ebook img

The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators PDF

251 Pages·2016·3.135 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators

Operator Theory Advances and Applications Volodymyr Koshmanenko Mykola Dudkin Nataliia Koshmanenko The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators Operator Theory: Advances and Applications Volume 253 Founded in 1979 by Israel Gohberg Editors: Joseph A. Ball (Blacksburg, VA, USA) Harry Dym (Rehovot, Israel) Marinus A. Kaashoek (Amsterdam, The Netherlands) Heinz Langer (Wien, Austria) Christiane Tretter (Bern, Switzerland) Associate Editors: Honorary and Advisory Editorial Board: Vadim Adamyan (Odessa, Ukraine) Lewis A. Coburn (Buffalo, NY, USA) Wolfgang Arendt (Ulm, Germany) Ciprian Foias (College Station, TX, USA) Albrecht Böttcher (Chemnitz, Germany) J.William Helton (San Diego, CA, USA) B. Malcolm Brown (Cardiff, UK) Thomas Kailath (Stanford, CA, USA) Raul Curto (Iowa, IA, USA) Peter Lancaster (Calgary, Canada) Fritz Gesztesy (Columbia, MO, USA) Peter D. Lax (New York, NY, USA) Pavel Kurasov (Stockholm, Sweden) Donald Sarason (Berkeley, CA, USA) Vern Paulsen (Houston, TX, USA) Bernd Silbermann (Chemnitz, Germany) Mihai Putinar (Santa Barbara, CA, USA) Harold Widom (Santa Cruz, CA, USA) Ilya M. Spitkovsky (Williamsburg, VA, USA) Subseries Linear Operators and Linear Systems Subseries editors: Daniel Alpay (Beer Sheva, Israel) Birgit Jacob (Wuppertal, Germany) André C.M. Ran (Amsterdam, The Netherlands) Subseries Advances in Partial Differential Equations Subseries editors: Bert-Wolfgang Schulze (Potsdam, Germany) Michael Demuth (Clausthal, Germany) Jerome A. Goldstein (Memphis, TN, USA) Nobuyuki Tose (Yokohama, Japan) Ingo Witt (Göttingen, Germany) Volodymyr Koshmanenko • Mykola Dudkin The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators Volodymyr Koshmanenko Mykola Dudkin Institute of Mathematics Kyiv Polytechnic Institute National Academy of Sciences of Ukraine National Technical University of Ukraine Kyiv, Ukraine Kyiv, Ukraine Translated by Nataliia Koshmanenko Original Ukrainian edition published by Institute of Mathematics, NAS of Ukraine, Kyiv, 2013 ISSN 0255-0156 ISSN 2296-4878 (electronic) Operator Theory: Advances and Applications ISBN 978-3-319-29533-6 ISBN 978-3-319-29535-0 (eBook) DOI 10.1007/978-3-319-29535-0 Library of Congress Control Number: 2016940830 Mathematics Subject Classification (2010): 47A10, 47A55, 28A80 © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This book is published under the trade name Birkhäuser The registered company is Springer International Publishing AG Switzerland (www.birkhauser-science.com) To Yu.M. Berezansky, the mathematician with the inexhaustible creating energy Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 Preliminaries 1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Sets, subsets, points . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Functions and mappings . . . . . . . . . . . . . . . . . . . . 2 1.2 Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Topological spaces . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.3 Linear topological spaces . . . . . . . . . . . . . . . . . . . 3 1.2.4 Linear normed spaces . . . . . . . . . . . . . . . . . . . . . 4 1.2.5 Banach and Hilbert spaces . . . . . . . . . . . . . . . . . . 5 1.2.6 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.7 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Linear transformations . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 Continuous linear functionals . . . . . . . . . . . . . . . . . 9 1.3.2 Linear operators . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.3 Bounded sesquilinear forms . . . . . . . . . . . . . . . . . . 12 1.4 Unbounded operators, closability . . . . . . . . . . . . . . . . . . . 14 2 Symmetric Operators and Closable Quadratic Forms 2.1 Resolvent, spectrum, deficiency indices . . . . . . . . . . . . . . . 17 2.2 Adjoints and self-adjoint operators . . . . . . . . . . . . . . . . . . 19 2.2.1 The construction of the adjoint operator . . . . . . . . . . . 19 2.2.2 Self-adjointness . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Basic concepts of extension theory . . . . . . . . . . . . . . . . . . 21 2.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Closable quadratic forms in a Hilbert space . . . . . . . . . . . . . 30 2.4.1 Operator representationof closed quadratic form . . . . . . 31 2.5 The spectral theorem . . . . . . . . . . . . . . . . . . . . . . . . . 34 vii viii Contents 3 Self-adjoint Extensions of Symmetric Operators 3.1 The operator parametrization. . . . . . . . . . . . . . . . . . . . . 38 3.2 Description of extensions in terms of quadratic forms . . . . . . . 46 3.3 On operators A˜∈A1(A) . . . . . . . . . . . . . . . . . . . . . . . 49 + 3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5 Abstract boundary conditions. The Weyl function . . . . . . . . . 58 4 Rigged Hilbert Spaces 4.1 Construction of a rigged Hilbert space . . . . . . . . . . . . . . . . 61 4.2 Connections with self-adjoint operators . . . . . . . . . . . . . . . 65 4.3 A-scales of Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . 68 4.3.1 Properties of the A-scale. . . . . . . . . . . . . . . . . . . . 68 5 Singular Quadratic Forms 5.1 Quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.1 Symmetric quadratic forms, closability . . . . . . . . . . . 74 5.2 Singular quadratic forms on Hilbert space . . . . . . . . . . . . . . 77 5.3 A canonical decomposition for quadratic forms . . . . . . . . . . . 81 5.3.1 Properties of singular quadratic forms . . . . . . . . . . . . 84 5.4 Operator representationfor singular forms . . . . . . . . . . . . . 87 5.4.1 Singular forms and operators in the A-scale . . . . . . . . . 87 6 Dense Subspaces in Scales of Hilbert Spaces 6.1 Densely embedding of subspace . . . . . . . . . . . . . . . . . . . . 91 6.2 Construction of dense subspaces . . . . . . . . . . . . . . . . . . . 94 6.2.1 Preliminaries and notations . . . . . . . . . . . . . . . . . . 94 6.2.2 The shift method . . . . . . . . . . . . . . . . . . . . . . . . 95 6.2.3 The intersection method . . . . . . . . . . . . . . . . . . . . 98 6.2.4 Other versions of denseness conditions . . . . . . . . . . . . 100 6.3 Dense subspaces in scales of the Sobolev spaces . . . . . . . . . . . 103 6.4 A non-denseness defect . . . . . . . . . . . . . . . . . . . . . . . . 107 6.5 The denseness problem in terms of an A-scale. . . . . . . . . . . . 109 7 Singular Perturbations of Self-adjoint Operators 7.1 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.2 Singular perturbations . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.3 The form-sum method . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.3.1 The generalized operator sum . . . . . . . . . . . . . . . . . 119 7.4 The uniqueness problem . . . . . . . . . . . . . . . . . . . . . . . . 124 7.5 Rigged spaces and singular perturbations . . . . . . . . . . . . . . 131 7.6 The singularity phenomenon . . . . . . . . . . . . . . . . . . . . . 139 7.6.1 Effects of the singularity phenomenon . . . . . . . . . . . . 145 Contents ix 7.7 A˜-scales generated by singular quadratic forms . . . . . . . . . . . 148 7.7.1 Singular rank-one perturbations of higher orders . . . . . . 152 7.7.2 On s-similarity of Hilbert scales . . . . . . . . . . . . . . . . 154 7.8 The operator associated with a dense subspace . . . . . . . . . . . 156 7.8.1 The setting of the problem . . . . . . . . . . . . . . . . . . 156 7.8.2 Once more on rigged spaces . . . . . . . . . . . . . . . . . . 157 7.8.3 Again about denseness of embedded subspaces . . . . . . . 159 7.8.4 The operator A˘ . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.8.5 Construction of the operator D˘ . . . . . . . . . . . . . . . . 165 8 Super-singular Perturbations 8.1 Idea of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 8.1.1 Details of the method . . . . . . . . . . . . . . . . . . . . . 171 8.2 New riggings by means of singular quadratic forms . . . . . . . . . 173 8.3 Parametrizationof super-singular perturbations . . . . . . . . . . 180 9 Some Aspects of Spectral Theory 9.1 The point spectrum of singularly perturbed operators . . . . . . . 193 9.1.1 On the point spectrum arising under singular finite-rank perturbations . . . . . . . . . . . . . . . . . . . . 194 9.2 The inverse eigenvalue problem . . . . . . . . . . . . . . . . . . . . 201 9.2.1 A general construction . . . . . . . . . . . . . . . . . . . . . 201 9.2.2 The eigenvalue problem for rank-one singular perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . 203 9.2.3 The eigenvalue problem for singularly perturbed rank-one operators . . . . . . . . . . . . . . . . . . . . . . . 208 9.2.4 The inductive method in the inverse eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Notation index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.