchhigherthancurrentlyprovided (log N ) couldbe detected.Thecolumndensitythresholdfor min byspace-basedUVspectrographs(e.g.Weltyetal.(1999)).This each ionwas calculatedfromthe relevantion transitionsin the systematic uncertainty is, however, not restricted to HVCs but STISwavelengthrange(seeSect.2)togetherwiththelocalS/N is relevant also for the analysis of intervening metal absorbers ratio. atlowzusingUVdatawithlimitedS/Nandspectralresolution Table 3 shows the values of f for the ions Oi, Cii, Siii, c (e.g.,Richteretal.(2004);Ribaudoetal.(2011)).FortheVoigt Mgii, Feii, Siiii, Siiv, and Civ, togetherwith the limiting col- profilefittingpresentedinthispaperourstrategywastofindthe umndensities,logN ,asdeterminedfromourline-fittinganal- min minimum number of velocity components (Voigt components) ysis.Inthiswayweobtaincoveringfractionsfortheabove-listed thatarerequiredto obtaina satisfyingfit tothe STISHVCab- ions between 0.20 (Siiv) and 0.70 (Cii, Siiii). Assuming that soptionprofiles.Thisallowsustocompareourresultstostudies the sightlines and the HVCs are randomly distributed over the ofinterveningabsorbers,forwhichsimilarfittingstrategieswere skywith f ≤ 1,andconsideringPoisson-likestatistics, theto- c chosen(e.g.Churchilletal.(2003)). talskycoveringfractionofHVCabsorptioninourdatais f = c All HVC fitting results are listed in Tables B.1−B.5 of the 0.70±0.15. This HVC coveringfraction is in excellent agree- Appendix. mentwiththevalueof f =0.68±0.04derivedbyLehneretal. c 3 P.Herenz,P.Richter,J.C.Charlton,andJ.R.Masiero:TheMWhaloasQSOabsorber Table2.SummaryofQSOSightlinesandHVCDetections QSOName zem l b HVCstatus HVCvelocityrange HVCname RelevantSTISgrating Detectedions (deg) (deg) (yes/no) (kms−1) (ifknown) PKS2155−304 0.117 18 −52 yes −138...−190 ... E140M Siii,Cii,Siiii,Siiv,Civ NGC5548 0.020 32 +71 no - - E140M,E230M - B2121−1757 0.110 33 −42 no - - E140M - Mrk509 0.034 36 −30 yes −295...−310 GCN E140M,E230M Cii,Siiii,Siiv,Civ CSO873 1.010 38 +84 no - - E230M - PHL1811 0.192 47 −45 yes −130...−270 GCN E140M Siii,Cii,Oi,Alii,Siiii,Siiv,Civ PG1630+377 1.480 60 +43 yes −160...−60 - E230M Mgii,Feii PG1444+407 0.270 70 +63 yes −80...−90 - E140M Siii,Cii,Oi,Civ PG1718+481 1.083 74 +35 yes −100...−215 CExtension E230M Feii NGC7469 0.016 83 −45 yes −190...−400 MS E140M Siii,Cii,Oi,Siiii,Siiv,Civ 3c351 0.372 90 +36 yes −130...−230 ComplexC E140M Siii,Cii,Oi,Alii,Siiii,Siiv,Civ Mrk290 0.030 91 +48 yes −128 ComplexC E230M Feii Akn564 0.030 92 −25 no - - E140M - H1821+643 0.297 94 +27 yes −130...−170 OuterArm E140M Siii,Cii,Oi,Alii,Siiii,Siiv,Civ HS1700+6416 2.740 94 +36 no - - E140M - PG1634+706 1.337 103 +37 yes −100...−215 ComplexC E230M Feii Mrk279 0.031 115 +47 yes −150...−200 ComplexCsouth E140M Siii,Cii,Oi,Alii,Siiii,Siiv PG1259+593 0.472 121 +58 yes −120...−145 ComplexCIII E140M Siii,Cii,Oi,Alii,Siiii,Civ PG1248+401 1.030 123 +77 no - - E230M - Mrk205 0.071 125 +42 yes −110...−230 ComplexCsouth E140M Siii,Cii,Oi,Alii 3c249.1 0.310 130 +39 yes −135 - E140M Siii,Cii,Siiii PG0117+21 1.500 132 −41 yes −134 - E230M Mgii,Feii NGC3516 0.009 133 +42 yes −160...−170 - E140M,E230M Siii,Cii,Feii,Mgii,Siiii PG1206+459 1.160 145 +70 no - - E230M - HS0624+6907 0.370 146 +23 no - - E140M - NGC4051 0.002 149 +70 no - - E140M - NGC4151 0.003 155 +75 yes +120...+145 ... E140M Siii,Cii,Siiii,Civ,Feii,Mgii Mrk132 1.760 159 +49 yes −140...+80 - E230M Mgii,Feii NGC4395 0.001 162 +82 no - - E140M,E230M - PKS0232-04 1.440 174 −56 no - - E230M - HS0747+4259 1.900 177 +29 no - - E230M - PG0953+415 0.239 180 +52 yes −150 ComplexM E140M Siii,Cii,Siiii,Alii HS0810+2554 1.510 197 +29 no - - E230M - Ton28 0.330 200 +53 no - - E140M - PKS0405−123 0.570 205 −42 no - - E140M - PG1116+215 0.177 223 +68 yes +180...+190 - E140M,E230M Siii,Cii,Oi,Feii,Mgii,Siiii,Siiv,Civ TonS210 0.117 225 −83 yes −150...−235 CHVC224.0−83.4−197 E140M,E230M Siii,Cii,Oi,Siiii,Siiv,Civ HE0515−4414 1.713 250 −35 yes +120...+230 - E230M Mgii,Feii PG1211+143 0.081 268 +74 yes +169...+184 ... E140M Siii,Cii,Oi,Siiii,Civ PKS1127−145 1.187 275 +44 no - - E230M - PG1216+069 0.330 281 +68 yes +210...+270 ... E140M Siii,Siiii,Civ NGC3783 0.010 287 +23 yes +180...+250 LeadingArm(MS) E140M,E230M Siii,Cii,Oi,Alii,Feii,Mgii,Siiii 3c273 0.160 290 +64 no - EPn E140M - RXJ1230.8+0115 0.117 291 +63 yes −216...−310 ... E140M Siii,Cii,Oi,Siiii,Siiv PKS0312−770 0.223 293 −38 yes +160...+240 MB E140M,E230M Siii,Cii,Oi,Feii,Mgii,Siiii PG1241+176 1.280 293 +80 no - - E230M - PKS1302−102 0.290 309 +52 no - ... E140M - (2012), based on a much larger combined COS/STIS data set. Table3.CoveringfractionsofindividualionsinHVCs ThegoodagreementwiththeLehneretal.resultsindicatesthat the non-uniformsky distributionofthe QSOs(asmentionedin Sect.2)hasnosignificantinfluenceonthedeterminationofthe Ion N/N a f b logN c HVCcoveringfractionfromourSTISQSOsample. Cii 21/3to0t 0.c70 13.2m0in Note thatwe do notconsiderabsorptionbyAlii in oursta- Civ 12/30 0.40 13.00 tistical analysis, because for the Alii λ1670.8 line (the only Oi 14/29 0.48 13.65 detectable Alii line in our data) there is a gap between +80 Siii 20/30 0.67 12.25 kms−1 ≤ v ≤ +200 kms−1 at the red end of the Echelle Siiii 21/30 0.70 12.15 LSR grating.Tocomparethecoveringfractionsoftheindividualions Siiv 6/30 0.20 12.90 witheachother,andtorelatethemtoHisky-coveringfractions Mgii 10/19 0.53 12.70 Feii 10/21 0.48 12.90 determined from 21cm all-sky surveys, one needs to consider the relative abundancesof the elements(C, O, Si, Mg, and Fe) aNumber of HVC detections above column-density threshold/total in HVCs. The ionizationconditionsand dust-depletionproper- numberofsightlines; tiesoftheabsorbinggascanalsoaffecttheinterpretationofthe bcoveringfraction; coveringfractions.Thesefactorswillbe consideredin thesub- cminimumcolumndensitythresholdconsidered. sequentsections. 3.2.Siiiabsorption for Siii λ1260.4; Morton (2003)). Our simultaneous fitting of these lines therefore provides particularly reliable values for Inourstatisticalanalysis,wefocusonSiiiabsorptioninHVCs. N(Siii) and b(Siii) in both strong and weak HVC absorption TheSTISE140MdatacontainfiveSiiitransitions(atλ1190.4, components.The ionizationpotentialof Siii (E = 16.4 eV) SiII λ1193.3,λ1260.4,λ1304.4,andλ1526.7)thatspanalargerange is very similar to that of Mgii (E = 15.0 eV), suggest- MgII inoscillatorstrengths(f =0.133forSiiiλ1526.7and f =1.176 ing that both ions trace the same gas phase in HVCs. In ad- 4 P.Herenz,P.Richter,J.C.Charlton,andJ.R.Masiero:TheMWhaloasQSOabsorber Figure2.DistributionofLSRvelocitiesofalldetectedSiiiHVC Figure3.DistributionofSiii columndensitiesinHVCs, based absorptionsystems. onVoigt-profilefittingof38HVCabsorptioncomponents. dition, the cosmic abundancesof Si and Mg are almost identi- itydistributionsuggestsanetinfallofhigh-velocityneutraland cal (log(Si/H) = −4.44 and log(Mg/H) = −4.42, assuming weaklyionizedgastowardstheMilkyWaydisc.Highionssuch ⊙ ⊙ solar relative abundancesfrom Asplundetal. (2005)). Because as Ovi, in contrast, show an equal distribution of positive and Mgii is the most commonly used ion to study circumgalactic negativevelocitiesintheGalactichalo(Sembachetal.(2003)), gas at low and intermediate redshift in optical quasar spectra supportingtheideathattheytracebothinfallingandoutflowing (e.g.,Kacprzaketal. (2008);Bouche´etal. (2012)), the absorp- gasthatishighlyionized. tion propertiesof Siii and Mgii in HVCs can be directly com- paredtothestatisiticalpropertiesofinterveningMgiiabsorbers 3.2.2. Columndensities atlowredshift(seeSect.4.4). ThecoveringfractionforHVCSiiiabsorptioninthehalois Fromourline-fittinganalysiswefindthatthe19HVCsthatare fc(Siii) = 0.67 for log N(Siii) ≥ 12.25 (see previous section; detected and accurately measured in Siii absorption are com- Table 3). For comparison,the filling factor of Hi in HVCs de- posed of 38 individualabsorptioncomponents.For these com- rivedfrom21cmsurveysis fc(Hi) ≈ 0.15forlogN(Hi) ≥ 18.3 ponents we obtain typical Siii column densities in the range and fc(Hi) ≈ 0.30 for log N(Hi) ≥ 17.8 (Wakker (2004). The log N(Siii) = 12.5− 15.0 (see Tables B.1−B.5). A histogram higherdetectionrateofSiiiabsorptioncomparedtoHiemission showing the distribution of the Siii column densities is pre- suggests that more than half (0.37/0.67 = 0.55) of the high- sented in Fig.3. The medianlogarithmiccolumndensity is log velocitySiiiabsorberstraceneutralandionizedgasinthehalo N(Siii)=13.48. belowthetypicaldetectionlimitofcurrent21cmobservationsat Fig.3indicatesawidespread,inhomogeneousdistributionof logN(Hi)<17.8. theSiiicolumndensitiesinHVCabsorptioncomponentswitha HVCs that are detected in metal absorption without hav- prominentpeaknearlog N(Siii) ∼ 12.8andanothermaximum inganHi21cmcounterpartcommonlyarereferredtoas“low- nearlogN(Siii)∼13.8.Most(21/31or68percent)oftheHVC columndensityHVCs”(LCDHVCs;Richteretal.(2009)). absorptioncomponentshavelogN(Siii)≥13.2. Tables B.1−B.5 show that only some of the Siii absorp- tion components with log N(Siii) < 13.0 represent satellite 3.2.1. Radialvelocities components of stronger HVC absorbers. There exist a distinct In Fig.2 we show the distribution of LSR velocities of the 19 population of isolated, weak HVC absorbers with relatively HVCs for which Siii absorption was detected and accurately low column densities of Siii and other low ions (e.g., towards measured(onlyhigh-velocitySiiiabsorptiontowardsNGC3516 PG1211+143,PKS2155−304,NGC4151).Theseabsorbersbe- isnotconsideredherebecauseofthelowdataquality).Absolute long to the class of highly-ionized high-velocity clouds (e.g., valuesforv rangebetween|v | = 90and370kms−1.The Sembachetal. (1999), Sembachetal. (2003)) and to the low- LSR LSR highestvelocityabsorberisfoundtowardsNGC7469andisre- column-densityHVCs(Richteretal.(2009)).Thissuggeststhat latedtotheMagellanicStream(Table2).Notethattheregionbe- theinhomogeneousdistributioninFig.3reflectstheactualphys- tweenv = −90to+90kms−1 (i.e.,theIVCvelocityregime) ical properties of neutral and weakly-ionized gas structures in LSR isnotconsideredinthisstudy. theGalactichalo,andisnotanartifactfromouranalysis. Outofthese19sightlines,12(63percent)showabsorption BasedontheSiiicolumndensitiesshowninFig.3wehave atnegativevelocities.OnemayarguethatlargeHVCcomplexes constructed a column-density distribution function (CDDF) of at negative velocities (such as Complex C) together with the HVC Siii absorption components (Fig.4). The CDDF can be limitedsamplesize leadsto anobservationalbiastowardsneg- definedas f(N) = m/∆N, wherem is the numberof absorbers ative velocities. However, optical observations of Caii absorp- in the column-density bin ∆N. The CDDF is usually approx- tion in HVCs, based on a ten-times larger data sample of ran- imated by a power law in the form f(N) = CN−β, where domlydistributedQSOsightlines,alsoindicatethatthemajority β ≈ 1.5 for Hi in HVCs, as derived from 21cm observations of the neutral HVC absorbersexhibit negativeradial velocities (e.g.,Lockmanetal.(2002)).AscanbeseeninFig.4,theCDDF (BenBekhtietal.(2008),BenBekhtietal.(2012)).Thisveloc- of Siii HVC absorption components deviates from a simple 5 P.Herenz,P.Richter,J.C.Charlton,andJ.R.Masiero:TheMWhaloasQSOabsorber 66 55 44 mbermber 33 NuNu 22 11 00 00 55 1100 1155 2200 2255 3300 3355 bb [[kkmm ss--11]] Figure4. Column-density distribution function of Siii absorp- Figure5. Distribution of Siii Doppler parameters in HVCs, tioncomponentsinHVCs.Thedataindicatethatasimplepower basedonVoigt-profilefittingof40HVCabsorptioncomponents. law (red and blue solid lines) representsa rather poorapproxi- Theblacksolidlineindicatesafittothedistributionwithalog- mationtothedistributionofSiiicolumndensities. normalfunction(seeSect.3.2.3).Thebluesolidlinemarksthe medianvalueat9.2kms−1 power law, showing instead a plateau at log N(Siii) ∼ 13.8. TheshapeoftheCDDFthusreflectstheinhomogeneousdistri- kms−1.Thenon-thermalcomponentmayincludeturbulentmo- butionofSiiicolumndensitiesinHVCabsorptioncomponents tionsinthegasandunresolvedvelocitystructureinthelines. showninFig.3.Ifwe forcea power-lawfitwith a singleslope Since Si is a relatively heavy element (A = 28), it is Si to the Siii CDDF for column densities log N(Siii) ≥ 12.5, we expected that for neutral and partly ionized HVCs gas with obtain β = 1.29 ± 0.09 and logC = 4.57 ± 1.20 (Fig.4, red T ≤ 2×104 K(e.g.,BenBekhtietal.(2012);theirFig.15)the solidline).Thisslopeissomewhatshallowerthanthecanonical thermalcontributiontob(Siii)is≤3.5kms−1.Thisimpliesthat valueofβ≈1.5derivedfromHi21cmobservationsofGalactic the observed line widths of most of the Siii HVC absorption HVCs(e.g.,Lockmanetal.(2002)).Ifweinsteadrestrictourfit featuresare subjectto broadeningmechanismsotherthan ther- to the range log N(Siii) ≥ 13.7, we obtain much steeper slope malbroadening,suchasmacroscopicturbulenceandgasflows. of β = 1.59±0.23 and logC = 8.94±3.31 (Fig.4, blue solid Moreover,itisverylikelythatmanyoftheSiiiabsorptioncom- line).ThisslopefitsbettertotheslopederivedforHi,butissub- ponents seen in the STIS data are composed of smaller (unre- stantiallysmallerthantheslopederivedforopticalCaiiabsorp- solved)substructures.In fact, opticalabsorption-linestudiesof tioninIVCsandHVCs(β=2.2±0.3;BenBekhtietal.(2008), IVCs and HVCs at very high spectral resolution and high S/N BenBekhtietal.(2012)).ThesteeperslopeofCaiicomparedto clearlyindicatethatthereexistssubstantialvelocity-structurein SiiimostlikelyisaresultofthestrongdepletionofCaintodust neutralhalocloudsatalevelofafewkms−1 (see,e.g.,theIVC grains,becausehigh-columndensitycloudstendtohavehigher andHVCinthedirectionoftheMagellanicClouds;Weltyetal. depletion valuesthan low-columndensity clouds(see also dis- (1999)). cussion in BenBekhtietal. (2012)). Note that if some of the HVCabsorptioncomponentswouldbecomposedofseveral,un- 3.2.4. Sub-componentstructure resolvedvelocitycomponents,theslopeoftheCDDFwouldbe steeper,too. While the smallest substructures in the HVC absorbers obvi- ously are not resolved in the STIS data, most of the detected Siiiabsorptionfeaturesdoshowseveralindividualvelocitysub- 3.2.3. Dopplerparameters componentsthatareseparatedfromeachotherby> 10kms−1, InFig.5weshowthedistributionofSiiiDopplerparameters(b- typically,andthatwehavefittedasindividualabsorptioncompo- values)inHVCs,basedontheVoigt-profilefittingofthe38Siii nents.Since forinterveningQSO absorbersthevelocityspread absorptioncomponents.Themeasuredb-valuesrangefrom1to of the detected absorption feature often is used as an observa- 33 kms−1 with a median value of ∼ 9.2 kms−1. The distribu- tional parameter to constrain the characteristic environmentof tioncanbefittedbyalog-normalfunction(solidlineinFig.5), the absorber host (e.g., Charlton&Churchill (1998)), it is in- which peaks at b = 7 kms−1. The median b value is b = 9 teresting to study the velocity structure of Galactic HVCs and kms−1. Note that Siii b-valuesthatare smaller than the instru- compareit to the absorptionpropertiesof interveningsystems, mentalresolutionintheE140Mgrating(∼7kms−1)canbereli- inparticularweakandstrongMgiiabsorbers. ablydeterminedsincewearefittingsimultaneouslyseveralSiii In Fig.6 we show the number distribution of Siii absorp- lines with different oscillator strengths (i.e., the corresponding tion componentsper HVC for all spectra in which HVC gasis curve-of-growthiswell-defined). detectedin Siii. About80 percentof themeasuredHVCs have It is commonly assumed that the Doppler parameter of an one or two velocity components that can be resolved with the absorberis composedof a thermalcomponent(b ) and a non- STISdata(onecomponent:32percent;twocomponents:47per- th thermal component(b ), so that b2 = b2 +b2 . The thermal cent). For comparison,BenBekhtietal. (2012) find for optical nth th nth component depends on the temperature of the gas, T, and the CaiiabsorptioninIVCsandHVCsthatmorethan70percentof atomicweight(A)oftheabsorbingion:b ≈0.129(T[K]/A)1/2 theCaiiabsorbersareseenassingle-componentsystems,while th 6 P.Herenz,P.Richter,J.C.Charlton,andJ.R.Masiero:TheMWhaloasQSOabsorber ThereareseveralstudiesonHVCsthathavecombinedSTIS E140M data with FUV data from FUSE (e.g., Richteretal. (2001); Sembachetal. (2004b)) to make use of several other (weaker) Oi transitions at λ < 1040 Å. However, only for a few lines of sight in our sample there are FUSE data of suffi- cientqualitytodetermineN(Oi)atanaccuracysimilartothatof N(Siii);inthisstudy,wethereforedonotconsideranyavailable FUSEdata. ThecoveringfractionofHVCOiabsorption(f (Oi)=0.48) c is smaller than that of Siii, but the column-densitylimit above which f (Oi) is considered is 1.4 dex higher than that of Siii c (Table 3). The relative solar abundanceof O comparedto Si is log(O/Si)⊙ =+1.15(Asplundetal.(2005)),sothatforanHVC withsolarrelativeabundancesofOandSi(andwith100percent of these elements in the gas phase) our STIS data are slightly (0.25dex) more sensitive for Siii absorptionin HVCs than for Figure6.DistributionofSiiivelocity-componentsinHVCs. absorptionby Oi. On the one hand, the Siii columndensity in HVCs may be reduced by the depletion of Si into dust grains (e.g., Richteretal. (2001); Richter&deBoer (2004)); on the other hand, Siii traces neutral and weakly-ionized gas, so that thefractionoftwo-componentabsorbersislessthan20percent. Siii/Oimaybehigherthan(O/Si)⊙.Consequently,theseeffects This difference is not surprising, however, since Caii in IVCs (dustdepletionand ionization)are oppositeandmayevencan- and HVCs is expected to trace relatively confined neutral gas celeachotherout.Toestimatewhetherornotthisisthecasein regionsinthehaloclouds,whereasSiii tracesbothneutraland an HVC one wouldneed to knowthe localdustpropertiesand weakly ionized gas regions (i.e., multi-phase gas regions) that ionizationconditionsinthegas,whicharedifficulttodetermine. arespatiallymoreextended. The five sightlines, along which high-velocity Siii is de- On a first look, the distribution of absorption components tected without associated Oi absorption (see Table 2), exhibit in HVCs appears to be very similar to the distribution found relativelyweakHVCabsorptioninSiii,suggestingthatforsome for strong intervening Mgii absorbers (Prochteretal. (2006); ofthesecloudsOiλ1302.2maybejustbelowthedetectionlimit onecomponent:∼ 50percent;twocomponents:∼ 20percent). (seealsoRichteretal.(2009)). However,becauseinterveningMgiiabsorberstracegasindiscs and halos of galaxies (and thus often are fully saturated over a large velocity range) and because the spectral resolution of 3.3.2. Cii the Mgii SDSS data used by Prochteretal. (2006) is very low (R≈2000),thissimilaritydoesnotprovideanycluestothecon- With an ionization potential of E = 24.4 eV singly-ionized CII nection between strong Mgii systems and HVCs. Using high- carbontracesneutralandmildlyionizedgasinHVCs.Theonly resolution optical spectra, Churchilletal. (2003) indeed find a availableCiitransitionintheSTISE140Mwavelengthrangeis muchlargernumberof∼ 8absorptioncomponentsperabsorp- locatedat1334.5Å.ToderiveN(Cii)fromthe(mostlyfullysat- tionsystemsforstrongMgiiabsorberswithHicolumndensities urated)λ1334.5lineoneneedstoassumethatb(Cii)issimilarto belowthatexpectedforneutralgasdiscs,butsimilartothosein theDopplerparameterderivedforSiii(orotherloworinterme- GalacticHVCs. diate ions).However,in view of the higherionizationpotential Even if one considers the longer absorption path length of Cii compared to Siii, Cii absorption may arise in a some- throughagalaxyhalofromanexteriorvantagepoint(Churchill what different (possibly more extended)gas phase, so that this etal.study)comparedtothepathlengththroughtheMilkyWay assumption may be invalidfor most of the HVC absorbers.As halo from the position of the Sun (our study), the four-times a consequence, the Cii column densities derived for our HVC highernumberofabsorptioncomponentspersystemclearlyin- samplearepossiblyafflictedwithlargesystematicuncertainties dicates that the majority of the strong Mgii absorberswith log thatwecannotaccountfor. N(Hi) ≤ 20.2 studied by Churchilletal. (2003) trace gaseous From our data we derive a covering fraction of f (Cii) = c structuresinhalosthearekinematicallymorecomplexthanthe 0.70;Table 3),which is insignificantlyhigherthan thatof Siii. Galactic HVC population.As we will see later,this scenariois The column density threshold is log N = 13.20, which is min supported by the very large absorption cross section of strong ∼ 1 dex higher than that of Siii (see Table 3). This differ- Mgii absorbersthatare bothmorecommonandspatially more ence compensates the expected abundance difference between extended(Sect.4). thesetwoelements,ifsolarrelativeabundancesareassumed(log (C/Si)⊙ = +0.88).Therefore,theCiiandSiiitransitionsinthe STIS data provide roughly the same sensitivity to neutral and 3.3.Remarksonotherions weaklyionizedgasinHVCs. 3.3.1. Oi OiisanexcellenttracerofHi,becausebothatomshavethesame 3.3.3. Mgii ionization potential and they are coupled by a strong charge- exchange reaction. There is only one (strong) transition of Oi TheMgiidoubletnear2800Å isobservedonlywith theSTIS available in the STIS E140M wavelength range (at 1302.2 Å). E230Mgrating,sothatthereareonly19sightlinesalongwhich Thus,N(Oi)canbedeterminedfromtheSTISdataalone,only high-velocityMgiicanbestudiedinourdatasampleatinterme- undertheassumptionthatb(Oi)=b(Siii). diatespectralresolution(FWHM∼10kms−1). 7 P.Herenz,P.Richter,J.C.Charlton,andJ.R.Masiero:TheMWhaloasQSOabsorber As mentionedabove,Mgii and Siii are expected to trace a similar gas phase in HVCs and both ions are expected to have verysimilar columndensities.TheMgiifilling factorin HVCs is f (Mgii)=0.53(Table3),whichissomewhatlowerthanthat c of Siii. This is notsurprising,however,since the Mgii column density threshold (log N = 12.70) is ∼ 0.5 dex higher than min thatofSiii.InSect.4wewillcombinetheE230MdataforMgii andtheE140MdataforSiiitocomparetheabsorptionstatistics ofHVCswiththatofinterveningMgiiabsorbers. 3.3.4. Feii TheionizationpotentialofFeii(E =16.2eV)isverysimilar FeII tothatofSiiiandMgii,sothesethreeionsareexpectedtoarise in the same gas phase (neutraland weakly ionized gas). In the E230MwavelengthbandthereareseveralFeiitransitionsavail- ableincludingthetworelativelystrongtransitionsat2382.8and Figure7. Example for a CLOUDY photoionization model of 2600.2Å.AlsotheE140Mbandcontainsanumberof(weaker) GalacticHVCgasatadistanceofD=50kpcfromtheGalactic Feiitransitions. disc,withanHicolumndensityoflogN(Hi)=19andametal- ThecoveringfractionofHVCFeiiabsorptionis f (Feii) = c licity of 1.0 solar. Shown are the expected column densities of 0.48(forlogNmin =12.90),thusverysimilartothatofMgii(see Siii andMgii asa functionof thegasdensity,n , andthe ion- H above).This is expected,since the threshold columndensity is izationparameter,U.Becauseofthesimilarionizationpotentials 0.2dexhigherthanforMgii,whilethesolarabundanceofFeis andcosmicabundancesofbothelements/ionsthecolumndensi- 0.08dexlower(log(Fe/H)⊙ = −4.55;Asplundetal.(2005)).In tiesofSiiiandMgiiinHVCsareexpectedtobeverysimilar. summary,bothionsareequallysensitivetotracepredominantly neutral and weakly-ionized gas in HVCs. There are two sight- lines that show Feii absorption at high velocities, while these absorption sometimes is associated with common 21cm HVCs twosightlinesarenotcoveredinMgii(Table3). (e.g., Foxetal. (2009)), or with low-column density HVCs (Richteretal. (2009)), where it is thought to arise in the inter- 3.3.5. Siiii faceregionsbetweenneutralHVCgasandthehotcoronalgas.In addition,thereexistsapopulationofhighly-ionizedHVCs(e.g., Siiiihasoneverystrongtransitionat1206.500Å;withanion- Sembachetal.(1999);Sembachetal.(2003))thatprobablyrep- izationpotentialof E = 33.5eV thision tracesdiffuse ion- resentlow-density,gasstructuresinthehaloandthatmostlikely SiIII ized gas in HVCs and their (more or less) extended gaseous arephotoionized.Thesestructuresmayarise indiffusegaseous envelopes. As for Cii and Oi the determination of a reliable material that originates in the IGM and that is being accreted column density for Siiii is basically impossible, as the Siiii by the Milky Way (“warm accretion”),or that results from the λ1206.500lineisoftenheavilysaturatedandtheassumptionthat break-upofmoremassiveHVCsastheyinteractwiththecoro- b(Siiii)=b(Siii)maybeinvalidformostcases. nalgasinthehalo(oneprominentexampleistheHVCComplex We find f (Siiii) = 0.70,whichisidenticalto thevaluede- GCN,whichisdetectedinCivandSiivtowardsPKS2155−304 c rivedforCii(i.e.,allHVCsthatarereliablydetectedinSiiiiin andMrk509;seeWinkeletal.(2011)). oursamplearealsodetectedinCii).Thecolumndensitythresh- As covering fractions we derive fc(Civ) = 0.40 for log oldconsideredforthisestimateislogNmin(Siiii)=12.15(com- Nmin(Civ) = 13.00 and fc(Siiv) = 0.20 for log Nmin(Siiv) = pared to log Nmin(Cii) = 13.20; see above). Since (C/Si)⊙ = 12.90.Thesecoveringfractionsaresmallerthantheonederived +0.88(Asplundetal. (2005)) it followsthat Siiii andCii trace for Ovi in the Milky Way halo (fc(Ovi)≥ 0.59;Sembachetal. the same physical regions in HVCs at roughlythe same sensi- (2003)), implying that Ovi is more sensitive for detecting tivity.Thecoveringfractionof f (Siiii)=0.70islowerthanthat highly-ionized halo gas and/or the Ovi absorbing gas phase is c derivedby Collins et al.(2009; f = 0.84 for log N (Siiii) = spatiallymoreextendedthantheCivandSiivabsorbingphase. c min 12.50)basedonthesameSTISdata.Thereasonforthisdiscrep- ancyisthattheseauthorsalsoincludeveryweak(andalsospu- 4. HVCsasinterveningmetal-lineabsorbers rious)absorptionfeaturesin their statistics thatwe donotcon- sider as secure HVC Siiii detections. In addition, for our anal- Deep Hi 21cm observations of M31 and other nearby spi- ysiswetake intoaccountonlythoseHVCcomponentsthatare ral galaxies (e.g., NGC891) clearly show that the HVC phe- (in velocity space) well separated from lower-velocitymaterial nomenon is not restricted to the Milky Way, but represents an (i.e., IVCs). Our value of f (Siiii)= 0.70 is, however,in excel- c ubiquitous component of spiral galaxies in the local Universe. lent agreement with the covering fraction of f = 0.68±0.04 c It indicates the various gas-circulation processes in the inner of UV-selected HVCs based on a much larger STIS/COS data and outer halos of star-forming galaxies (Thilkeretal. (2004); samplerecentlypresentedbyLehneretal.(2012). Oosterlooetal.(2007);Fraternalietal.(2007);Richter(2012)). Our results on the coveringfractionof the differentions in the 3.3.6. CivandSiiv MilkyWayHVCs,togetherwithstatisticsofinterveningmetal- lineabsorbersinQSOspectra,nowcanbeusedtoinvestigatethe The high ions Civ and Siiv are known to trace a gas phase absorption-crosssectionofHVCanaloguesinthelocalUniverse in HVCs that is different from that traced by low ions such and to provide an estimate of the contribution of HVCs to the as Oi, Cii, Siii, Mgii, and Feii. High-velocity Civ and Siiv numberdensityofinterveningmetalabsorbersatlowredshift. 8 P.Herenz,P.Richter,J.C.Charlton,andJ.R.Masiero:TheMWhaloasQSOabsorber Inthefollowing,wewillfirstbrieflydiscussthegeneralrela- thathaveW >0.3Å wouldbeclassifiedasstrongMgiisys- 2796 tionbetweenthenumberdensityofinterveningmetalabsorbers tems if seen as QSO absorbers from far away. However, since andtheabsorption-crosssectionofgalaxiesandtheirhalos.As all HVCs in the Milky Way halo have log N(Hi) ≤ 20.2 one asecondstep,we willthencombinetheobservedskycovering would expect that HVC analogues in the halos of Milky Way- fractionsofSiiiandMgiiintheMilkyWayHVCswithstatistics type galaxies contribute to the population of strong Mgii ab- on interveningMgii absorbersto study the the spatial distribu- sorberspredominantlyintherange0.3Å≤W ≤1.0Å while 2796 tionofneutralandweaklyionizedgasinthehalosofMilkyWay- thestrongestoftheinterveningMgiiabsorberswithW >1.0 2796 typegalaxies(seealsoRichteretal.(2011);Richter(2012)). Å are related to discs, disc-halo interfaces, and galactic winds (e.g., Bouche´etal. (2012)). In the usual QSO absorber classi- fication scheme, HVCs would appear as sub-dampedLyman α 4.1.Absorption-crosssectionofgalaxiesandtheirhalos systems(sub-DLAs)andLyman-limitsystems(LLS;seeRichter LetusdefinedN/dz(X)astheabsorbernumberdensityofQSO (2012)). metal-line aborbers per unit redshift measured for a given ion In Table 4, sixth row, we show the measured Mgii equiva- X, ng as the space density of galaxies at z = 0, Rh(X) as the lent widths for the eleven (out of 19 possible) HVCs in which (mean)galaxyhaloradius(withinwhichmetalabsorptiontakes Mgiiabsorptionhasbeendetected.StrongMgiiabsorptionwith place), and f (X) ≤ 1 as the mean coveringfraction of the ion c W > 0.3 Å is measured for six HVCs, suggesting that 2796 X inthedisc/halogasforradiir ≤ Rh(X).Numberdensityand the covering fraction of HVCs with strong Mgii absorption is geometric cross section of the gas in and around galaxies are f = 6/19 ≈ 0.32. Because of the limited statistical rele- c,sMg directly related to each other (e.g., Kacprzaketal. (2008)), so vance of this result, we also considerSiii as a proxyfor Mgii. thatforz=0 Asmentionedearlier,SiiiandMgiihaveverysimilarionization potentialsandsolarabundances,so thatitisexpectedthatboth dN = nghfcicπR2h. (1) ionstracethesamegasphaseinHVCsandtheyhaveverysim- dz H0 ilar columndensites.To demonstratethe expectedsimilarityof theSiiiandMgii columndensitiesinHVCs we showin Fig.7 The space density of galaxies can also be expressed as n =Φ⋆Γ(x,y),whereΦ⋆isthenumberdensityofL⋆ galaxies. anexampleofaCLOUDYphotoionizationmodelofaGalactic g HVC with an Hi column density of 1019 cm−2, a distance to Γ(x,y) is the incompleteGamma functionin which x = α+1, theGalacticdiscof50kpc,andwithsolarabundancesofSiand whereαistheslopeatthefaintendoftheSchechtergalaxylu- minosity function.The parameter y is defined as y = L /L⋆, Mg(modelfromRichteretal.(2009)).Inthisfigure,N(Siii)and min N(Mgii)areplottedagainsttheionizationparameter(U)andthe where L is the minimum luminosity of galaxies contribut- min gasdensity(n ).Overa largerangeofdensitiesandionization ingtothepopulationofabsorbinggashalos.Therefore,ifn is H g parameters the expected column densities of Siii and Mgii lie knownforagivenluminosityrangeanddN/dz(X)and f (X)≤ c within0.2dexofeachother,demonstratingthatthese twoions 1aremeasuredforagivenion,equation(1)allowsustoestimate indeedtracethesamegasphaseinHVCswithalmostidentical the characteristic size (R (X)) of the absorbing region around h columndensities. galaxies.Foramoredetaileddiscussionoftheseparameterssee Richter(2012). TotransformthemeasuredSiiiequivalentwidthsalongthe 19suitedE140MsightlinesintoMgiiequivalentwidths,wecon- siderSiiiλ1260,whichisthestrongestSiiitransitioncoveredby 4.2.CoveringfractionofstrongMgiiabsorptionintheMilky ourSTISdata (Table 4,fifth row).From atomicdata itfollows Wayhalo that(fλ) ≈(fλ) (Morton(2003)). SiII1260 MgII2796 For the study of the physical properties and absorption cross For a typicalHVC Dopplerparameterrange of b = 5−12 section of gas in and around galaxies at low and high red- kms−1 with one or two absorption components and under the shift via QSO absorption-linespectroscopy the Mgii ion plays abovediscussedassumptionthat N(Siii) = N(Mgii)anequiva- a crucialrole. The so-called strong Mgii systems are interven- lentwidthof300mÅ intheMgiiλ2796linecorrespondstoan ing metal-absorptionsystems thathave Mgii equivalentwidths equivalentwidth of 140−200 mÅ in the Siii λ1260 line (see W >0.3Å;theyusuallyareassociatedwithluminousgalax- also Narayananetal. (2008)). We here use the lower threshold 2796 ies (L > 0.05L⋆) at impact parameters < 35h−1 kpc (e.g., ofW =140mÅ toseparatestrongandweakMgiiabsorbers 1260 Bergeron&Boisse´ (1991);Steideletal.(2002);Kacprzaketal. in HVCs in an indirect manner. The observed HVC Siii/Mgii (2010)).These absorbersare expectedto trace neutraland ion- absorptionstrengthstowardsPG1116+215andTonS210arein izedgasinthediscsofgalaxiesandtheirgaeoushalos(includ- excellentagreementwiththisconversionscheme(seeTable4). ingHVCs).Theso-calledweakMgiisystemshaveW2796 ≤ 0.3 Based on this method, we find that 12 of the 20 Siii HVC Å;theyappeartobelesstightlyassociatedwithgalaxiesandare absorbers listed in Table 4 represent strong Mgii systems. typicallyfoundatlargerdistancesfromluminousgalaxies,inthe Combining this result with our direct Mgii measurements out- range 35− 100h−1 kpc (Milutinovic´etal. (2006); Rigbyetal. lined above we have 6 relevant Mgii plus 8 relevant Siii de- (2002)). tections along 41 independent sightlines, so that the total cov- FromtheLCDHVCsurveybyRichteretal.(2009)andfrom ering fraction of strong Mgii absorption in Galactic HVCs is thisstudyitisexpectedthatonlythemostmassiveHVCs(HVCs estimated as f = 14/41 = 0.34 ± 0.09. This covering c,sMg with neutral column densities log N(Hi) ≥ 17.2) display the fractionfor strong Mgii absorptionis identicalto the observed absorptioncharcterisiticsofstrongMgii absorbers,whilethere covering fraction of Hi in HVCs with log N(Hi) ≥ 17.8, exists a population of HVCs with Hi column densities log based on 21cm HVC surveys (see Wakker (2004)), and refer- N(Hi)<17.2thatwouldappearasweakMgiiabsorbersifseen encestherein).Itisalsoverysimilartothecoveringfractionof asQSOabsorption-linesystem.Thehigh-velocityabsorbersto- Caii absorption in HVCs with log N(Caii) ≥ 11.2, as derived wardsTonS210andNGC4151representexamplesforthisclass from a large sample of optical QSO spectra (BenBekhtietal. oflow-columndensityHVCs.NotethatbydefinitionallHVCs (2008), BenBekhtietal. (2012)). Caii traces predominantly 9 P.Herenz,P.Richter,J.C.Charlton,andJ.R.Masiero:TheMWhaloasQSOabsorber neutralgasinHVCswithHicolumndensitieslogN(Hi)≥17.4 galaxiesfromanexteriorvantagepoint.Thecodealsocalculates (Richteretal. (2011); BenBekhtietal. (2012)). Therefore, the the sky covering fraction of each gas phase if a vantage point similar absorption cross sections imply that Caii and strong inside the sphere is chosen; it thus allows us to link the distri- Mgiitracethesametypeofhaloclouds,namelymassiveHVCs bution of Milky Way HVCs with the frequency of intervening thatareopticallythickinHi;onlythesecloudswouldbeseenas QSOabsorbers.Formoredetailsonthecodeanditsapplication strongMgiiabsorbersiftheMilkyWayhalowouldbeobserved togaseousgalaxyhalosseeRichter(2012).Oneimportantresult asaQSOabsorption-linesystemfromanexteriorvantagepoint. from the study by Richter (2012) is that the observedsky cov- eringfractionofHVCsintheMilkyWayhalo(interiorview)is fullyconsistentwiththeprojectedcoveringfractionofHiclouds 4.3.OnthecoveringfractionofstrongMgiiinthehalosof inthehaloofM31(exteriorview).Thissuggeststhatthedistri- MilkyWay-typegalaxies butionofneutralgasinthehalosofbothgalaxiesissimilar(in Being located within the Milky Way disc, we see the distribu- astatisticalsense)andthatbasicallyallHVCsliewithin50kpc tionandcoveringfractionofHVCsintheGalaxyhalofromthe fromthediscs. inside-outperspective(interiorview).Forasphericalhalowith Wenowusethecodehalopathtoestimatethetotalabsorp- radius R the absorption path-length through the halo is always tioncrosssectionandmeancoveringfractionofstrongMgiiin ∼ Randtheobservedsky-coveringfraction, f ,ofHVCgasre- HVCanaloguesaroundMilkyWay/M31typegalaxiesfroman c flectsthespatialdistributionofgasintegratedfromtheinnerto external vantage point. As model input we adopt the observed theouterregionsoftheMilkyWayhalo.Ifagalaxyanditshalo skycoveringfractionof fc,sMgII,halo,i =0.34ofstrongMgiiinthe is seen from an exterior view point, the absorption path length MilkyWay fromthe interiorvantagepoint.We furtherassume through the halo (and disc, eventually) depends on the impact that the observedsky coveringfraction of strong Mgii absorp- parameterofthesightline,whiletheobservedcoveringfraction tionintheMilkyWayHVCs(interiorview)isrepresentativefor dependsonthepathlengthandtheradialgasdistributioninthe non-star forming disc galaxies of similar mass and further as- halo.Therefore,ifwewanttoputintorelationthecoveringfrac- sumethattheprojectedcoveringfractionofhaloMgii(exterior tionofMgii/SiiiintheMilkyWayhalowiththeobservednum- view)declinesexpontially(i.e., fMgII(r)declinesinsamewayas ber density of intervening Mgii/Siii absorbers at low redshift fHI(r);seeequation2). (equation1),thedifferentvantagepointsneedtobeconsidered. Under these assumptions, we find (using the halopath Inaddition,oneneedstoconsidertheabsorptioncrosssectionof code) that the projected covering fraction of strong Mgii from gaseousdiscs,asinterveningabsorberspassesbothdiscandhalo HVCsinthehalosofMilkyWay-typegalaxiesasseenfroman componentsofgalaxies.Thisimportantaspectwillbediscussed external vantage point is hfc,sMgIIi ≈ 0.2 for a halo radius of inSect.4.4. r = 61kpc1.TheprojectedhaloareacoveredbystrongMgii 3 To investigate the radial distribution of gas in the halos of in HVCs aroundMilky Way-type galaxies then turns out to be galaxies and the resulting covering fractions, Hi 21cm stud- A =2340kpc2. sMgII,halo ies of nearby galaxies are of crucial importance. However, onlyfor a few nearbyspiralgalaxies(e.g.,M31and NGC891; 4.4.OnthecontributionofHVCstotheabsorberdensityof Thilkeretal. (2004); Oosterlooetal. (2007)) are the 21cm ob- strongMgiiabsorbers servations deep enough to provide meaningful constraints on the distribution of neutral gas in their halos. In a recent study, OurSTISmeasurementsimplythatHVCsandtheirdistantana- Richter (2012) has demonstrated that the projected covering logues have a non-negligable absorption cross section in low- fractionof21cmHVCsaroundM31stronglydecreaseswithra- andintermediateionssuchasSiiiandMgii,andthustheseob- diusandcanbefittedbyanexponentialintheform jectsareexpectedtocontributetotheobservednumberdensity of strong Mgii absorbers. However, for a quantitative estimate fHVC =2.1exp(−r/h), (2) ofthecontributionofHVCstodN/dz(Mgii)onealsoneedsto consider the the absorption cross section of gaseous discs, as where r is the projected radius in [kpc] and h = 12 kpc is interveningabsorberspasses bothdisc andhalocomponentsof thescaleheightforHiinHVCs.Anexponentialdeclineofthe galaxies.Whileadetaileddiscussionoftheabsorptioncrosssec- covering fraction of neutral/ionized gas in the halos of Milky tion of gaseousgalaxy discs is beyondthe scope of this paper, Way-type galaxies is further supported by high-resolution hy- we providesomesimpleestimatesthathelpto evaluatetherel- drodynamicalsimulationsofgalaxies(Ferna´ndezetal.(2012)). evanceofHVCsfortheabsorptioncrosssectionofstrongMgii Richter(2012)developedthenumericalcodehalopaththat absorbers. canbeusedtocalculatethecoveringfractionofneutralandion- For the Mgii-absorbing disc component in our Milky ized halo gas from any given vantage point inside and outside Way/M31 model galaxy we assume a radius of r = 30 disc the halo sphere. The halopath code assumes that the neutral kpc (for log N(Hi) > 17.5), based on the M31 21cm data of andionizedgasingalaxyhalosisdistributedsphericallyaround Braunetal. (2009), and a covering fraction of f = 1. c,sMgII,disc the neutral gas discs of these galaxies. Instead of modelingin- The mean absorption cross section for strong Mgii of a sam- dividual halo clouds or halo-gas structures (which would re- ple of randomly inclined gas discs with these properties then quireknowledgeaboutthe size distributionof suchstructures), is A ≈ 1810 kpc2, which is ∼ 77 percent of the cross sec- disc the code uses the volume filling factor of a given gas phase tionofthesurroundingHVCpopulation(seeprevioussection). (e.g.,neutralorionizedgas)asafunctionofgalactocentricdis- Since the areas covered by discs and halo clouds are overlap- tance, fv(R), as main input parameter. The function fv(R) can ping from an exterior vantage point, projection effects need to be parametrizedfor anindividualgalaxyorfora populationof be taken into account. Using the halopath code we calculate galaxies. A correspondingmodel for the gas discs can also be that the absorption cross section of strong Mgii of gas discs included.Thecodethendeliverstheabsorptioncrosssectionfor eachgasphaseasafunctionofgalaxyimpactparameterandthe 1 Wedefiner asthehaloradiusbeyondwhichtheprojectedcovering 3 totalareacoveredbygasin the discsandhalosofthemodeled fractionofstrongMgiifallsbelowthe3percentlevel. 10