ebook img

The Mie Theory: Basics and Applications PDF

267 Pages·2012·5.633 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Mie Theory: Basics and Applications

Springer Series in Optical Sciences Volume 169 Founded by H. K. V. Lotsch Editor-in-Chief: W. T. Rhodes Editorial Board: Ali Adibi, Atlanta Toshimitsu Asakura, Sapporo Theodor W. Hänsch, Garching Takeshi Kamiya, Tokyo Ferenc Krausz, Garching Bo A. J. Monemar, Linköping Herbert Venghaus, Berlin Horst Weber, Berlin Harald Weinfurter, München For furthervolumes: http://www.springer.com/series/624 Springer Series in Optical Sciences TheSpringerSeriesinOpticalSciences,undertheleadershipofEditor-in-ChiefWilliamT.Rhodes, GeorgiaInstituteofTechnology,USA,providesanexpandingselectionofresearchmonographsinall majorareasofoptics:lasersandquantumoptics,ultrafastphenomena,opticalspectroscopytechniques, optoelectronics, quantum information, information optics, applied laser technology, industrial appli- cations,andothertopicsofcontemporaryinterest. Withthisbroadcoverageoftopics,theseriesisofusetoallresearchscientistsandengineerswhoneed up-to-datereferencebooks. Theeditorsencourageprospectiveauthorstocorrespondwiththeminadvanceofsubmittingaman- uscript.SubmissionofmanuscriptsshouldbemadetotheEditor-in-ChieforoneoftheEditors.Seealso www.springer.com/series/624 Editor-in-Chief WilliamT.Rhodes SchoolofElectricalandComputerEngineering GeorgiaInstituteofTechnology Atlanta,GA30332-0250 USA e-mail:[email protected] EditorialBoard AliAdibi BoA.J.Monemar GeorgiaInstituteofTechnology DepartmentofPhysicsandMeasurementTechnology SchoolofElectricalandComputerEngineering MaterialsScienceDivision Atlanta,GA30332-0250 LinköpingUniversity USA 58183Linköping,Sweden e-mail:[email protected] e-mail:[email protected] ToshimitsuAsakura HerbertVenghaus Hokkai-GakuenUniversity FraunhoferInstitutfürNachrichtentechnik FacultyofEngineering Heinrich-Hertz-Institut 1-1,Minami-26,Nishi11,Chuo-ku Einsteinufer37 Sapporo,Hokkaido064-0926,Japan 10587Berlin,Germany e-mail:[email protected] e-mail:[email protected] TheodorW.Hänsch HorstWeber Max-Planck-InstitutfürQuantenoptik OptischesInstitut Hans-Kopfermann-Straße1 TechnischeUniversitätBerlin 85748Garching,Germany Straßedes17.Juni135 e-mail:[email protected] 10623Berlin,Germany e-mail:[email protected] TakeshiKamiya MinistryofEducation,Culture,SportsScience HaraldWeinfurter andTechnology SektionPhysik NationalInstitutionforAcademicDegrees Ludwig-Maximilians-UniversitätMünchen 3-29-1OtsukaBunkyo-ku Schellingstraße4/III Tokyo112-0012,Japan 80799München,Germany e-mail:[email protected] e-mail:[email protected] FerencKrausz Ludwig-Maximilians-UniversitätMünchen LehrstuhlfürExperimentellePhysik AmCoulombwall1 85748Garching,Germanyand Max-Planck-InstitutfürQuantenoptik Hans-Kopfermann-Straße1 85748Garching,Germany e-mail:[email protected] Wolfram Hergert Thomas Wriedt • Editors The Mie Theory Basics and Applications 123 Editors Wolfram Hergert ThomasWriedt Martin-Luther-Universität StiftungInstitut fürWerkstofftechnik Halle-Wittenberg Badgasteiner Str. 3 FakultätfürNaturwissenschaften II 28359Bremen Von-Seckendorff-Platz 1 Germany 06120Halle/Saale Germany ISSN 0342-4111 ISSN 1556-1534 (electronic) ISBN 978-3-642-28737-4 ISBN 978-3-642-28738-1 (eBook) DOI 10.1007/978-3-642-28738-1 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012940721 (cid:2)Springer-VerlagBerlinHeidelberg2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The small conference we arranged to celebrate the 100th anniversary of Mie’s theorywasafascinatingevent.ThetwonephewsofGustavMiewerepresent,one of them presenting a real live account on his uncle. We got in touch with them when one of us (TW) started to redesign a web page on a collection of Mie scatteringprogramsbackin2000.AphotoofGustavMiescannedfromasourceat thelocaluniversitylibraryandsomeinformationabouthislifewasincludedinthis webpage.ThisphotocanstillbefoundattheScattPortlightscatteringinformation portal[1]andsincethenthephotohasbeenwidelydistributedontheInternet.One of the nephews called by phone introducing himself as the caretaker of the scientific inheritance of his uncle and asked for the source of the photo. Appar- ently,hedidnotknowaboutthisspecificphoto.Sincethattimeourinterestonthe historyofscienceinthetopicoflightscatteringaroseandwecollectedpapersand other sources of information. Somehow the idea to arrange a conference on the anniversary in 2008 of Gustav Mie’s original paper arose. After two attempts we managed to secure some funding to arrange this conference. Scientists from all over the world presented talks on the current state of light scattering by particles includingsimulationsandapplications.Thecurrenteditedvolumeisacompilation of selected extended versions of papers presented at this conference arranged in Halle(Saale)in2008.Wewouldliketothankalltheauthorsfortheircontributions and acknowledge the support of the conference by Deutsche Forschungsgeme- inschaft (DFG). Halle, Bremen, Germany Wolfram Hergert Thomas Wriedt Reference 1. Information on Gustav Mie at ScattPort, http://www.scattport.org/index. php/gustav-mie-special. v Contents 1 Gustav Mie: From Electromagnetic Scattering to an Electromagnetic View of Matter. . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Life and Scientific Career. . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Childhood in Rostock. . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Study in Rostock and Heidelberg (1886–1890) . . . . . . . 6 1.2.3 Karlsruhe: Beginning of the Scientific Career (1892–1902). . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.4 Greifswald: The productive Period (1902–1917) . . . . . . 14 1.2.5 Halle: Intermediate Station (1917–1924). . . . . . . . . . . . 17 1.2.6 Freiburg: Ordinarius and Retirement in Baden (1924–1957) . . . . . . . . . . . . . . . . . . . . . . . . 20 1.3 Scientific Fields of Activity . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.1 Transport of Energy and Thermodynamics . . . . . . . . . . 24 1.3.2 Electrotechnics and Electrodynamics . . . . . . . . . . . . . . 25 1.3.3 Scattering Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.3.4 Theory of Matter and Theory of Relativity. . . . . . . . . . 33 1.4 Gustav Mie as University Teacher. . . . . . . . . . . . . . . . . . . . . 37 1.4.1 Lectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.4.2 Disciples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.4.3 Textbooks and Popular Scientific Brochures. . . . . . . . . 39 1.5 Scientific Community and Society. . . . . . . . . . . . . . . . . . . . . 41 1.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Publications of Gustav Mie. . . . . . . . . . . . . . . . . . . . . . . . . . 44 Biographic and Bibliographic Communications about Gustav Mie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 vii viii Contents 2 Mie Theory: A Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.2 Nonspherical Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.3 History of Mie’s Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4 Mie Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.5 Spheres in an Absorbing Medium . . . . . . . . . . . . . . . . . . . . . 57 2.6 Coated Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.7 Distorted Spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.8 Magnetic Spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.9 Chiral and Anisotropic Spheres . . . . . . . . . . . . . . . . . . . . . . . 58 2.10 Scattering by a Short Pulse. . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.11 Nanosized Spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.12 Gaussian Beam Scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.13 Near Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.14 Longitudal Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.15 Aggregates of Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.16 Parallelisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.17 Further Topics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.18 Further Reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.19 Available Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.20 Sample Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.21 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3 From Theories by Lorenz and Mie to Ontological Underdetermination of Theories by Experiments . . . . . . . . . . . . . 73 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.2 Quine’s and Ontological Underdeterminations, with Precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.3 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.3.1 From Classical Mechanics . . . . . . . . . . . . . . . . . . . . . 81 3.3.2 From Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . 82 3.4 An Escape to Underdetermination: Ampliative Arguments . . . . 90 3.4.1 Undecidability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.4.2 Ampliative Arguments. . . . . . . . . . . . . . . . . . . . . . . . 91 3.4.3 The Mechanical Rainbow. . . . . . . . . . . . . . . . . . . . . . 92 3.4.4 On the Nonsingularity Principle . . . . . . . . . . . . . . . . . 93 3.4.5 Newtonian Trajectories of Matter Points do not Exist . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.4.6 Deciding Between Undecidables . . . . . . . . . . . . . . . . . 95 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Contents ix 4 Predicting the Appearance of Materials Using Lorenz–Mie Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2 Realistic Image Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.2.1 Camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2.2 Geometry of Objects . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2.3 Light Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.2.4 Light Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.2.5 Light Scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3 Predicting Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.3.1 Computing Optical Properties . . . . . . . . . . . . . . . . . . . 112 4.3.2 Lorenz–Mie Theory. . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.3.3 Number Density Distributions. . . . . . . . . . . . . . . . . . . 120 4.3.4 Non-Spherical Particles . . . . . . . . . . . . . . . . . . . . . . . 121 4.3.5 Scattering of a Gaussian Beam . . . . . . . . . . . . . . . . . . 122 4.4 Milk as a Case Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.4.1 Particle Composition . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.4.2 Appearance Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.4.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5 Dipole Re-Radiation Effects in Surface Enhanced Raman Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.2.1 Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.2.2 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . 140 5.3 Dipole Re-Radiation Effects in SERS from Isolated Particles and Dimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.4 Dipole Re-Radiation Effects in SERS from Single Sphere Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.5 Dipole Re-Radiation Effects in SERS from Dimer Chains . . . . 148 5.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6 Optical Force and Torque on Single and Aggregated Spheres: The Trapping Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.2 Radiation Force and Radiation Torque . . . . . . . . . . . . . . . . . . 158 6.2.1 Radiation Force by Plane Waves. . . . . . . . . . . . . . . . . 160 6.2.2 Radiation Torque by Plane Waves. . . . . . . . . . . . . . . . 163 6.2.3 Contributions to Radiation Force and Torque . . . . . . . . 167 x Contents 6.3 Radiation Force and Torque on Aggregated Spheres . . . . . . . . 167 6.3.1 Radiation Pressure on Aggregated Spheres. . . . . . . . . . 168 6.3.2 Radiation Torque on Aggregated Spheres. . . . . . . . . . . 169 6.4 Laser Beams as a Superposition of Plane Waves. . . . . . . . . . . 172 6.4.1 The Angular Spectrum Representation. . . . . . . . . . . . . 173 6.4.2 Far Field in the Angular Spectrum Representation. . . . . 174 6.5 Radiation Force from a Highly Focalized Laser Beam . . . . . . . 175 6.6 Trapping and Manipulation of Single and Aggregated Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6.6.1 Trapping of Dielectric Spheres . . . . . . . . . . . . . . . . . . 178 6.6.2 Trapping of Gold Spheres. . . . . . . . . . . . . . . . . . . . . . 181 6.7 Radiation Torque on Elongated Nanostructures . . . . . . . . . . . . 186 6.8 Appendix 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6.9 Appendix 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7 Rainbows, Coronas and Glories . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.2 Rainbows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 7.3 Coronas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 7.4 Glories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 7.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 8 The Extension of Mie Theory to Multiple Spheres. . . . . . . . . . . . . 223 8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 8.2. The Multiple Sphere Solution . . . . . . . . . . . . . . . . . . . . . . . . 225 8.2.1 The Superposition Strategy. . . . . . . . . . . . . . . . . . . . . 225 8.2.2 Translated Fields and the Addition Theorem. . . . . . . . . 227 8.2.3 The Interaction Equations. . . . . . . . . . . . . . . . . . . . . . 229 8.3 The Addition Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 8.3.1 Forms of the Addition Theorem . . . . . . . . . . . . . . . . . 229 8.3.2 Recursive Translations. . . . . . . . . . . . . . . . . . . . . . . . 231 8.3.3 Derivation of the Addition Theorem . . . . . . . . . . . . . . 232 8.3.4 Application to the Plane Wave Expansion . . . . . . . . . . 234 8.3.5 Far-Field Limit of the Translation Matrix. . . . . . . . . . . 236 8.4 Properties of the Multiple Sphere Solution . . . . . . . . . . . . . . . 236 8.4.1 Numerical Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 8.4.2 The T Matrix Relationships . . . . . . . . . . . . . . . . . . . . 237 8.4.3 Coordinate Rotation and the Amplitude and Scattering Matrix. . . . . . . . . . . . . . . . . . . . . . . . . 239 8.4.4 Cross Sections and Energy Conservation . . . . . . . . . . . 241 8.4.5 Random Orientation. . . . . . . . . . . . . . . . . . . . . . . . . . 244 Contents xi 8.4.6 Emission Cross Sections and Inter–Sphere Energy Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 8.5 Extensions and Future Challenges . . . . . . . . . . . . . . . . . . . . . 248 8.5.1 Application to Inhomogeneous Media . . . . . . . . . . . . . 249 8.5.2 Future Applications: Direct Simulations and the Bridge to the RTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 8.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 8.6.1 Calculation of the Translation Matrix Elements. . . . . . . 252 8.6.2 The Rotation-Axial Translation Operation . . . . . . . . . . 254 8.6.3 Generalized Spherical Functions . . . . . . . . . . . . . . . . . 255 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.