Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2016-1135,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Published:19January2017 c Author(s)2017.CC-BY3.0License. (cid:13) The Microphysics of Clouds over the Antarctic Peninsula – Part 2: modelling aspects within Polar WRF ConstantinoListowski1 andTomLachlan-Cope1 1BritishAntarcticSurvey,NERC,HighCross,MadingleyRd,Cambridge,CB30ET,UK Correspondenceto:C.Listowski([email protected]) Abstract. The first intercomparisons of cloud microphysics schemes implemented in the Weather Research and Forecasting (WRF)mesoscaleatmosphericmodel(version3.5.1)areperformedintheAntarcticPeninsulausingthepolarversionofWRF (Polar WRF) at 5 km resolution, along with comparisons to the British Antarctic Survey’s aircraft measurements (presented inPart1ofthiswork,Lachlan-Copeetal.,2016).Thisstudyfollowspreviousworkssuggestingthemisrepresentationofthe 5 cloud thermodynamic phase in order to explain large radiative biases derived at the surface in Polar WRF continent-wide, and in the Polar WRF-based operational forecast model Antarctic Mesoscale Prediction System (AMPS) over the Larsen C Iceshelf.Severalcloudmicrophysicsschemesareinvestigated:theWRFSingle-Moment5-classscheme(WSM5),theWRF Double-Moment6-classscheme(WDM6),theMorrisondouble-momentscheme,theThompsonscheme,andtheMilbrandt- Yau Double-Moment 7-class scheme. WSM5 used in AMPS struggles the most to capture the observed supercooled liquid 10 phasemainlybecauseoftheiricenucleiparameterisationoverestimatingthenumberofactivatedcrystals,whileothermicro- physicsschemes(butnotWSM5’supgradedversion,WDM6)managemuchbettertodoso.Thebestperformingschemeis theMorrisonschemeforitsbetteraveragepredictionofoccurrencesofclouds,andcloudphase,aswellasitslowestsurface radiativebiasovertheLarsenCiceshelfintheinfrared.ThisisimportantforsurfaceenergybudgetconsiderationwithPolar WRFsincethecloudradiativeeffectismorepronouncedintheinfraredovericysurfaces.However,ourinvestigationshows 15 thatalltheschemesfailatsimulatingthesupercooledliquidmassatsometemperatures(altitudes)whereobservationsshow evidenceofitspersistence.AnicenucleiparameterisationrelyingonbothtemperatureandaerosolcontentlikeDeMottetal. (2010) (not currently used in WRF cloud schemes) is in best agreement with the observations, at temperatures and aerosol concentrationcharacteristicoftheAntarcticPeninsulawheretheprimaryiceproductionoccurs(Part1),comparedtoparame- terisationonlyrelyingontheatmospherictemperature(usedbytheWRFcloudschemes).Overall,arealisticicemicrophysics 20 implementationisparamounttothecorrectrepresentationofthesupercooledliquidphaseinAntarcticclouds. 1 Introduction Tropospheric Clouds in Antarctica are amongst the least well observed on Earth due to the remote environment and harsh conditions that make field observation difficult. As a result of this, no modelling study has ever focused on comparing the performancesofWRFcloudmicrophysicsschemestoin-situcloudmeasurements.Yet,thisisanecessarysteptoimproveour 1 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2016-1135,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Published:19January2017 c Author(s)2017.CC-BY3.0License. (cid:13) abilitytomodeltheAntarcticatmosphere.Betterunderstandingthemeteorologyisalsocrucialforprovidingreliableforecast toaircraftorgroundoperationsintheAntarctic. Much attention has focused on Antarctica’s energy budget in recent years notably due to the West Antarctic Ice Sheet warming(O’Donnelletal.,2011;Bromwichetal.,2013b),andonlargeicemassloss(gain)recordedinWest(East)Antarctica 5 (HarigandSimons,2015).AssessinghowatmosphericdrivenprocessesaffecttheevolutionAntarctica’sicemassandsurface energy budget requires to improve our understanding, and modelling of the clouds in that region. Importantly, changes in microphysicalpropertiesofAntarcticcloudsimpacttheatmospheredynamicsatlowersouthernlatitudesandevenatnorthern latitudes,sincetheiralteredradiativepropertiesmodifytheNorth-Southtemperaturegradient(Lubinetal.,1998). TheAntarcticPeninsulaischaracterisedbyhighmountainsformingabarriertothedominantwesterlies,andwhichroughly 10 extends across the longitudes 67◦W to 65◦W at the latitude of Rothera station (67.586◦S), with altitudes up to around 2500 metersinsomeplaces.Thismajortopographyfeaturecausessignificantdifferencesbetweeneachsideintermsoftemperatures (MorrisandVaughan,2003),andprecipitations(KingandTurner,1997),andalsoaerosolsandcloudmicrophysics(ascon- cludedinPart1ofthiswork,Lachlan-Copeetal.,2016).Significantclimatechangeshavebeenrecentlyobservedacrossthe Peninsuladuringthelastfewdecades(O’Donnelletal.,2011;Turneretal.,2016).Interestingly,oceanicdrivenmechanisms 15 arethemaincontributortoglaciersmeltinginthePeninsula(Woutersetal.,2015).Inthiscontext,improvingthemodelling of the different components of the energy budget of the Antarctic Peninsula is required to better understand its climatologi- cal evolution,and how atmospheric-driven processesact along with ocean-driven processes toimpact Antarctica’s ice mass balance,andtemperatures.Cloudsareoneoftheleastwellunderstoodoftheatmosphericcomponents(Boucheretal.,2013; Flatoetal.,2013). 20 Recentstudieshavepointedtowardsantarcticcloudsbeingresponsibleforlargeshortwave(SW)andlongwave(LW)surface radiativebiases(severaltensofWm 2)inhighresolutionmodelsoverthewholecontinent(Bromwichetal.,2013a),andmore − specificallyovertheEasternPeninsula’sLarsenCIceShelf(Kingetal.,2015).Improvedcloudphysicsallowingforrealistic icesupersaturationsledtolowerthesurfaceenergybudgetbiasesintheRACMO2highresolutionclimatemodel(vanWessem et al., 2014a). King et al. (2015) compared three mesoscale models simulations over the Larsen C during a summer month, 25 and showedhow theydiffered inthe amountof liquid andice thatwere formedin cloudsand this resultedin comparatively differentsurfacebiases.Theystronglypointtowardsproblemsinthemodellingofthethermodynamicphaseofcloudswithin themodels,andmorespecificallytowardsthesupercooledliquidcomponent(liquidmaintainedatT 0 C).Themodellingof ◦ ≤ themixed-phasecloudsneedstobeimprovedinmodels,andthemisrepresentation(underestimation)ofsupercooledliquidover AntarcticacanberelatedtoitspoorrepresentationoverthesurroundingSouthernOceanasawhole(LawsonandGettelman, 30 2014). A related issue deals with the initiation of the ice phase in clouds, which is driven by the Ice nucleating particles (INPs). TheyarethesubstratesneededtoactivateicecrystalsgrowtheitherdirectlyfromthevapourcondensingontheINP(deposition freezing), or from the freezing of supercooled droplets following immersion of, contact with, or condensation on, an INP (Hoose and Möhler, 2012). In the latter case the INP act as a Cloud Condensation Nuclei (CCN) first to form a droplet. 35 Homogeneous freezing of droplets (ie without the intervention of an INP) can occur at temperatures usually believed to be 2 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2016-1135,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Published:19January2017 c Author(s)2017.CC-BY3.0License. (cid:13) colder than -38 (Hoose and Möhler, 2012) although there are possible significant effects already below -30 (Herbert et al., ◦ ◦ 2015).InaremoteplacelikeAntarcticalittleisknownabouttheexactnatureoftheINPsalthoughstudieshavebeenidentifying variousplausiblesources.Biologicalsourcesfromthesnowysurface,blowingsnow,sulfateparticlesresultingfromsea-surface emissions, mineral dust lifted from ice-free regions or brought by winds from continental landmasses at lower latitudes e.g 5 South-America.ManycandidatesarefoundintheliteraturetoexplainthepresenceofINPsinAntarctica(seeBromwichetal., 2012, for a review). Similar questions arise for INPs in marine air in remote places like in the middle of the Souther Ocean (Burrowsetal.,2013),whichsurroundstheantarcticcontinent.RegardingCCNs,whichareneededtoactivateclouddroplet growth,seasaltisknowntobeanefficientsubstrate.Interestingly,itsemissioninpolarregion’sboundarylayerisbelievedto beenhancedinplaceswherebrine-richsnowcoveringseaicecanbeliftedbythewinds(Yangetal.,2008). 10 Inthelastdecades,verylocalizedground-measurementsusingin-situorremotesensingtechniqueshaveallowedtocharac- terisemicrophysicalpropertiesofclouds(particlephase,particlesize,crystalsshape),howevertheseobservationsaresparse (Lachlan-Cope,2010).Groundbasedremote-sensingmeasurementsprovidelocalcontinuousmeasurementsmakingitpossible tolinkcloudspropertiestoprecipitationsoraccumulationevents(Gorodetskayaetal.,2015). TwoaircraftcampaignsledbytheBritishAntarcticSurvey(BAS)tookplaceduringthesummer2010,and2011,measuring 15 cloud properties on both sides of the Antarctic Peninsula (Lachlan-Cope et al., 2016, hereafter referred to as Part 1). These twocampaigns,alongwithevidenceformisrepresentationofcloudsovertheeasternsideofthePeninsula(Kingetal.,2015), motivatedthisfirstattempttocomparesomeoftheexistingcloudmicrophysicsschemesimplementedintheWeatherResearch andForecastingatmosphericmodel(Skamarocketal.,2009)(WRF)v3.5.1,at5kmresolution,totheairbornemeasurements. We use the polar version of WRF (Polar WRF, Hines and Bromwich, 2008), which has optimised representation for polar 20 regionsintermsofsurfaceproperties(ice,snow,seaice,andseawater)andprocesses(heattransferbetweenthesurfaceand theatmosphere).PolarWRFiswidelyusedbytheAntarcticcommunityanditisusedbytheAntarcticMesoscalePrediction System(AMPS,Powersetal.,2012),whichisanoperationalforecastmodelthatprovidessupportforinternationalAntarctic efforts. Insection2wepresentthemodelsettingsalongwiththemicrophysicsschemesusedinthiswork,andexplaintheirmain 25 characteristics.Insection3wediscusssimpleresultsofradiationbiasestoillustratetheimportanceofcloudschemesonthe Peninsula energy budget. In section 4 we compare modelling results to in-situ measurements already presented in Part 1. In section5wediscusstheresults,therelevancyofthemicrophysicsschemesaswellassomeimportantaspectstoconsiderin thefutureforimprovingcloudmicrophysicsschemesandparameterisationsinAntarctica.Insection6themainaspectsofthis workaresummarized. 30 2 Observations,atmosphericmodel,andthecloudmicrophysicsschemes 2.1 Overviewoftheairborneobservations Two campaigns of in situ cloud measurements took place on both sides of the Antarctic Peninsula (61–73 W) in February ◦ 2010, and January 2011, respectively. The observations were made with the British Antarctic Survey’s instrumented Twin 3 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2016-1135,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Published:19January2017 c Author(s)2017.CC-BY3.0License. (cid:13) Otter aircraft (King et al., 2008) based at Rothera research station (67.586 S, 68.133 W). ERA-Interim reanalysis show an ◦ ◦ intensified northerly flow in 2011 to the west of the Peninsula, expected to bring warmer air. However colder temperatures were observed in the reanalysis, as well as in the radiosonde ascents made at Rothera (not shown), and from the aircraft measurements(atendencycorrectlyreproducedinthesimulations,seesection4.4).Thiscanbeexplainedbycolderairbeing 5 pulledfromtheWeddellSea(totheeastofthePeninsula)duringthe2011’scampaign,followingintensificationandeastward movementoftheAmundsenSealowtothewestofthePeninsula(Part1,theirFigure3).Resultsonaveragecloudproperties (predominantlystratus,oraltostratus)comparingbothcampaignsandbothsidesofthePeninsulaarepresentedinPart1.The aircraftwasfittedwithvariousinstrumentsmeasuringnotablytemperature,pressure,humidity,turbulence,radiationaswellas withaDropletMeasurementTechnologyCloud,Aerosol,andPrecipitatingSpectrometer(CAPS)(Baumgardneretal.,2001). 10 TheCAPShasaCloudandAerosolSpectrometer(CAS),aCloudImagingProbe(CIP),andaHotwireLiquidWaterContent (LWC)Sensor.TheCASmeasuresparticlesize(diameter)between0.5and50µm,andtheHotwirewasusedtovalidatethe supercooledLWCasderivedfromtheCAS,whichcannotdiscriminatebetweenliquidandice.Also,theCASshowedadistinct peak in the spectra indicative of drop formations. The CIP images particles with sizes between 25 µm and 1.5 mm, with 25 µmpixelresolution.Particlessmallerthan200µminsizecannotbediscriminatebetweencrystalsanddroplets.Theirnumber 15 concentration is very small compared to the CAS, and therefore they were ignored (see also section 4.3.1 of this paper for theimpactontheLWC).TheicewatercontentwascalculatedusingtheBrownandFrancismass-dimensionparameterisation (Brown and Francis, 1995). More details on data processing and the derivation of the ice crystal number concentration are giveninPart1.Finally,theCIPsamplesatarateofalittlelessthan10Ls 1,hencethelowerlimitforthemeasuredcrystal − numberconcentrationofalittlemorethan0.1L 1 (thisexplainsthelowerlimitoftheobservations-thegreyshadedarea- − 20 showninFigure11). 2.2 Modelsettings PolarWRFv3.5.1wasusedwithadownscalingmethod(Figure1a)wherea45kmresolutiondomaincontainsasmaller15 kmresolutionnest,whichitselfcontainsasmallernestat5kmresolutioncenteredovertheregionswherethe2010and2011 flights took place (Figure 1b). The topography is from Fretwell et al. (2013). The simulation outputs of the 5 km resolution 25 domain were used for the present analysis. The simulation is one-way, in the sense that no information is passed in return from one domains to its parent domain. Table 1 summarizes the WRF settings used for the main physical processes, except forthecloudmicrophysicsschemes,whichareaddressedinsection2.3.Kingetal.(2015)(hereafterreferredtoasK15)were interestedinthesurfaceradiativebiasesontheLarsenCIceShelfontheeasternsideofthePeninsula.Theyusedoutputsfrom AMPS(builtonPolarWRFv3.0.1forthe2011period).Forconsistencyweusethesameshortwaveandlongwaveradiation 30 schemesaswellasthesameboundarylayerscheme,surfacescheme,andsubsurfaceschemesasK15(Table1). One of the main differences with K15 is that our simulation is constrained horizontally and vertically, at the boundaries ofthe45kmresolutiondomain,withERA-InterimreanalysisdatainsteadofGlobalForecastSystemdata(GFS,runbythe U.S. National Centers for Environmental Prediction). ERA-Interim is the latest global atmospheric reanalysis (Dee et al., 2011)providedbytheEuropeanCentreforMedium-RangeWeatherForecasts(ECMWF).Thisreanalysisisbasedonarchived 4 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2016-1135,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Published:19January2017 c Author(s)2017.CC-BY3.0License. (cid:13) Figure 1. (a) WRF configurations for the three domains used for all simulations and (b) close-up on the highest resolution domain with detailedtopographyfromFretwelletal.(2013).Theblacktrianglesindicatetheflighttracksofthe2010campaign,whiletheredcircles indicatetheflighttracksofthe2011campaign.Theothermarkersindicatestation(circle),andtheAutomaticWeatherStations(AWS)14 (diamond)and15(square)locatedontheLarsenCIceShelf. observationsfrom1989onward.Itisobtainedthroughdataassimilationintoanatmosphericmodelrunningataresolutionof 0.75 0.75degrees,whichroughlycorrespondsto30kminlongitudeby80kminlatitude,atthelatitudeofRotherastation × (67.586 S). ◦ Werantwosetsofsimulations.Thefirstsetspanstheperiod1stFebruary2010to5thofMarch2010,andthesecondset 5 goes from 1st of January 2011 to 11th of February 2011 (the first two days were not included in the analysis as part of the modelspin-up).Thesetwoperiodscoverthetimeofthetwoaircraftcampaigns(seePart1),includingtheperiodduring2011 whenacampwassetupontheLarsenCIceShelf,closetotheAutomaticWeatherStationfourteen(AWS14,seeFigure1b), asdescribedinK15. 2.3 Cloudmicrophysicsschemes 10 WeusedfivedifferentmicrophysicsschemetoassesstheirabilitytomodelrealisticcloudsacrosstheAntarcicPeninsula.None oftheWRFmicrophysicsschemeshasbeenspecificallydeveloppedforAntarcticcloudsmodelling.Asnoworkhasbeendone sofaroncomparingmicrophysicsschemesimplementedinPolarWRFwithrespecttotheirperformancesforAntarcticclouds, weusedthemassuchwithnomodification.Thisappearedtobethemostreasonablefirststepthatcanthenhelpguidefurther developmentofAntarcticcloudsmicrophysicsmodelling.Generallyspeaking,eachschemeisabulkmicrophysicsparameter- 15 isation(BMP)whereeithermass(Single-Moment–SM–scheme),orbothmassandnumberdensity(Double-Moment–DM – scheme) of the various types of hydrometeors are independently predicted. In the DM case, the scheme allows for a more realistic behaviour of clouds. Indeed, predicting both the mass and the number density of hydrometeors allows the average particlesizetobepredicted,whichinturnallowsthemodellingofallsize-dependentprocesseslikesedimentation,accretion, 5 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2016-1135,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Published:19January2017 c Author(s)2017.CC-BY3.0License. (cid:13) growthtobeimproved(Igeletal.,2015).Allschemeshavenon-precipitable,andprecipitablehydrometeors.Theformer(cloud droplets,icecrystals)areconsideredashavingzerosedimentationvelocityinthecollectionoraccretionprocesses,incontrast tothelatter(raindrops,snowcrystals,graupel,orhail)thatactascollectorparticles.Finally,wedidnotuseanymicrophysics radiusbinmodel(asopposedtotheBMPs).Theypredicttheevolutionofcloudparticleswithingivensizebins,andallowfor 5 thepredictionoftheactualparticlesizedistributions.BinmodelsaremissingfromWRFv3.5.1.However,abinmodelismore demandingintermsofcomputertime,andBMPsareusedincurrentglobalorregionalatmosphericmodels,andinoperational forecastmodelslikeAMPS.Table2highlightssomeaspectsofthecloudmicrophysicsschemesinvestigatedinthisstudy. TheactualdefaultmicrophysicsschemeofWRFisWRFSingle-Moment3(WSM3),whichhasbeendiscardedherebecause it does not allow for the existence of supercooled liquid droplets. Thus, our default reference scheme is the WRF Single- 10 Moment 5 (WSM5) which allows for mixed-phase clouds formation (Hong et al., 2004). WSM5 is a SM scheme for all the hydrometeors.ItisusedinAMPS,whichwasshowntostrugglewiththepredictionofthecloudthermodynamicphase(King etal.,2015). TheWRFdouble-moment6(WDM6,LimandHong,2010)isanimprovementofWSM5,inwhichdropletsandrainare bothtreatedwithDMschemes,graupelsareincluded,andalltheicephaseparticlesaretreatedwithaSMscheme.Itisused 15 hereinordertotesttheimprovementofthepredictionofthesupercooledliquidphasethatonecouldexpectfromtheuseofa moresophisticatedparameterisationfortheliquidphase(DMinsteadofSMasinWSM5). The Morrison scheme (Morrison et al., 2005; Morrison et al., 2009) is a full DM scheme for all icy hydrometeors, and rain,andSMforwaterdroplets.TheMorrisonschemerequiresthecouplingtotheWRFChemistrymodule(Peckhametal., 2011)inordertoactasaDMschemefortheclouddroplets,andsincesuchcouplingwasnotavailableweusedtheMorrison 20 schemeasaSMschemeforthewaterdroplets.ThisschemeisusedintheArcticSystemReanalysis(ASR),whichisbasedon PolarWRFaswell.ItslightlyimprovedthemodellingofthecloudsinthenorthernpolarsummercomparedtoWSM5at30 kmresolution(Wesslénetal.,2014),andthispaperinvestigatesitsabilitytobetterrepresentthecloudsinthesouthernpolar region. The Thompson scheme (Thompson et al., 2008) has a state-of-the art parameterisation of snow, which relies on extensive 25 flights measurements, and it uses a more realistic size dependent density for snow particles. The latter are treated as non- spherical,andtheirdensitydecreaseswithincreasingsize.Thiswasidentifiedashavingamajorinfluenceontheproductionof supercooleddropsmainlybecauseofadecreasedefficiencyintherimingprocessresultinginlongerlastingsupercooleddrops (Thompsonetal.,2008). Finally, The Milbrandt-Yau scheme (Milbrandt and Yau, 2005a, b) (hereafter designated as Milbrandt) is a full double 30 momentscheme(withtheshapeparametersoftheparticledistributionbeingfixed).Itisusedhereinordertotesttheability ofafulldoublemomentschemetopredictsupercooleddropsbetterthantheMorrisonortheThompsonschemes. Table3detailsthewaythecloudschemestreattheinitiationofthecloudicephase,andthecloudliquid.Theinitiationofthe icephaseisthemostcomplexpart,anditreliesonINPparameterisations.TheydiagnosethenumberofINPs,hencethenumber ofactivatedcrystals,accountingforthevariousfreezingmodesdescribedintheintroduction.TheINPparameterisationsrely 35 ontheatmospherictemperatureonly.Theyareusedinvariouswaysbythedifferentcloudmicrophysicsschemesasillustrated 6 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2016-1135,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Published:19January2017 c Author(s)2017.CC-BY3.0License. (cid:13) in Table 3. This complex issue will be further addressed in section 5.2 where we discuss those parameterisations. They deal withprimaryiceproduction(dropletsorvapourconvertedtoicethroughinteractionwithINPs),asopposedtosecondaryice processes,whichresultfromtheinteractionofalreadyformedcrystalswithothercrystalsorwithsupercooleddroplets.The latter will be further addressed in section 5.2. Finally, the liquid phase relies on a fixed number of droplets or a predicted 5 numberofactivatedCCN(hencenumberofdrops),dependingonthecloudscheme.Theliquidphaseisformedaftertheice microphysics is computed provided there is still an excess of vapour compared to equilibrium (ie if S >1, where S is the w w saturationratiowithrespecttoliquidwater). 3 Preliminaries:resultsinradiationbiases Large biases in both surface downward shortwave (SW, solar flux) and longwave (LW) radiation were reported east of the 10 PeninsulaovertheLarsenCIceShelfbyK15.Theauthorscomparedthesummertimesurfaceenergybudgetassimulatedfor January2011bythreemesoscalemodels:AMPS,TheUKMetOfficeUnifiedModel(UM)(seeWilsonandBallard,1999,for thecloudscheme),andtheRegionalAtmosphericClimateMOdel(RACMO2)version2.3(seevanWessemetal.,2014a,for thecloudscheme).AfieldcampwasestablishedclosetoAWS14(seeFigure1b)whereradiosondeascentsallowedthewater vapour column density to be calculated. AWS14 is fitted with SW and LW radiometers. K15 showed that all models mostly 15 overestimatedSWradiationbyseveraltensofWm−2 (positivebias)whiletheyunderestimatedLWradiation(negativebias). Theypointedtowardsthelackofsimulatedcloudsthatblockedtheincomingshortwavesolarradiation,andemittedthermal radiationbacktothesurface.TheonlyexceptionwasnotedfortheUMmodelwhichhadseveraltensofWm 2 ofnegative − bias in SW suggesting an overestimation of the cloud cover. The AMPS model had very little if no liquid cloud forming at all during this period over AWS14, explaining the very large biases, especially in SW to which small droplets are the most 20 responsive.Iceclouds,however,weresimulated,andK15pointedtowardsamisrepresentationoftheactualphaseoftheclouds toexplainthebiasesosberved. FollowingK15,Table4showsaveragebiasesofdailyaveragedSWandLWdownwardsurfacefluxes.Theywerederived bysubtractingtheobservedvaluetothemodelledvalue.Threesiteswereselected:BritishAntarcticSurvey’sRotherastation, on the western side of the Antarctic Peninsula, and two Automatic Weather stations - AWS14 and AWS15 - on the Eastern 25 side of the Peninsula on the Larsen C ice shelf (see Figure 1b). Both AWS are about 70 km apart on the ice shelf. Table 4 alsoindicateswhetherthedifferencebetweenWSM5(usedinAMPS)andtheotherschemesisstatisticallysignificant(witha Studentt-test). 3.1 TheparticularcaseofAWS14inJanuary2011 WefirstcompareresultsobtainedbyK15withtheAMPSmodelovertheperiod8January2011to8February2011atAWS14 30 (seetheirTable3),toourresultsobtainedwiththeWSM5schemeoverthesameperiod(Table4,fourthcolumnofresults). Their computed biases are 56 W m 2 and -10 W m 2 in SW and LW, respectively ). Ours are 53 W m 2 and -20 W m 2, − − − − respectively.DiscrepanciesinbiasescanresultfromthecombinationofdifferentsettingsintheAMPS(forcing,numberof 7 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2016-1135,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Published:19January2017 c Author(s)2017.CC-BY3.0License. (cid:13) verticallevels,domainsboundaries).However,wedoobtainthesameordersofmagnitudeandsamesignsofbiasesasK15, consistent with a lack of clouds. A striking result is that the Morrison scheme reduces the biases in both SW and LW in a statistically significant way at the 99% level, while the Milbrandt, and the Thompson schemes reduce it significantly in LW only. 5 Figure 2 (bottom) shows the cloud liquid mass integrated over the entire atmospheric column (kg m−2) for the different simulationsasafunctionoftime,inthemodelgridboxcorrespondingtotheAWS14locationin2011.Figure2(top)showsthe simulated column density of water vapour compared to the radiosonde ascent measurements from the field camp at AWS14 (presentedinK15,andplottedintheirFigure7).Themodelledwatervapourisconsistentwithobservationsobtainedbetween day8andday32andthesimulationsdoagreebetweenthemexceptfortheThompsonschemebetweenday15andday20, 10 which better matches observations at that time. The Morrison scheme produces twice to four times more liquid clouds than theWSM5scheme(Figure2bottom).TheMilbrandt,andThompsonschemesgiveintermediateamountsbetweenWSM5and Morrison,andWDM6issimilartoWSM5.ThelargeramountofliquidcloudssimulatedwiththeMorrisonschemecompared toWSM5isconsistentwithitssmallerSWandLWbiasesatAWS14in2011(Table4)andinlinelinewithK15’sconclusion thatthephaseofthecloudsisresponsiblefortheirSWandLWbiases.TheThompsonscheme,andtheMilbrandtschemesdo 15 havelowerSWbiasesthanWSM5aswell,howevertheimprovementissmallerthanwiththeMorrisonscheme,andlessor notstatisticallysignificant.ButitstillissignificantforLWradiation. The total ice mass is similar from one scheme to another, as shown by Figure 3 (top). However an important difference ariseswhenconsideringthecloudicecrystalsmassonly(iethepristineice–ignoringthemainprecipitableparticleslikesnow and graupel particles); WSM5 and WDM6 simulate three to four times more ice crystals mass than the other schemes. The 20 Milbrandtschemeonlyformsoccasionallyasmuchicemassaroundthe19th,the25thandthe30thofJanuary.Graupelsare mainlyabsentexceptfortheMilbrandtschemeswhichtendstoformlowamountsaround0.05kgm 2 onrareoccasions(not − shown). Overall,themaindifferenceinthecloudmicrophysicsbetweenthevarioussimulationsatAWS14istheabilityofthecloud schemestosustainsupercooledliquiddrops,whichinturnexplainsdifferencesinSWandLWbias.Anotherdifferenceliesin 25 thedistributionofthemasswithintheicephasebetweencloudicecrystalsandsnowparticles. 3.2 Generalresultsinradiationbiases FortheeasternsideofthePeninsula(AWS14andAWS15),thebiasesshowninTable4(rightpart)demonstratestheimportance of the choice of the microphysicsscheme for the surfaceenergy budget of theLarsen C in PolarWRF. Similar biases (sign, andorderofmagnitude)areobservedatagivenyearandforagivenscheme,betweenAWS14andAWS15.Thisisconsistent 30 with the stations being 70 km apart from each other on the ice shelf, which consists of a relatively flat surface covered with snow,andwherethelargescaleinfluencesarelikelytobesimilarinabsenceofsignificantlocalvariationsinthetopographyor thenatureofthesurface.AremarkableresultisthattheLWbiasissignificantlyreducedduringbothperiodsofinterestonthe LarsenCiceshelfusingtheMorrison,Thompson,orMildbrandtschemes,comparedtoWSM5(orWDM6–notshown)as canbeseenfromthelowerrightpartofTable4.However,theThompson,andtheMilbrandtschemesstillhaveanegativeLW 8 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2016-1135,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Published:19January2017 c Author(s)2017.CC-BY3.0License. (cid:13) Figure 2. (Top) Time series of column density of water vapour (kg m−2) for the different simulations computed in the model gridbox correspondingtotheAWS14location,in2011,alongwiththeradiosondemeasurementsfromthefieldcamp(describedinK15,seetheir Figure7).(Bottom)Timeseriesofthecolumndensityofthecloudliquid(kgm−2)forthedifferentsimulations. bias,whileMorrison’sisslightlypositiveandgivesonaveragethesmallestLWbiasatbothAWSstationsforbothyears.The standarddeviationofdaily-averagedmeasurementsremainshighbutstatisticaltestshowthatthedifferencesbetweenWSM5 andthethreeotherschemesaresignificant,mainlyatthe99%levelin2011,andmainlyatthe95%levelin2010.TheSWbias issignificantlyreducedonlywiththeMorrisonschemein2011.Howevernoimprovementoccursin2010fortheSWbias.The 5 Milbrandt, and the Thompson scheme’s SW biases are slightly lower in 2011 with differences to WSM5 that are significant atthe90%level.In2010alltheschemeshavealargenegativeSWbiaswiththelargestamplitudeattributedtotheMorrison scheme. For the western side of the Peninsula (Rothera station), SW biases are always positive, and LW biases always negative, whatever the cloud scheme or the year considered (left part of Table 4). All simulations consistently show this imbalance 10 suggesting no improvement in cloud simulation. Besides, no statistically significant difference is observed between WSM5, andtheotherschemes.Notethatalmostnocloudliquidwater(notshown)issimulatedaboveRothera(asopposedtoAWS14, Figure 2), whatever the cloud scheme used, in line with the persistent large SW and LW biases. Ice and snow (graupel), however,areformedinsimilaramountstotheonesshowninFigure3.Overall(Table4)demonstratesthehighsensitivityof thesimulateddownwardradiationfluxestothemicrophysicsused. 15 Amajorissueinassessingtheperformancesofthecloudmicrophysicsschemesbyinvestigatingradiationbiasesisthatit does suppose that the appropriate information is passed on from the cloud scheme to the radiative scheme. This aspect can explaintheapparentparadoxofthesignificantimprovementoftheLWbiastotheeastofthePeninsulawiththreeschemes, 9 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2016-1135,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Published:19January2017 c Author(s)2017.CC-BY3.0License. (cid:13) Figure3.(Top)SameasFigure2forthetotalicephase(ice,snow,andgraupelparticles).(Bottom)SameasFigure2forcloudiceparticles only. whilenoconcomitantSWbiasimprovementisbeingobserved.TheDiscrepanciesinSWandLWbiasesimprovementswill befurtherdiscussedinsection5.Radiativeschemesthemselvesalsorequirecarefulexaminationastheyalsorelyonvarious assumptions, and simplified geometry to retrieve SW and LW fluxes. The radiative schemes that we used was chosen for consistencywithK15,inordertocomparetheirconclusions(usingAMPS)toours(usingPolarWRF).Wedonotintendhere 5 toinvestigatetheradiativeschemesimplementedinWRF.Forfurtherassessmentofcloudmicrophysicsschemesperformances andbehavioursatamuchwiderscale,wenowcomparethesimulationsoutputstoeachotherandtothecloudmicrophysics propertiesasmeasuredduringtheBASaircraftcampaignsthattookplaceovertheAntarcticPeninsula(presentedinPart1). 4 Results:simulatedcloudsascomparedtoobservations 4.1 GeneraltrendsforsimulatedcloudsacrossthePeninsula 10 ThetopographyoftheAntarcticPeninsula(Figure1)makesitinterestingtofocusonzonaldistributionoflatitudinalaverages fortheLiquidWaterContent(LWC,ingkg 1),andtheSolidWaterContent(SWC,gkg 1).SWCcomprisesice,snowand − − graupelmass.ItisdifferentfromtheIceWaterContent(IWC),whichconsistsonlyinthemassofthecloudicecrystals.LWC andSWCwererespectivelyaveragedbetweenlatitudes65.5 Sand68.5 Sandaltitudesbelow4500m.Thisgeographicalarea ◦ ◦ includestheregionwherebothflightcampaignstookplaceinsummer2010,and2011(Figure1b). 10
Description: