ebook img

The Method of Normal Forms PDF

342 Pages·2011·1.558 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Method of Normal Forms

AliHasanNayfeh TheMethodofNormalForms RelatedTitles Lalanne,C. Mechanical Vibrationand Shock Volume1:SinusoidalVibration 2009 ISBN978-1-84821-122-3 Gossett,E. DiscreteMathematics withProof 2009 ISBN978-0-470-45793-1 Talman,R. GeometricMechanics TowardaUnificationofClassicalPhysics 2007 ISBN978-3-527-40683-8 Zauderer,E. Partial DifferentialEquations of AppliedMathematics 2006 ISBN978-0-471-69073-3 Kahn,P.B.,Zarmi,Y. Nonlinear Dynamics ExplorationThroughNormalForms 1998 ISBN978-0-471-17682-4 Nayfeh,A.H. Introduction toPerturbationTechniques 1993 ISBN978-0-471-31013-6 Ali Hasan Nayfeh The Method of Normal Forms Second,UpdatedandEnlargedEdition WILEY-VCH Verlag GmbH & Co. KGaA TheAuthor AllbookspublishedbyWiley-VCHarecarefully produced.Nevertheless,authors,editors,and Prof.AliHasanNayfeh publisherdonotwarranttheinformation VirginiaPolytechnicInstituteand containedinthesebooks,includingthisbook,to StateUniversity befreeoferrors.Readersareadvisedtokeepin DepartmentofEngineering mindthatstatements,data,illustrations, ScienceandMechanics proceduraldetailsorotheritemsmay Blacksburg,VA24061 inadvertentlybeinaccurate. USA [email protected] LibraryofCongressCardNo.:appliedfor BritishLibraryCataloguing-in-PublicationData: Acataloguerecordforthisbookisavailable fromtheBritishLibrary. Bibliographicinformationpublishedbythe DeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableonthe Internetathttp://dnb.d-nb.de. ©2011WILEY-VCHVerlagGmbH&Co.KGaA, Boschstr.12,69469Weinheim,Germany Allrightsreserved(includingthoseoftranslation intootherlanguages).Nopartofthisbookmay bereproducedinanyform–byphotoprinting, microfilm,oranyothermeans–nortransmitted ortranslatedintoamachinelanguagewithout writtenpermissionfromthepublishers.Regis- terednames,trademarks,etc.usedinthisbook, evenwhennotspecificallymarkedassuch,are nottobeconsideredunprotectedbylaw. Typesetting le-texpublishingservicesGmbH, Leipzig Printing Binding CoverDesign Adam-Design,Weinheim PrintedinSingapore Printedonacid-freepaper ISBNPrint 978-3-527-41097-2 ISBNePDF 978-3-527-63578-8 ISBNoBook 978-3-527-63580-1 ISBNePub 978-3-527-63577-1 V TomyyoungestsonNader VII Contents Preface XI Introduction 1 1 SDOFAutonomousSystems 7 1.1 Introduction 7 1.2 DuffingEquation 9 1.3 RayleighEquation 13 1.4 Duffing–Rayleigh–vanderPolEquation 15 1.5 AnOscillatorwithQuadraticandCubicNonlinearities 17 1.5.1 SuccessiveTransformations 17 1.5.2 TheMethodofMultipleScales 19 1.5.3 ASingleTransformation 21 1.6 AGeneralSystemwithQuadraticandCubicNonlinearities 22 1.7 ThevanderPolOscillator 24 1.7.1 TheMethodofNormalForms 25 1.7.2 TheMethodofMultipleScales 26 1.8 Exercises 27 2 SystemsofFirst-OrderEquations 31 2.1 Introduction 31 2.2 ATwo-DimensionalSystemwithDiagonalLinearPart 34 2.3 ATwo-DimensionalSystemwithaNonsemisimpleLinearForm 39 2.4 Ann-DimensionalSystemwithDiagonalLinearPart 40 2.5 ATwo-DimensionalSystemwithPurelyImaginaryEigenvalues 42 2.5.1 TheMethodofNormalForms 43 2.5.2 TheMethodofMultipleScales 47 2.6 ATwo-DimensionalSystemwithZeroEigenvalues 48 2.7 AThree-DimensionalSystemwithZero andTwoPurelyImaginaryEigenvalues 52 2.8 TheMathieuEquation 54 2.9 Exercises 57 VIII Contents 3 Maps 61 3.1 LinearMaps 61 3.1.1 CaseofDistinctEigenvalues 62 3.1.2 CaseofRepeatedEigenvalues 64 3.2 NonlinearMaps 66 3.3 Center-ManifoldReduction 72 3.4 LocalBifurcations 76 3.4.1 FoldorTangentorSaddle-NodeBifurcation 76 3.4.2 TranscriticalBifurcation 79 3.4.3 PitchforkBifurcation 80 3.4.4 FliporPeriod-DoublingBifurcation 81 3.4.5 HopforNeimark–SackerBifurcation 85 3.5 Exercises 91 4 BifurcationsofContinuousSystems 97 4.1 LinearSystems 97 4.1.1 CaseofDistinctEigenvalues 98 4.1.2 CaseofRepeatedEigenvalues 99 4.2 FixedPointsofNonlinearSystems 100 4.2.1 StabilityofFixedPoints 100 4.2.2 ClassificationofFixedPoints 101 4.2.3 Hartman–GrobmanandShoshitaishviliTheorems 102 4.3 Center-ManifoldReduction 103 4.4 LocalBifurcationsofFixedPoints 107 4.4.1 Saddle-NodeBifurcation 108 4.4.2 NonbifurcationPoint 110 4.4.3 TranscriticalBifurcation 111 4.4.4 PitchforkBifurcation 113 4.4.5 HopfBifurcations 114 4.5 NormalFormsofStaticBifurcations 117 4.5.1 TheMethodofMultipleScales 117 4.5.2 Center-ManifoldReduction 126 4.5.3 AProjectionMethod 132 4.6 NormalFormofHopfBifurcation 137 4.6.1 TheMethodofMultipleScales 138 4.6.2 Center-ManifoldReduction 141 4.6.3 ProjectionMethod 144 4.7 Exercises 146 5 ForcedOscillationsoftheDuffingOscillator 161 5.1 PrimaryResonance 161 5.2 SubharmonicResonanceofOrderOne-Third 164 5.3 SuperharmonicResonanceofOrderThree 167 5.4 AnAlternateApproach 169 5.4.1 SubharmonicCase 171 5.4.2 SuperharmonicCase 172 Contents IX 5.5 Exercises 172 6 ForcedOscillationsofSDOFSystems 175 6.1 Introduction 175 6.2 PrimaryResonance 176 6.3 SubharmonicResonanceofOrderOne-Half 178 6.4 SuperharmonicResonanceofOrderTwo 180 6.5 SubharmonicResonanceofOrderOne-Third 182 7 ParametricallyExcitedSystems 187 7.1 TheMathieuEquation 187 7.1.1 FundamentalParametricResonance 188 7.1.2 PrincipalParametricResonance 190 7.2 Multiple-Degree-of-FreedomSystems 191 7.2.1 TheCaseofΩ Nearω Cω 194 2 1 7.2.2 TheCaseofΩ Nearω (cid:1)ω 194 2 1 7.2.3 TheCaseofΩ Nearω Cω andω (cid:1)ω 194 2 1 3 2 7.2.4 TheCaseofΩ Near2ω andω Cω 195 3 2 1 7.3 LinearSystemsHavingRepeatedFrequencies 195 7.3.1 TheCaseofΩ Near2ω 198 1 7.3.2 TheCaseofΩ Nearω Cω 199 3 1 7.3.3 TheCaseofΩ Nearω (cid:1)ω 200 3 1 7.3.4 TheCaseofΩ Nearω 200 1 7.4 GyroscopicSystems 205 7.4.1 TheCaseofΩ Near2ω 208 1 7.4.2 TheCaseofΩ Nearω (cid:1)ω 208 2 1 7.5 ANonlinearSingle-Degree-of-FreedomSystem 208 7.5.1 TheCaseofΩ Awayfrom2ω 209 7.5.2 TheCaseofΩ Near2ω 211 7.6 Exercises 212 8 MDOFSystemswithQuadraticNonlinearities 217 8.1 NongyroscopicSystems 217 8.1.1 Two-to-OneAutoparametricResonance 220 8.1.2 CombinationAutoparametricResonance 222 8.1.3 SimultaneousTwo-to-OneAutoparametricResonances 223 8.1.4 PrimaryResonances 223 8.2 GyroscopicSystems 225 8.2.1 PrimaryResonances 226 8.2.2 SecondaryResonances 227 8.3 TwoLinearlyCoupledOscillators 229 8.4 Exercises 232 9 TDOFSystemswithCubicNonlinearities 235 9.1 NongyroscopicSystems 235 9.1.1 TheCaseofNoInternalResonances 236 9.1.2 Three-to-OneAutoparametricResonance 238

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.