ebook img

The Microwave Thermal Emission from the Zodiacal Dust Cloud Predicted with Contemporary Meteoroid Models PDF

0.93 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Microwave Thermal Emission from the Zodiacal Dust Cloud Predicted with Contemporary Meteoroid Models

Astronomy&Astrophysicsmanuscriptno.paper-con-aa-2 (cid:13)cESO2015 January21,2015 The Microwave Thermal Emission from the Zodiacal Dust Cloud Predicted with Contemporary Meteoroid Models ValeryV.DikarevandDominikJ.Schwarz FacultyofPhysics,BielefeldUniversity,Postfach100131,33501Bielefeld,Germany e-mail:[email protected] 5 1 Received<date>/Accepted<date> 0 2 ABSTRACT n a Predictionsofthemicrowavethermalemissionfromtheinterplanetarydustcloudaremadeusingseveralcontemporary meteoroid J modelstoconstructthedistributionsofcross-sectionareaofdustinspace,andapplyingtheMielight-scatteringtheorytoestimate the temperatures and emissivities of dust particles in broad size and heliocentric distance ranges. In particular, the model of the 0 interplanetarydustcloudbyKelsalletal.(1998,ApJ508:44–73),thefivepopulationsofinterplanetarymeteoroidsofDivine(1993, 2 JGR98(E9):17,029–17,048) andtheInterplanetaryMeteoroidEngineeringModel(IMEM)byDikarevetal.(2004,EMP95:109– 122)areusedincombinationwiththeopticalpropertiesofolivine,carbonaceousandironsphericalparticles.TheKelsallmodelhas ] P beenwidelyacceptedbytheCosmicMicrowaveBackground(CMB)community.Weshow,however,thatitpredictsthemicrowave E emissionfrominterplanetarydustremarkablydifferentfromtheresultsofapplicationofthemeteoroidengineeringmodels.Wemake mapsandspectraofthemicrowaveemissionpredictedbythethreemodelsassumingvariantcompositionofdustparticles.Predictions . h canbeusedtolookfortheemissionfrominterplanetarydustinCMBexperimentsaswellastoplannewobservations. p - Keywords. Cosmology:cosmicbackgroundradiation-Zodiacaldust-Radiationmechanisms:thermal o r t s1. Introduction emission bound to the Solar system. Dikarevetal. (2009) ex- a [ ploredthe possibilitythattheSolar-system dustemitsmorein- The unprecedented high-precision surveys of the mi- deedthanit waspreviouslythought,andfoundthatthemacro- 1crowave sky performed recently by the Wilkinson Microwave scopic (> 0.1 mm in size) meteoroids can well contribute ∼ vAnisotropy Probe (WMAP, Bennettetal. 2013) and Planck 10µKinthemicrowaves,i.e.comparablewiththepowerofthe 0(PlanckCollaborationI2014)observatoriesinsearchandchar- CMBanomalies,withoutbeingdetectedintheinfrared(IR)light 8 acterisationofthelarge-andsmall-scalestructureoftheCosmic and included in the IR-based models like that of Kelsalletal. 7 Microwave Background (CMB) anisotropies pose new chal- (1998). Babichetal. (2007) and Hansenetal. (2012) have also 4 0lengesforsimulationandsubtractionoftheforegroundemission studiedpossiblecontributionoftheKuiperbeltobjectstothemi- .sources, including the Solar-system dust. Previous templates crowaveforegroundradiation.Dikarevetal.(2008)constructed 1designed for this purpose were based on the Kelsalletal. andtestedagainsttheWMAPdatasomedustemissiontemplates. 0 (1998) model. They indicated little significance of the inter- 5 Here we improve and extend preliminary estimates of planetarydust for the WMAP survey(Schlegeletal. 1998), yet 1 Dikarevetal. (2009). In addition to the Kelsall model, we use remarkable contribution was detected at high frequencies of : vPlanck(PlanckCollaborationXIV2014). two meteoroid engineering models to make accurate and thor- i oughmapsof the thermalemission from the Zodiacalcloud in X The angular power spectrum of CMB anisotropies is in thewavelengthrangefrom30µmto30mm. goodagreementwiththeinflationaryΛ-colddarkmattermodel r a(PlanckCollaborationI2014).However,thereconstructedCMB Thepaperisorganizedasfollows.Section2introducesthree mapsatthelargestangularscalesrevealsomeintriguinganoma- modelsoftheinterplanetarymeteoroidenvironmentthatweuse lies, among them unexpected alignments of multipole mo- topredictthethermalemissionfromthezodiacaldustcloud.A ments, in particular with directions singled out by the So- detaileddescriptionofthetheoryandobservationsincorporated lar system (Schwarzetal. 2004). The quadrupoleand octopole ineachmodelisprovided,itmaybehelpfulnotonlyforcosmol- are found to be mutually aligned and they define axes that ogists interested in understanding the solar-system microwave are unusually perpendicular to the ecliptic pole and paral- foregrounds,but also for developers of new meteoroid models lel to the direction of our motion with respect to the rest willing to comprehend earlier designs. Section 3 describes the frame of the CMB (the dipole direction). For reviews see thermalemission models. Empiricalmodelsas wellas the Mie Bennettetal.(2011),Copietal.(2010)andBennettetal.(2013) light-scatteringtheoryareusedtocalculatethetemperaturesand and PlanckCollaborationXXIII (2014) as well as Copietal. emissionintensitiesofsphericaldustparticlescomposedofsil- (2013) for a detailed analysis of final WMAP and first Planck icate,carbonaceousandironmaterials,forbroadrangesofsize data.Ithasbeensuggestedthatanunaccountedobservationbias andheliocentricdistance.Themodelsofthespatialdistribution maypersist,e.g.yetanotherforegroundsourceofthemicrowave ofdustandthermalemissionarecombinedinSection4inorder Articlenumber,page1of17 A&Aproofs:manuscriptno.paper-con-aa-2 Table 1. Frequencies ν, wavelengths λ and bandwidths ∆ν/ν of level-of-damagethresholds,hencetheyprovidethesizedistribu- the CIB/CMB observations with COBE DIRBE wavelength bands 4 tionexplicitly. through10,WMAP,andPlanck. Profilesofparticlecross-sectionareadensityperunitvolume of space are plotted for the Kelsall and Divine models as well Instrument ν λ ∆ν/ν as IMEM in Fig. 1. Interestingly, the Kelsall model is sparser COBE 61.2THz 4.9µm 0.13 thanboththeDivinemodelandIMEMatmostheliocentricdis- DIRBE 25.0THz 12µm 0.54 tances.Themeteoroidengineeringmodelspredictsubstantially 12.0THz 25µm 0.34 more dust than Kelsall does, especially beyond 1 AU from the 5.00THz 60µm 0.46 Sun:Divine’sdensityisalmostflatintheeclipticplanebetween 3.00THz 100µm 0.32 1and2AU,exceedingKelsall’sdensitybyafactorof3intheas- 2.14THz 140µm 0.28 teroidbelt.TheIMEMdensityremainssimilartothatoftheKel- 1.25THz 240µm 0.40 sallmodelupto∼ 3AU,showingalocalmaximumbeyondthe Planck 857GHz 350µm 0.25 asteroidbeltnear5AUfromtheSun,inthevicinityofJupiter’s HFI 545GHz 550µm 0.25 orbit.IMEMpossessesthelatitudinaldistributionsomewhatnar- 353GHz 850µm 0.25 rowerthanthatoftheKelsallandDivinemodels. 217GHz 1.4mm 0.25 All these distinctions stem from different observations and 143GHz 2.1mm 0.25 physicsincorporatedindifferentmodels.Whendescribingthem 100GHz 3.0mm 0.25 in subsequent subsections, we do not aim at selecting the best Planck 70GHz 4.3mm 0.2 model. We take all three of them instead, with the intention to LFI 44GHz 6.8mm 0.2 “bracket” the more complex reality by three different perspec- 30GHz 10.0mm 0.2 tivesfromdifferent“pointsofview”. WMAPW 94GHz 3.2mm 0.22 V 61GHz 4.9mm 0.23 2.1.TheKelsallmodel Q 41GHz 7.3mm 0.20 Ka 33GHz 9.1mm 0.21 A concise analytical description of the infrared emission from K 22GHz 13.6mm 0.24 theinterplanetarydustcapturedbytheCOBE DiffuseInfraRed BackgroundExperiment(DIRBE)wasproposedbyKelsalletal. (1998). It recognizes five emission components, a broad and tomakeall-skymapsandspectraofthe thermalemissionfrom bright smooth cloud, three finer and dimmer dust bands, and theinterplanetarydust.ConclusionsaremadeinSect.5. circumsolar dust ring along the Earth orbit with an embedded Throughout this paper, we will be dealing with the wave- Earth-trailingblob.Each componentis describedby a parame- lengthsmostly,sincethedustopticalpropertiesarenaturallyde- terised empiricalthree-dimensionaldensity functionspecifying scribedintermsoflinearscales.TheCMBcommunity,however, thetotalcross-sectionareaofthecomponent’sdustparticlesper ismoreaccustomedtofrequencies.Aconversiontableisthere- unitvolumeofspace(Fig.2),andbytheircollectivelightscatter- fore usefulfor the observationwavebandsof infrareddetectors ingandemissionpropertiessuchasalbedo,absorptionefficien- andradiometers(Table1). cies, etc. The particle size distributions of the components are notconsidered.Mostofthe lightscatteringandemission prop- ertiesareneitheradoptedfromlaboratorystudiesofnaturalma- 2. MeteoroidModels terialsnorpredictedbytheoriesoflightscattering,theyarefree parametersofthemodelfittotheDIRBEobservationsinstead. In this paper, we use three recent and contemporary models The smooth cloud is the primary componentof the Kelsall of the Zodiacal dust cloud due to Kelsalletal. (1998), Divine model.Itsdensity functionis traditionallyseparatedinto radial (1993)andDikarevetal.(2004).Thefirstmodelisconstrained and vertical terms. The radial term is a power law 1/Rα with c by the infrared observations only from an Earth-orbitingsatel- α = 1.34 ± 0.022 being the slope of the density decay with lite COBE. For brevity, it is referred to as the Kelsall model distance from the cloud’s centre R . The slope is known to be c hereafter. The Kelsall model is most familiar to and most of- equaltooneforthedustparticlesincircularorbitsmigratingto- tenusedbytheCosmicMicrowaveBackground(CMB)research ward the Sun under the Poynting-Robertson drag (orbiting the communityasithelps,andwasdesignedtoassessandmitigate Sun, the particles absorb its light coming from a slightly for- thecontaminationofthebackgroundradiationmapsbythefore- warddirectionduetoaberration,andtheradiationpressureforce groundradiation from interplanetarydust. The two other mod- hasa non-zeroprojectionagainstthe directionof their motion; elsincorporatedataobtainedbydiversemeasurementtechniques thatprojectioncausesgraduallossoftheorbitalenergyandde- andservetopredictmeteoroidfluxesonspacecraftandtoassess crease of the semimajor axis of particle’s orbit). The slope is impacthazards.Beingappliedinspacecraftdesignandanalysis greaterthanoneiftheparticleorbitsareinitiallyeccentric,orif mostly,theyareoftendubbedasmeteoroidengineeringmodels. the zodiacalcloud is fed from sourcesbroadlydistributed over We choosethe Divine modelandIMEM, with the latter abbre- radial distances, so that the inner circles of the cloud are sup- viation standing for the Interplanetary Meteoroid Engineering pliedfrommoredustsourcesthantheoutercircles(Leinertetal. Model. We also check if the most recent NASA meteoroid en- 1983;Gor’kavyietal.1997). gineeringmodel,MEM(McNamaraetal.2004),canbeusedin The vertical term of smooth cloud’s density is represented ourstudy,andexplainwhyitcannotbe. byawidened,modifiedfanmodel.Thesmoothcloud’ssymme- TheKelsallmodeldoesnotconsiderthesizedistributionof tryplaneisinclinedofftheeclipticplane.Thishappensbecause particles in the Zodiacal cloud. The size distribution is implic- the Earth has no influence on the orbital dynamics of the vast itly presentedby the integralopticalpropertiesof the cloud.In majorityof cloud’sparticles. The giantplanets, Jupiter primar- contrast,themeteoroidengineeringmodelsareobligedtospec- ily, perturb the orbits of dust particles as well as their sources, ifythefluxesofmeteoroidsforvariousmass,impulse,orother or parentbodies, such as cometsand asteroids, and controlthe Articlenumber,page2of17 V.V.Dikarev&D.J.Schwarz:MicrowaveThermalEmissionfromtheZodiacalDustCloud 1.8 Kelsall Kelsall 10-6 Divine 70 1.6 Divine U 1 A IMEM U • 1.4 IMEM er A 1.2 p -7 r a 10 pe 1 re a A e 0.8 n Ar um 10-8 mn 0.6 ol 0.4 C u ol C 0.2 10-9 0 0.1 1 10 -20 0 20 40 60 80 Heliocentric Distance, AU Ecliptic Latitude, degree Fig.1.Profilesofparticlecross-sectionareadensitypredictedwithselectedmeteoroidmodelsandcomparedwitheachother:eclipticradial(left) andlatitudinalat1AUfromtheSun(right,thevernalequinoxisatlatitude0◦). inclinationsoftheorbitsoftheparticles.Anoffsetofthecenter The dustparticles on nearlycircular orbitsmigratingunder of the cloud from the Sun is also allowed in the Kelsall model the Poyinting-Robertson drag toward the Sun are temporarily (oftheorderof0.01AU).TheverticalmotionoftheEarthwith trapped in a mean-motionresonance with the Earth near 1 AU respectto the cloud’ssymmetryplaneleadsto the modulations (Dermottetal. 1984). The resulting enhancementof the zodia- of the infraredemission from the zodiacalcloud reaching30% calclouddensityisdescribedin the Kelsallmodelbythe solar intheeclipticpolarregions. ring and Earth-trailingblob. The trailing blob is the only com- ponentofthemodelthatisnotstatic:itisorbitingtheSunalong Thedustbandsaretheremnantsofcollisionaldisruptionsof acircularorbitwithaperiodofoneyear,andasthenamesug- asteroids that resulted in formation of the families of asteroids gests, its densitypeak is located behindthe movingEarth.The insimilarorbitsandremarkabledustbelts.Thedustbandswere solarringandtrailingblobhavedensitypeakdistancesslightly discoveredfirst on the high-resolutionmaps made by the IRAS outsidetheEarthorbit,theirsymmetryplanesareinclinedoffthe satellite (Lowetal. 1984) and recognized later in the COBE eclipticplane,and thetrailing bloborbitsthe Sunat a constant DIRBE data as well. Kelsalletal. (1998) introducedthree dust velocitywhereastheEarthvelocityisvariableduetotheeccen- bandsintheirmodel,attributedtotheThemisandKoronisaster- tricityofourplanet’sorbit.Consequently,theEarthmoveswith oidfamilies(±1◦.4eclipticlatitude),theEosfamily(±10◦),and respecttothesolarringandtrailingbloboverthecourseofthe the Maria/Io family (±15◦). The bands have symmetry planes yearmuchliketheothercomponentsoftheKelsallmodel. differentfromthatofthe smoothbackgroundcloud.Thebands TheDIRBEinstrumentperformedasimultaneoussurveyof are all double, with the density peaking above and below the the sky in 10 wavelength bands at 1.25, 2.2, 3.5, 4.9, 12, 25, respective symmetry plane, since their constituent particles re- 60, 100, 140, and 240 µm. It was permitted to take measure- tain the inclination of the ancestor asteroid orbit but the longi- mentsanywherebetweenthesolarelongationsof64◦ and124◦. tudes of nodes get randomized by the planetary perturbations. As the Earth-bound COBE observatory progressed around the Theverticalmotionofsuchparticlesissimilartothatofanos- Sun,DIRBEtooksamplesoftheinfraredbackgroundradiation cillator,whichmovesslowerandspendsmoretime nearitsex- fromalloverthesky.Theforegroundradiationduetointerplane- tremities, thus the density at the latitudes of each family’s or- tarydustwasavariableingredientoftheskybrightnessbecause bital inclination is high. One would expect a similarly shaped itdependsonthechangingpositionofobservatorywithrespect “edge-brightened” radial density with the peaks at the perihe- tothecloud.Thusthefittingtechniquewasbasedonminimizing lionandapheliondistancesoftheparentbodyorbit(e.g.Sect.3 thedifferencebetweenthebrightnessvariationsintimeobserved in Gor’kavyietal. 1997). However, the dust in asteroid bands alongindependentlinesofsightandthosepredictedbytheKel- is proven to be migrating toward the Sun under the Poynting- sall model for the same lines of sight, ignoring the underlying Robertson drag: Reach (1992) has demonstrated that the tem- photometric baselines contaminated or even dominated by the peraturesofparticlesandparallaxesofthebandsmeasuredfrom backgroundsources. the moving Earth are both higher than those supposed to be in therespectiveasteroidfamiliesoftheirorigin,implyingthatthe TheaccuracyoftheKelsallmodelindescribingtheinfrared bandsextendfarthertowardstheSunthantheirancestorbodies. emission from interplanetary meteoroids in DIRBE’s wave- Unlike Reach (1992), Kelsalletal. (1998) allowed for a partial length bands and within the range of permitted solar elonga- migration only of dust, by introducing a cut-off at a minimal tionsisreportedtobebetterthan2%.Interpolationsofthemodel heliocentric distance either defined or inferred individually for brightnessesbetweentheinstrumentwavelengthsandextrapola- eachband.Theyalsofixedratherthaninferredmostofthedust tionsbeyondthewavelengthandsolarelongationrangesmaybe bandshapeparameters.ItisnoteworthythatKelsalletal.(1998) pronetohigheruncertainties.Indeed,theconcisedescriptionof didnotintroduceanexplicitoutercut-offforthedensitiesofthe the zodiacalemission contributionto the DIRBE data provides smoothcloudanddustbands.Instead,theyintegratedthedensi- noclueastohowthelightscatteringandemissionpropertiesof tiesalongthelinesofsightfromtheEarthtothemaximalhelio- itscomponentsdependon wavelengthbetweenandbeyondthe centricdistanceof5.2AU(closetotheJovianorbitalradius). tenDIRBEwavelengthbands. Articlenumber,page3of17 A&Aproofs:manuscriptno.paper-con-aa-2 1 -U 1.8 -1U 10-6 A Smooth Cloud A 7, 1.6 Band 1 sity, 10-7 y •10 1.4 BBaanndd 23 en -8 sit 1.2 Ring+Blob D 10 n a De 1 TOTAL Are 10-9 ea 0.8 n Ar ctio 10-10 on 0.6 Se cti 0.4 - -11 e s 10 S os s- 0.2 r s C 10-12 o 0 r 0.1 1 10 C -20 0 20 40 60 80 Heliocentric Distance, AU Ecliptic Latitude, degree Fig.2.Radialandlatitudinalprofilesofparticlecross-sectionareadensityintheKelsallmodel,componentwise. When applying the Kelsall model in the far infrared wave- anddatafromseveralspacecraft.Theorbitaldistributionsarede- lengths and microwaves, one should bear in mind that already terminedusingmeteorradardata,observationsofzodiacallight Kelsalletal. (1998) found the 140 and 240 µm bands nearly fromtheEarthaswellasfromtheHeliosandPioneer10inter- useless in constraining the density distribution parameters due planetaryprobes,andmeteoroidfluxesmeasuredin-situbyim- torelativelyhighdetectornoiseandsmallcontributionofthera- pactdetectorsonboardPioneer10and11,Helios1,Galileoand diationfromthe interplanetarydustatthese wavelengths.Con- Ulyssesspacecraftattheheliocentricdistancesrangingfrom0.3 sequently,theinferredparametersofthedensitydistributionsin to18AU.Thelogarithmsofthemodel-to-dataratiosweremini- the Kelsall model are based on the observations at the wave- mizedinaroot-mean-squaresense.Whenmodelingthezodiacal lengthsupto100µm.Thedustparticlesareefficientininteract- light,Divineassumedthatthescatteringfunctionisindependent ing with the electromagneticradiationif their sizes are not too of meteoroid mass. The albedos of dust particles were defined small with respect to the wavelength (2πs > λ, where s is the somewhatarbitrarilyin orderto hidethepopulationsnecessary particle radiusand λ is the wavelength).Dust grains with radii tofit the in-situmeasurementsfromthe zodiacallightobserva- from∼16µmarethereforevisibleatthewavelengthof100µm. tions.Noinfraredobservationswereusedtoconstrainthemodel. Dikarevetal.(2009)arguethataconsiderableamountofmete- ThecorepopulationisthebackboneoftheDivinemodel,it oroidsarepresentintheSolarsystemwiththesizesbiggerthan fits as much data as possible with a single set of distributions. ∼ 100 µm which are outshined in the infrared light by more Thedistributioninperiheliondistancer ofthecore-population π abundantandubiquitoussmallerdustgrains.Thelongestobser- particlescanbeusedasstrictlyproportionaltor−1.3 upto2AU vationwavelengthofDIRBEatwhichKelsalletal.(1998)could π from the Sun. This function resembles a spatial concentration, still constrainthe density distributionsof dustis shortof being anditsslopeisclosetoKelsall’sα = 1.34fortheradialdensity capabletoresolvetheseparticlesunlesstheycomposedistinctive term:muchliketheinfrareddatafromCOBE,thezodiacallight featureslikedustbands. observations from the Earth and interplanetary probes demand We use the formulae for the density functions provided by thattheslopebesteeperthanaunitexponent.Theeccentricities PlanckCollaborationXIV (2014) since the original paper by aremoderate(peakingat0.1andmostlybelow0.4),inclinations Kelsalletal.(1998)containstypographicalmisprintsinthedef- aresmall(mostlybelow20◦). initionsoftheasteroiddustbandandcircumsolarringdensities. Theotherpopulationsfillin thegapswhereonepopulation withseparabledistributionsisnotsufficienttoreproducetheob- 2.2.TheDivinemodel servations.Theirnameshintatdistinctivefeaturesoftheirorbital distributions.The inclined populationis characterizedby incli- A model of the interplanetary meteoroid environment (Divine nationslargelyintherange20◦–60◦,itseccentricitiesareallbe- 1993) constructed to predict fluxes on spacecraft anywhere in low 0.15. In contrast, the eccentric population is composed of theSolarsystemfrom0.05to40AUfromtheSun,iscomposed particlesinhighlyeccentricorbits(theeccentricitiesarelargely of five distinct populations, each of which has mathematically between 0.8 and 0.9), the inclinations are same as in the core separabledistributionsinparticlemassandinorbitalinclination, population. These two populations are added in order to com- periheliondistance,andeccentricity(Fig.3).Usingthedistribu- pensateforadeficitofmeteoroidsfromthecorepopulationwith tions in orbitalelements, Divine explicitly incorporatedKeple- respecttoin-situfluxmeasurementsonboardtheHeliosspace- riandynamicsofmeteoroidsinheliocentricorbits. craft.(Theeccentricpopulationis also usedto match theinter- TheDivinemodelisconstrainedbyalargenumberofdiverse planetaryfluxmodelbetween10−18and10−15g.)Thehalopopu- meteoroid data sets. The mass distribution of meteoroids from lationhasauniformdistributionoforbitalplaneorientationsand 10−18to102gisfittedtotheinterplanetarymeteoroidfluxmodel “surrounds”theSunasahalobetweenroughly2and20AU.It (Grünetal. 1985), which in turn is based on the micro-crater patchesthemeteoroidmodelwheretheabove-listedpopulations countsonlunar rocksamplesretrievedbythe Apollomissions, are not sufficient to reproduce the Ulysses and Pioneer in-situ i.e.thenaturalsurfacesexposedtothemeteoroidfluxnearEarth, fluxmeasurements.Theeccentric,inclinedandhalopopulations Articlenumber,page4of17 V.V.Dikarev&D.J.Schwarz:MicrowaveThermalEmissionfromtheZodiacalDustCloud 1 -U 1.8 -1U 10-6 A Core A 7, 1.6 Asteroidal sity, 10-7 y •10 1.4 EIcnccelinnteridc en -8 sit 1.2 Halo D 10 n a De 1 TOTAL Are 10-9 ea 0.8 n Ar ctio 10-10 on 0.6 Se cti 0.4 - -11 e s 10 S os s- 0.2 r s C 10-12 o 0 r 0.1 1 10 C -20 0 20 40 60 80 Heliocentric Distance, AU Ecliptic Latitude, degree Fig.3.Radialandlatitudinalprofilesofparticlecross-sectionareadensityintheDivinemodel,componentwise. arecomposedofmeteoroidsmuchsmallerthanthosesignificant withKepleriandynamicsoftheconstituentparticlesinheliocen- enoughfor predictionsof the infraredand microwave observa- tricorbits.Expansionofcomputermemoryhasalsoenabledthe tions. authorsofIMEMtoworkwithlargearraysrepresentingmulti- The asteroidal population is described last but it makes a dimensionaldistributionsinorbitalelementstoreplaceDivine’s hugedifferencebetweenKelsall’sandDivine’smodels.Already separabledistributions.Thedistributioninmassremainssepara- whenfittingthefirstpopulationtothemeteorradardata,Divine blefromthe 3-Ddistributionininclination,periheliondistance observed that the results for the distribution in perihelion dis- andeccentricity. tance show a minimum near rπ = 0.6 AU, suggesting that two IMEMisconstrainedbythe micro-cratersize statisticscol- componentsareinvolved(i.e.,innerandouter).Theradialslope lectedfromthelunarrocksretrievedbytheApollocrews,COBE of the inner componentwas consistent with that demanded by DIRBE observations of the infrared emission from the inter- thezodiacallightobservations,andtheinnerandoutercompo- planetarydustat4.9,12,25,60,and100µm wavelengths,and nents contributed 45% and 55%, respectively, to the flux near GalileoandUlyssesin-situfluxmeasurements.Anattempttoin- Earth.Theoutercomponent’sconcentrationpeakedoutsidethe corporatenewmeteorradardatafromtheAdvancedMeteorOr- Earth orbit, in the asteroid belt. Since the main contributionto bitRadar(AMOR,seeGalligan&Baggaley2004)wasnotsuc- thezodiacallightcomesfromtheparticleswithmassessmaller cessful (Dikarevetal. 2005), as the latitudinal number density than10−5gandthemedianmeteoroidmassofthemeteorradar profile of meteoroidsderivedfrom the meteor radar data stood was 10−4 g, it was reasonable to ascribe the inner fraction to a in stark contrast to that admissible by the COBE DIRBE data, populationdominatedbysmallerparticlesresponsibleforthezo- duetoincompleteunderstandingoftheobservationbiases. diacallight,andtheouterfractiontoanotheronedominatedby The meteoroids in IMEM are distributed in orbital ele- largerparticlesdetectedasmeteorsonlywiththeradar.Thetwo mentsinaccordwithanapproximatephysicalmodeloftheori- fractionswere dividedintothe coreand asteroidalpopulations, gin and orbital evolution of particulate matter under the plan- accordingly.Their inclination and eccentricity distributions are etary gravity, Poynting-Robertsoneffect and mutual collisions. identical, but the distributions in perihelion distance and mass Grün&Dikarev(2009)visualisetheIMEMdistributionsofme- are different. The asteroidal population is used to fit the inter- teoroidsinmassandinorbitalelementsingraphandcolorplots. planetaryfluxmodelatlargemasses>10−4g. Cross-sectionareadensityprofilesareshownhereinFig.4. Derived from data analysis rather than postulated theoreti- All interplanetary meteoroids are divided into populations cally,thedistinctionbetweenthecoreandasteroidalpopulations byorigin/sourceandmass/dynamicalregime.Grünetal.(1985) in the Divine model separates – both on the mass and perihe- constructed a model of the mass distribution of interplane- lion distance scales – the small dustparticles migratingtoward tary meteoroids. Based on this model, they estimated particle theSununderthePoynting-Robertsondrag,theconcentrationof lifetimes against two destructive processes, mutual collisions which increases with the decrease of the heliocentric distance, and migration downward toward the Sun due to the Poynting- andtheirimmediateparentbodies,thelargerparticlesswarming Robertson drag (terminated by particle evaporation or thermal furtherawayfromtheSun,i.e.intheasteroidbeltaccordingto break-up).Figure5showsthatthelifetimeagainstmutualcolli- Divine(1993). sionsisshorterthanthePoynting-Robertsontimeforthe mete- oroidsbiggerthan ∼ 10−5 g in mass, located at 1 AU fromthe Sun.Thedestructionof meteoroidsisdominatedbya factorof 2.3.IMEM teninratebytherespectiveprocessalreadyoneorderofmagni- The Interplanetary Meteoroid Engineering Model (IMEM) is tudeawayfromthistransitionmassineitherdirection.Therates developed for ESA by Dikarevetal. (2004). Like the Divine varywiththedistancefromtheSun,however,thetransitionmass model, it uses the distributions in orbital elements and mass remains nearly unchanged (Fig. 6 in Grünetal. 1985). That is ratherthanthespatialdensityfunctionsoftheKelsallmodel,en- whyDikarevetal. (2004)couldsimplifytheproblembydivid- suringthatthe dustdensitiesandfluxesarepredictedin accord ing the mass range into two subranges with distinct mass dis- Articlenumber,page5of17 A&Aproofs:manuscriptno.paper-con-aa-2 1 -U 1.8 -1U 10-6 A A 7, 1.6 Asteroidal, sity, 10-7 y •10 1.4 Amste>r1o0id-5a gl, en -8 sit 1.2 m<10-5 g D 10 n a De 1 Cometary, Are 10-9 ea 0.8 m>10-5 g n Ar Cometary, ctio 10-10 on 0.6 m<10-5 g Se cti 0.4 TOTAL s- 10-11 Se os s- 0.2 r s C 10-12 o 0 r 0.1 1 10 C -20 0 20 40 60 80 Heliocentric Distance, AU Ecliptic Latitude, degree Fig.4.Radialandlatitudinalprofilesofparticlecross-sectionareadensityinIMEM,componentwise.Thedensityplotsarenotsmoothsincethe orbitaldistributionsinIMEMareapproximatedbystepfunctions. tributionslopes anddynamics.Meteoroidsbelow the transition Jupiter.ItistheTisserandparameterT massof10−5garetreatedasmigratingfromthesourcestoward the Sun under the Poynting-Robertson drag, meteoroids above T = aJ +2 a(1−e2)cosi, the transition mass are assumed to retain the orbits of their ul- a ra J timateancestorbodiesovertheirshortlifetimesuntilcollisional with a being the semimajor axis of Jovian orbit. The num- destruction. J bers of meteoroids in T-layers are therefore stable over a long TheultimateancestorbodiesofinterplanetarydustinIMEM period of time. They are free parameters to be determined are comets and asteroids. A catalogue of asteroids is used to from the fit of IMEM to observations. The relative distribu- accountfor the latter sourceof meteoroids.Threedistinct pop- tionsinorbitalelementswithineachT-layerarefoundtheoreti- ulations of asteroids are recognized and allowed to have inde- cally(Dikarev&Grün2004). pendenttotalproductionrates:theThemisandKoronisfamilies Finer dust grains with masses less than 10−5 g leak from (semi-majoraxes2.8<a<3.25AU,eccentricities0<e<0.2, this region into the inner solar system and then migrate to- andinclinations0 < i < 3◦.5),EosandVeritasfamilies(2.95 < wardtheSununderthePoynting-Robertsondrag.ThePoynting- a < 3.05AU, 0.05 < e < 0.15,8◦.5 < i < 11◦.5),andthe main Robertsonmigrationtimeismuchlongerthanthecloseapproach belt(a < 2.8AU).Theorbitaldistributionsofmeteoroidsmore timeintheregionofcloseencounterswithJupiter,consequently, than 10−5 g in mass are constructed by counting the numbers the orbital distributions of all meteoroids are shaped there by ofcataloguedasteroidsperorbitalspacebins.Theorbitaldistri- the gravitational scattering on Jupiter. It is only the dust leak- butionsofmeteoroidslessthan10−5 ginmassaredescribedas ing throughthe innerboundaryof the regionthat is distributed theflowofparticlesalongthePoynting-Robertsonevolutionary astheflowofparticlesalongthePoynting-Robertsonevolution- paths (Gor’kavyietal. 1997) starting from the source distribu- arypaths(Gor’kavyietal.1997).Theirdistributionsarealsoes- tions defined earlier. The mass distributions are adopted piece- tablishedtheoreticallyinIMEM,withthenormalisationfactors wisefromtheinterplanetarymeteoroidfluxmodelbyGrünetal. beinginferredfromthefittoobservations. (1985)asshowninFig.5. AnempiricalfindingbyDivineofahelpfulseparationofthe The orbital distributionsof meteoroidsfrom comets cannot bulkofmeteoroidcloudintothecoreandasteroidalpopulations be defined as easy as those of meteoroids from asteroids. Be- –segregationofbig andsmalldustparticles– hasbecomeone causeofanumberoflossmechanisms,suchascometnucleide- ofthephysicalassumptionsinIMEM. cay,accretion,tidaldisruptionorejectionfromtheSolarsystem The weights of populations of dust from comets and aster- byplanets,veryfewcometsareactiveatagivenepochandlisted oidsinIMEMwerefittedtoin-situfluxmeasurementsusingthe in the catalogues.Moreover,the cataloguesare proneto obser- Poissonmaximum-likelihoodestimatorandtoinfraredobserva- vationbiasessincethecometnucleiarerevealedbygasanddust tionsusingtheGaussianmaxiumum-likelihoodestimator. shedathigherratesatlowerperiheliondistances. IMEM was tested against those data not incorporated in Inordertodescribetheorbitaldistributionsofmeteoroidsof the model by Dikarevetal. (2005), confirming that the or- cometary origin, Dikarev&Grün (2004) proposed an approx- bital evolution approach allows for more reliable extrapola- imate analytical solution of the problem of a steady-state dis- tionsoftheobservationsandmeasurementsincorporatedinthe tribution of particles in orbits with frequent close encounters model, it is compared with several other meteoroid models by with a planet. This solution is applied to represent the orbital Drolshagenetal.(2008). distributions of meteoroidsfrom comets in Jupiter-crossing or- bits,i.e.thevastmajorityofcataloguedcomets.Bigmeteoroids 2.4.MEM with masses greater than 10−5 g are confined to the region of closeencounterswithJupiter.Thereisonlyonequantitythatis The Meteoroid Engineering Model (MEM) described by approximatelyconservedintheregionofcloseencounterswith McNamaraetal.(2004)isanotherrecentdevelopmentoftheor- Articlenumber,page6of17 V.V.Dikarev&D.J.Schwarz:MicrowaveThermalEmissionfromtheZodiacalDustCloud againstcollisionsbecomesshorterthanthePoynting-Robertson -6 timebyordersofmagnitude,themeteoroidscannolongersur- -1s] 10 vive a travel from their sources toward the Sun and the orbital -2m 10-8 distributions of bigger particles are more similar with the dis- tributionsof their sourcesthan the distributionsof smaller par- AU [ 10-10 ticles. MEMis unfortunatelyunableto revealanddescribethis at 1 10-12 Cum(uGlarutievne eDti satlr.i b1u9t8io5n) importantfeatureoftheinterplanetarymeteoroidcloud. x Flu 10-14 2.5.TheCross-SectionAreaDistributions Figure 6 maps the total cross-section area of dust particles per -12 -10 -8 -6 -4 -2 0 10 10 10 10 10 10 10 unitvolumeof space, as a functionof the position in the Solar system, for each component or population of every meteoroid ars Poynting-Roberson Drag modelintroducedinthepreviousSection.The X andZ coordi- ye106 Collisional Destruction nates are measured from the Sun, with the X axis pointing to dU, thevernalequinoxandZ axisbeingperpendicularto the eclip- oiA or1 105 tic plane. The integralof the cross-sectionarea densityalong a eteat lineofsightgivestheopticaldepthofthecloudalongthatline Me ofsight,assumingthegeometric-opticsapproximation,spherical m 4 eti10 particles,andignoringthattheparticleefficienciesinabsorbing Lif andscatteringlightcaninfactbehigherorlowerthanunity. The Kelsallmodelisreproducedin the upperrow of maps. 10-12 10-10 10-8 10-6 10-4 10-2 100 Three dust bands are shown together in the middle plot. The smooth cloud is to the left, and the solar ring is to the right of 10-6 it. The dominant component of the Kelsall model, the smooth -1s] cloud is getting higher in density only toward the Sun and the 2 10-8 symmetryplaneslightlyinclinedofftheeclipticplane.Thedust -m bandsaretheonlycomponentofthemodelbulkingbeyondthe AU [ 10-10 Earthorbit,andtheyarebydefinitionboundtotheeclipticlati- 1 Meteoroid Populations tudesoftheirancestorasteroidfamilies’orbitinclinations.Both x at 10-12 CoDlliosimoninsa, tmed> 1b0y-:5g tthriecsdmisotaonthcecloofu5d.2anAdUthoendlyu,sstibnacnedKseelxstaelnldetuapl.t(o19th9e8)hesltioopcpeend- u -5 Fl -14 P-R Drag, m<10 g integratingthemodeldensitiesthere.Amorerigorousmodelof 10 Total the bands composed of dust migrating toward the Sun due to -12 -10 -8 -6 -4 -2 0 thePoynting-Robertsoneffectwouldputtheirdensities’cut-offs 10 10 10 10 10 10 10 at the outer boundaries of the corresponding asteroid families. Meteoroid Mass [g] Note,however,thatmostofthethermalinfraredemissionfrom Fig. 5. Cumulative mass distribution of interplanetary meteoroids the interplanetary dust observed by COBE was due to the dust (Grünetal. 1985, top), meteoroid lifetimes against mutual collisions within0.5–1AUfromtheEarthorbit,sinceCOBEcouldnotbe andPoynting-Robertson drag(middle),andcumulative massdistribu- pointedtooclosetotheSunanddustistoocoldandinefficient tionsofmeteoroidpopulationsinIMEM(Dikarevetal.2005,bottom). atthermalemissionfarfromtheSun(Dikarevetal.2009,their Thefluxofmeteoroidswithm > 10−5 gislowerinIMEMthaninthe Sect.2.1andFig.2).Thusforthepurposeofmodellingthein- Grünmodelsincetheimpactvelocitiesofbigmeteoroidsarehigherat fraredthermalemissionobservedfromtheEarth,thebehaviour 1AUfromtheSuninIMEMandtheyproducelargercratersonthelunar of the density at multiplesof an astronomicalunit was notim- rocksthanintheGrünmodel,whichassumedasingleimpactvelocity forallmeteoroidsizes. portant. This may not be the case for the microwave emission though. ThenexttworowsofmapsdepictthepopulationsoftheDi- bitaldistributionsandsoftwaretopredictfluxesonspacecraftin vine model. The core and asteroidal populations are important theSolar systemandnearEarth.Itis constrainedbythe Earth- in the infrared and microwave emission ranges. They are dis- basedmeteorradardataCMOR(CanadianMeteorOrbitRadar) tributedremarkablydifferentinspace,withthecorepopulation andzodiacallightobservationsfromtwointerplanetaryprobes, densitygrowinghighertowardtheSunandtheasteroidalpopula- Helios1and2.Thenominalheliocentricdistancerangeatwhich tiondensitypeakingbeyondtheorbitoftheEarth.Thetwopopu- themodelisapplicable,from0.2to2AU,isratherlimited,how- lationsarealsocomposedofparticlesofdifferentsizes:thecore ever.Eventhoughthemeteoroidmassrangeof10−6to10gcov- population mostly smaller and the asteroidal population mosly ered by the model is extremely interesting for the purposes of biggerthan∼ 50 µm. The halo,inclined andeccentric popula- ourstudy,someassumptionsmadebytheauthorsareratherar- tionsareprovidedforthesakeofcompleteness.Theirtiny,upto guable.In particular,the mutualcollisionsbetween meteoroids ∼ 10 µm-sizedparticlesareignorableinthewavelengthranges are considered in the model ignoring dependence of the mete- ofinterest. oroidcollisionprobabilityonitssize,whereasGrünetal.(1985) Thebottomrowofmapsandtherightmapinthethirdrow calculatedthatthelifetimeagainstcollisionaldisruptionofme- exhibit the populations from IMEM. The asteroidal dust parti- teoroidsvariesbyafactorof100betweenthemassesof10−6and clesbiggerthan10−5ginmassareconfinedtotheasteroidbelt, 1g(theirFig.6andourFig.5inthetextabove)!Itisnotonly naturally.Theyarenotmigratingfromtheirancestorbodyorbits themassdistributionofparticlesthatisdeterminedbythecolli- towardtheSunnorextendbeyondtheouteredgeoftheasteroid sionprobability,butalsotheorbitaldistributions:asthelifetime belt.ThesmallerdustparticlesmovetheirwaystowardtheSun Articlenumber,page7of17 A&Aproofs:manuscriptno.paper-con-aa-2 Fig.6.Particlecross-sectionareadensities(perunitvolumeofspace,AU2/AU3)foreachcomponentorpopulationofthemeteoroidmodelsby Kelsalletal.(1998),Divine(1993)andIMEM(Dikarevetal.2004).NotethattwomapsforthecometarydustinIMEMareplottedindifferent scale. duetothePoyting-Robertsoneffect.Theinclinationsoftheiror- approach Jovian orbit within 0.5 AU or less. Small cometary bitsareintact,sinceIMEMdoesnottakeintoaccountanyplan- particlesleakthroughtheinnerboundaryoftheregionofclose etaryperturbationsotherthangravitationalscatteringbyJupiter encounterswithJupiterandmigratetowardtheSunundertheac- thatrequirea close approachtothe giantplanet.Consequently, tionofthePoynting-Robertsoneffect,theyreachthehighestden- thelatitudinaldistributionoftheirdensityisindependentonhe- sityattheshortestheliocentricdistances.Acometarydustden- liocentricdistanceawayfromthesourceregion,i.e.asteroidbelt. sityenhancementintheformofasphericalshellwitharadiusof Big cometary particles have a density peak along the orbit 5.2AUisanegligiblysmalldefectcausedbytheassumptionof of Jupiter. This occurs because all their orbits are required to auniformdistributionofparticleorbitsinlongitudesofperihe- Articlenumber,page8of17 V.V.Dikarev&D.J.Schwarz:MicrowaveThermalEmissionfromtheZodiacalDustCloud Size, µm Size, µm 10-2 10-1 1 10 102 103 10-1 1 10 102 103 1 1 a e Ar Divine’s n 0.75 Asteroidal 0.75 o cti Core e Halo S - 0.5 Inclined 0.5 s s Eccentric o Cr IMEM of 0.25 0.25 m>10-5g F m<10-5g D C 0 0 -18 -15 -12 -9 -6 -3 0 -15 -12 -9 -6 -3 0 10 10 10 10 10 10 10 10 10 10 10 10 10 Mass, g Mass, g Fig.7.Cumulativedistributionfunctionsofparticlecross-sectionareainmass(size)foreachpopulationoftheinterplanetarymeteoroidmodelby Divine(1993)andIMEM(Dikarevetal.2004).Thematerialdensityofparticlesisequalto2.5gcm−3inbothmodelsexceptDivine’seccentric population,inwhichitistentimeslower.Theparticlesizescaleshouldnotbeusedincombinationwiththeplotforthelatterpopulation. liainIMEM.Concentricspherical“shells”ofdifferentdensities (2002) used the FIRAS (Far-Infrared Absolute Spectrometer) onthemapofcometarymeteoroidswithm > 10−5 garedueto data from COBE and found that the annually averaged spec- finitediscretizationofthedistributioninperiheliondistance. trumofthezodiacalcloudcanbefittedwithasingleblackbody Cumulativedistributionfunctionsofmeteoroidcross-section at a temperature of 240 K with an absorption efficiency being areainmassandsizeforeachpopulationofthemeteoroidmod- flatatwavelengthsshorterthan150µmand Q ∝ λ−2 beyond abs els by Divine (1993) and Dikarevetal. (2004) are plotted in 150µm. Fig. 7 (normalized to unity). Note that one population of the The absorptionefficienciesof dustfromallthree bandsco- Divine modelhas an assumed materialdensity of 0.25g cm−3, incideinKelsalletal.(1998)forthewavelengthsupto240µm. whereasthestandardvalueassumedforallotherpopulationsas PlanckCollaborationXIV (2014) have removed this constraint wellasinmanyothermeteoroidmodelsis2.5gcm−3. andallowedforindividualweightsofthe bandcontributionsin TheKelsallmodelbetsonessentiallysingle-populationrep- themicrowaves.Theyfoundthatthebandskeephigh Q ∼ 1 abs resentaionof theinterplanetarymeteoroidcloud,with the solar up to λ ∼ 3 mm, implying that their constituent particles are ring and dust bands being rather minor features (Fig. 2). The macroscopic.Theabsorptionefficiencyofthesmoothcloudde- meteoroidengineeringmodels,however,stateitclearlythatthe caysinthemicrowaves,however,notexactlyassharpasasimple cloudiscomposedofdifferentsortsofdustinmajorpopulations approximationofFixsen&Dwek(2002)suggests. thatare also distributeddifferentlyin space.We will see below The inverse problem solution sometimes led howthisaffectsthemicrowaveemissionpredictions. PlanckCollaborationXIV (2014) to negative absorption efficiencies of the smooth cloud or circumsolar dust ring and Earth-trailing blob. (Those negative efficiencies are simply 3. ThermalEmissionModels missing from Fig. 8 at certain wavelengths, as the logarithmic The thermal emission from dust particles is expressed with re- scale does not permit negative ordinates.) Obviously, some specttotheblackbodyemission B (T)atthewavelengthλand components of the Kelsall model were used by the fitting λ temperature T, using an emissivity modification factor which procedure to compensate for excessive contributions from the matchestheabsorptionefficiencyfactor Q (s,λ)fortheparti- other components in such cases. This is a strong indication of abs clesize s(Bohren&Huffman1983).Q isdefinedastheratio insufficiencyoftheKelsallmodelinthemicrowaves. abs oftheeffectiveabsorptioncross-sectionareaoftheparticletoits Our study requires the absorption factors even further in geometriccross-sectionarea. the microwaves. We use the numbers inferred by Kelsalletal. (1998) and PlanckCollaborationXIV (2014) whenever pos- sible, i.e. when they are available and positive. A nega- 3.1.TheKelsallmodel tive absorption efficiency found for the smooth cloud by The lightscatteringand emissionpropertiesofdustare notde- PlanckCollaborationXIV (2014) at λ = 2.1 mm is replaced finedintheKelsallmodelforthewavelengthsbetweenandbe- withtheresultofinterpolationofthepositiveefficienciesfound yond those of the COBE DIRBE instrument. Figure 8 shows atλ = 1.4 and3 mm,whereasnegativeefficienciesfor the cir- Kelsall’semissivitymodificationfactors,orabsorptionefficien- cumsolarringatλ = 0.85,1.4and2.1mmaresimplynullified. cies to preserve the uniformity of terms, for the DIRBE wave- TheabsorptionefficiencyisextrapolatedbeyondthePlanck/HFI length bands. PlanckCollaborationXIV (2014) used the cross- wavelengths (λ > 3 mm, i.e. in the WMAP range) using the sectionareadensityoftheKelsallmodelandfoundtheabsorp- approximation due to Fixsen&Dwek (2002) for the smooth tion efficiencies for its components to describe approximately cloud Q ∝ λ−2, similar to Marisetal. (2006) who assessed abs thethermalemissionfrominterplanetarydustatthewavelengths the level of contamination of the Planck data by the Zodiacal of Planck’sHigh FrequencyInstrument(HFI). Fixsen&Dwek microwaveemissionbasedon theKelsall model,andusingflat Articlenumber,page9of17 A&Aproofs:manuscriptno.paper-con-aa-2 ss bb aa QQ 11 yy cc nn ee ficifici 1100--11 Cloud EfEf Ring nn Blob oo ptipti 1100--22 Band 1 rr Band 2 oo ss Band 3 bb AA Fixsen & Dwek --33 1100 1100 µµmm 110000 µµmm 11 mmmm 1100 mmmm WWaavveelleennggtthh Fig.8.AbsorptionefficienciesofdustintheKelsallmodeldeterminedfortheCOBEDIRBEwavelengthsbyKelsalletal.(1998),grayareaonthe plot,andforthePlanck/HFIwavelengthsbyPlanckCollaborationXIV(2014).Fixsen&Dwek(2002)havealsousedthedatafromCOBE/FIRAS instrumenttodeterminetheannuallyaveragedspectrumoftheZodiacalcloudplottedherewithadottedline. Q = 1,0.5,1,and0.1fortheasteroiddustbands1,2,3,and (1) abs thecircumsolarringwiththetrailingblob,respectively. where s is the radius of a spherical dust grain, λ is the wave- length, F is the incident Solar radiance flux, B (T ) is the ⊙ λ D 3.2.SelectedMaterialsandAbsorptionEfficiencies blackbodyradianceatthedustparticle’stemperatureT .Asthe D left-handsideprovidesthetotalenergyabsorbedfromamono- Predictions of the thermal emission from interplanetary dust directionalincident flux, the right-handside gives the total en- clouds using the meteoroid engineering models require opti- ergyemitted,omni-directionally.Bydenotingtheabsorptionef- calpropertiesofconstitutingparticles.FollowingDikarevetal. ficiencyaveragedovertheSolarspectrumwithQ¯ ,andthesame (2009), we use the Mie light-scatteringtheoryand opticalcon- ⊙ quantityaveragedoverablackbodyspectrumattemperatureT stantsofsilicateandamorphouscarbonaceoussphericalparticles with Q¯(T ), then using the Stefan-Boltzmann law and the SoD- inordertoestimatetheabsorptionofsolarradiationandthermal D larconstant,onecanrewriteEq.(1)inamoreconciseform(cf. emissionbymeteoroids.Dikarevetal.(2009)bannedironfrom Reach1988): substancesfora hypotheticalmeteoroidcloudthatcouldbe re- sponsible for anomalous CMB multipoles. In this paper, how- T =279K Q¯ /Q¯(T ) 1/4 R −1/2, (2) epvoesre,swoemteakmeeitteobraicteksinastowaeclcloausnatsstienrcoeidirsounrfiasckesn,oiwtnistporceosemn-t D h ⊙ D i (cid:18)1AU(cid:19) where R is the distance from the Sun. A perfect black body intheinterplanetarydustparticlesandthereforeitmustbecon- with Q = 1 throughoutthe spectrumhasthereforea temper- sideredwhendiscussingthereal,nothypotheticalSolar-system abs atureof279K at1 AU fromtheSun,inverselyproportionalto medium.Waterandothericesarestill ignoredasextremelyin- thesquarerootofthedistance.Thisinverse-square-roottrendis efficientemittersofthemicrowaves. oftencloselyfollowedbytherealdustparticles. Dealingwiththemicrowavethermalemissionfromdustwith TheKelsallmodelusesthetemperaturegivenbyequation anassumedtemperature,Dikarevetal.(2009)didnotneedopti- calconstantsforthevisualandnear-infraredwavelengths.Here 1AU 0.467 wecalculatethetemperaturesofdustinthermalequilibriumand T =286K . (3) R ! the absorptionefficienciesare requiredfor the brightestpartof the Solar spectrum.Figure 9 plotsthe data forthe wavelengths Kelsalletal.(1998)emphasizethatthedusttemperatureat1AU between0.1and100µm. and absorption efficiencies could not be determined indepen- dently, so that the temperature was found by assuming the smoothcloudtobethedominantcomponentwithitsspectrumin 3.3.TheDustTemperatures themid-IRbeingthatofa pureblackbody(i.e.,unitabsorption Let us now calculate and discuss the temperaturesof dust par- efficienciesatλ=4.9,12,and25µm). ticles of different sizes at different distances from the Sun for Theequilibriumtemperaturesofdustparticlesareshownin the substancesselected in the previoussection. Figure10 plots Fig.10forabroadrangeofheliocentricdistances.Temperatures theequilibriumtemperaturesofsphericalhomogeneousparticles used in the Kelsall model are plotted for comparison as well. composedofsilicate,carbonaceousandironmaterialsaswellas Temperaturesof the micrometer-sizedparticlesare in mostob- thedusttemperatureusedintheKelsallmodel. viousdisaccordwithKelsall’smodel,buttheytendtobehigher Theequilibriumtemperatureisfoundfromthethermalbal- thantemperaturesofthelargerparticlesoftheircompositionas anceequation well. The reason is simple: their absorptionefficienciesare too low at the wavelengthsof ten and more micrometers, at which ∞ ∞ theirlargercounterpartsemittheenergyabsorbedfromtheSo- πs2 Q (s,λ)F (λ)dλ=4πs2 Q (s,λ)B (T )dλ, abs ⊙ abs λ D larradiationflux,thustheywarmtohighertemperaturesinorder Z Z 0 0 Articlenumber,page10of17

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.