1616•TheJournalofNeuroscience,February14,2007•27(7):1616–1630 Behavioral/Systems/Cognitive The Median Preoptic Nucleus Reciprocally Modulates Activity of Arousal-Related and Sleep-Related Neurons in the Perifornical Lateral Hypothalamus NataliaSuntsova,1,2,4RubenGuzman-Marin,1,2SunilKumar,1,3Md.NoorAlam,1,2RonaldSzymusiak,1,3and DennisMcGinty1,2 1ResearchService,VeteransAffairsGreaterLosAngelesHealthcareSystem,NorthHills,California91343,Departmentsof2Psychologyand3Medicine, UniversityofCaliforniaLosAngeles,LosAngeles,California90095,and4A.B.KoganResearchInstituteforNeurocybernetics,RostovStateUniversity, Rostov-on-Don344091,Russia Theperifornical–lateralhypothalamicarea(PF/LH)containsneuronalgroupsplayinganimportantroleincontrolofwakingandsleep. Amongthebrainregionsthatregulatebehavioralstates,oneofthestrongestsourcesofprojectionstothePF/LHisthemedianpreoptic nucleus(MnPN)containingasleep-activeneuronalpopulation.ToevaluatetheroleofMnPNafferentsinthecontrolofPF/LHneuronal activity,westudiedtheresponsesofPF/LHcellstoelectricalstimulationorlocalchemicalmanipulationoftheMnPNinfreelymoving rats.Single-pulseelectricalstimulationevokedresponsesin79%ofrecordedPF/LHneurons.Nocellswereactivatedantidromically. Direct and indirect transynaptic effects depended on sleep–wake discharge pattern of PF/LH cells. The majority of arousal-related neurons,thatis,cellsdischargingatmaximalratesduringactivewaking(AW)orduringAWandrapideyemovement(REM)sleep, exhibitedexclusivelyorinitiallyinhibitoryresponsestostimulation.Sleep-relatedneurons,thecellswithelevateddischargeduring non-REMandREMsleeporselectivelyactiveinREMsleep,exhibitedexclusivelyorinitiallyexcitatoryresponses.ActivationoftheMnPN viamicrodialyticapplicationofL-glutamateorbicucullineresultedinreduceddischargeofarousal-relatedandinexcitationofsleep- relatedPF/LHneurons.DeactivationoftheMnPNwithmuscimolcausedoppositeeffects.TheresultsindicatethattheMnPNcontains subset(s)ofneurons,whichexertinhibitorycontroloverarousal-relatedandexcitatorycontroloversleep-relatedPF/LHneurons.We hypothesizethatMnPNsleep-activeneuronalgrouphasbothinhibitoryandexcitatoryoutputsthatparticipateintheinhibitorycontrol ofarousal-promotingPF/LHmechanisms. Keywords:perifornicallateralhypothalamus;medianpreopticnucleus;electricalstimulation;microdialysis;neuronalactivity;sleep– wakingcycle Introduction (QW)andnon-rapideyemovement(NREM)sleep(Estabrooke Theposteriorlateralhypothalamuscontainsseveralinteracting etal.,2001;Torteroloetal.,2001;Alametal.,2002;Koyamaetal., neuronalpopulationscriticallyimplicatedinthecontrolofwak- 2003;Leeetal.,2005;Mileykovskiyetal.,2005).Currentevidence ing,includinghistaminergic,glutamatergic,andpeptidergicneu- suggestsaroleofGABAergicinhibitioninthesleep-relatedinac- rons(Lin,2000;GerashchenkoandShiromani,2004).Peptider- tivation of arousal-related PF/LH neurons and involvement of gic cells producing hypocretins/orexins located within thismechanisminsleepcontrol.Itwasshownthatreversemicro- perifornical–lateralhypothalamic(PF/LH)areaarethoughttobe dialysis of the GABAA receptor antagonist bicuculline into the oneofthekeycomponentsofbrainarousalnetwork(deLecea PF/LHincreasedboththetimespentawakeandthenumberof andSutcliffe,2005;JonesandMuhlethaler,2005;Sakurai,2005; c-Fos-positive hypocretin-immunoreactive and nonhypocretin Saperetal.,2005). PF/LHcells(Alametal.,2005a).ApplicationoftheGABA re- A ThemajorityofPF/LHneurons,includinghypocretincells, ceptoragonistsintotheposterolateralhypothalamus(Linetal., exhibitincreasedneuronaldischargeandc-Fosimmunoreactiv- 1989;Sallanonetal.,1989)orthePF/LH(Thakkaretal.,2003) ity during active waking (AW) compared with quiet waking causedhypersomnia. RecentevidencesuggeststhatGABA-mediatedcontrolofthe PF/LHcouldoriginateinsleep-activeneuronslocatedwithinthe ReceivedMarch27,2006;revisedJan.8,2007;acceptedJan.9,2007. preoptic area/basal forebrain. GABAergic cells showing sleep- ThisworkwassupportedbytheMedicalResearchServiceoftheDepartmentofVeteransAffairs,NationalInsti- tutesofHealthGrantsMH63323,MH47480,HL60296,andNS-50939,andtheJ.ChristianGillinResearchGrantfrom relatedc-Fosimmunoreactivityarefoundwithintheventrolat- theSleepResearchSocietyFoundation(N.S.). eralpreopticarea(VLPO)(Sherinetal.,1996)andthemedian CorrespondenceshouldbeaddressedtoDennisMcGinty,ResearchService(151A3),VeteransAffairsGreaterLos preopticnucleus(MnPN)(Gongetal.,2004).Sleep-activeneu- Angeles,HealthcareSystem,16111PlummerStreet,NorthHills,CA91343.E-mail:[email protected]. ronslocatedwithinthesenucleiexhibitaspecificpatternofen- DOI:10.1523/JNEUROSCI.3498-06.2007 Copyright©2007SocietyforNeuroscience 0270-6474/07/271616-15$15.00/0 hanceddischargeduringbothNREMandrapideyemovement Suntsovaetal.•EffectsoftheMnPNonPF/LHNeuronalActivity J.Neurosci.,February14,2007•27(7):1616–1630•1617 (REM)sleep(Szymusiaketal.,1998;Suntsovaetal.,2002),which thenacclimatedtoexperimentalmilieufor3d.Experimentswereper- isoppositetothatdemonstratedbywake-activePF/LHneurons. formedonfreelymovinganimals.EEGandEMGsignalswererecorded Warming of the preoptic area suppresses discharge of wake- bipolarly using Polygraph model 78 amplifiers (Grass Instruments, activePF/LHneurons(Methipparaetal.,2003),whereasinhibi- Quincy,MA)withpassbandssetat1–30and100–1000Hz,respectively. Neuronalactivitywasrecordedextracellularlyusingbipolarderivations tionofthisareawithmuscimolinducesFosinhypocretinand frommicrowires(impedanceat1kHz,500–800k(cid:2))andamplifiedbya nonhypocretinPF/LHneurons(Satohetal.,2004).Recentana- differentialACamplifier(model1700;A-MSystems,Carlsborg,WA) tomicalstudiesshowedthattheMnPNinputtothePF/LHisone withlowandhighcutofffiltersof10Hzand10kHz,respectively.During oftheheaviestamongthestructuresinvolvedincontrolofbe- recordingsessions,themicrowireswereadvancedin25–30(cid:1)msteps, havioralstates(Yoshidaetal.,2006).MnPN–PF/LHprojection untilactionpotentialswithsignal-to-noiseratio(cid:2)3wereobserved. neurons include a subset of cells exhibiting sleep-related c-Fos Bioelectricalsignalsweredigitizedandstoredonharddriveforoff-line immunoreactivity(Uschakovetal.,2006).Thesefindingsallow analysisusingMicro1401dataacquisitioninterfaceandSpike2software ustohypothesizethatMnPNplaysanimportantroleinsleep- package(CambridgeElectronicDesign,London,UK).Polygraphicdata relatedinhibitorymodulationofhypocretinandnonhypocretin weredigitizedatasamplingrate256Hzandunitactivitydataat10or25 arousal-relatedPF/LHneurons. kHzforwaveformandwavemarkdatachannels,respectively. Electrical stimulation. Electrical stimulation of the MnPN was per- An alternative or complementary source of inhibition of formedwith200(cid:1)sconstant-currentsquarepulsesusingA-65Timer/ PF/LH arousal-related cells could be local GABAergic neurons stimulatorcoupledwithSC-100constant-currentmonophasicstimulus (Rosinetal.,2003)and/orcellscontaininganinhibitorypeptide isolationunit(WinstonElectronicsCompany,Millbray,CA).Stimula- melaninconcentratinghormone(MCH).Thelatterareintercon- tionparameterswererestrictedbecauseMnPNstimulationatcurrent nectedwithhypocretinneurons(Bayeretal.,2002)andarelikely intensities (cid:4)150–200 (cid:1)A triggered absence-like seizures within a few to be a subset of PF/LH sleep-active cells (Verret et al., 2003; seconds.TotestPF/LHneuronalresponses,thefollowingnonepilepto- Modirroustaetal.,2005). genicstimulationparadigmswerechosen.MnPNwasstimulatedat100 TodeterminethefunctionalinfluenceoftheMnPNonPF/LH (cid:1)A current intensity with single pulses (0.5 pulses/s) or 5 s trains of neuronalpopulationswithdifferentrolesinbehavioralstatecon- stimulifollowedby150msperiod.Trainstimulationswereseparatedby trol,weexaminedtheeffectsofelectricalstimulation,chemical atleast20srecoveryperiods.Stimulationfrequencywithinthetrainswas stimulation,andchemicalinhibitionoftheMnPNonsingle-unit chosenbasedonmedianfrequencyofdischargeofMnPNsleep-related neuronsinquietwakingdeterminedfromthepreviousdata(Suntsovaet activitywithinthePF/LHinrats. al.,2002). Theeffectivecurrentspreadaroundthetipsofbipolarside-by-side MaterialsandMethods electrodeshasnotbeenestimated.However,itislikelytobelessthanor Animals.MaleSpragueDawleyrats(300–350g;8–10weeksofage)were atthemostcomparablewiththespreadfromatipofamonopolarelec- housed individually in Stand-Alone Raturn Animal Handling System trode,whichwasestimatedasthesquarerootofthecurrentdividedby (BioanalyticalSystems,WestLafayette,IN)placedinsideanelectrically thesquarerootoftheexcitabilityconstant(Tehovniketal.,2006).Ap- shielded,sound-attenuatedchamber.Ratswerekeptina12hlight/dark plyingthisequation,monopolarstimulationwithparametersusedinour cyclewithlightsonat8:00A.M.,designatedasZeitgebertime0(ZT0). studywouldbeexpectedtoactivatethemostexcitableneuronswithin0.6 Animalshadadlibitumaccesstofoodandwater.Allexperimentswere mmradius.Theeffectivecurrentspreadfromamonopolarelectrodehas performedinaccordancewiththeNationalResearchCouncilGuidefor beenestimatedas250–500(cid:1)mbasedonsingle-cellrecordingsorusing the Care and Use of Laboratory Animals. Animal use protocols were behavioralmethods(Wise,1972;BagshawandEvans,1976;Tehovniket reviewedandapprovedbytheInternalAnimalCareandUseCommittee al.,2006).Comparedwithsomeofthesestudies,weusedlargerelectrode oftheVeteransAffairsGreaterLosAngelesHealthcareSystem. tips,whichcouldresultinasmallereffectivecurrentspread(Follettand Surgery.Surgicalprocedureswereperformedunderketamine/xylazine Mann,1986).Thisissupportedbyourfindingthat150–200(cid:1)mshiftsin anesthesia(80/10mg/kg,i.p.respectively)andasepticconditions. electrodepositionfromtheMnPNmarginsinmediolateralordorsocau- Forbehavioralstateassessment,stainless-steelscrewEEGelectrodes daldirectionsledtodisappearanceofEEG-synchronizingeffectofhigh- wereplacedintotheskulloverthefrontalandparietalcortexandtwo frequency (100–200 pulses/s) MnPN stimulation and recruiting re- Teflon-coatedstainless-steelEMGwireswereimplantedintothedorsal sponsesevokedbylow-frequencyMnPNstimulation. neckmuscles. Themainadvantageofthemethodofelectricalstimulationisitshigh To record a single-unit activity within the PF/LH, a preassembled temporalresolutionallowingthedistinctionofantidromic,monosynap- constructionwasused.Itconsistedof10Formvar-insulatedstainless- ticandpolysynapticresponses.Alimitationislackofselectivityforneu- steelmicrowires(20(cid:1)m)insertedintothe23-gaugeguidecannulathat rons. Possible excitation of axonal terminals and fibers of passage in wasattachedtoamechanicalmicrodriveanchoredtotheminiatureelec- additiontoneuronalcellbodiesresultsinuncertaintyregardingtheori- tricalconnector.Aholewastrephinedintheskull,centeredatanterio- ginofobtainedresponses.Toovercomethisproblem,wealsoapplied posterior (AP), (cid:1)3.14; mediolateral (ML), 1.2 (Paxinos and Watson, localchemicalactivationandinhibitionofneuronalcellbodiesandden- 1998).Theguidecannulawasloweredinsidethebraintopositionitstip drites within the MnPN. This method, however, has lower temporal 3mmabovethetarget.Afterfixationoftheentireassemblytotheskull, precisionandpermitsassessmentofonlyrelativelylong-termtonicin- the microwires were advanced through the guide cannula to a point fluencesofMnPNafferents. correspondingtothePF/LHdorsalmargin[horizontal(H),8.2]. Reversemicrodialysis.MnPNcellularactivitywasmanipulatedchemi- TostimulatetheMnPNelectrically,animalswereimplantedwithpar- callyusingmicrodialyticapplicationofL-glutamate,theGABAAreceptor allelbipolarFormvar-insulatedtungstenelectrodes(80(cid:1)m;10–20k(cid:2)at antagonist bicuculline methiodide, and the GABA receptor agonist A 1000Hz).Electrodewirestargetedthemostrostroventalanddorsocau- muscimol(allfromSigma,St.Louis,MO)toexcite,disinhibit,andin- dalportionsoftheMnPN(AP,0.0;H,7.0;andAP,(cid:1)0.46;H,5,respec- hibittheMnPNneurons,respectively. tively)(Swanson,1998)toprovidestimulationoftheentirestructure The microdialysis probe (cuprophane semipermeable membrane (Fig.1A). length,1mm;outerdiameter,0.24mm;molecularweightcutoff,6000 To activate or inhibit the MnPN neuronal activity chemically, rats Da;CMA/11;CMAMicrodialysis,NorthChelmsford,MA)wasinserted wereimplantedwithaguidecannulaforsubsequentinsertionofmicro- intotheimplantedguidecannula24hbeforestartinganexperiment.The dialysisprobe.Theguidecannulawasimplantedinthemidlineata15° tipoftheprobeextended3mmbeyondthetipoftheguidecannula.The anglefromtheverticalwiththetiplocated3mmfromthetarget(AP, positioningoftheprobewaschosentominimizedamagetothenucleus (cid:3)0.12;ML,0;H,7). (Fig.1D).Thetipoftheprobe(coveredwithgluefor0.3–0.5mm)was Recording.Theratswereallowedtorecoverfromsurgeryfor7d,and placedwithinthemostrostralpartoftheMnPN.Theopenpartofthe 1618•J.Neurosci.,February14,2007•27(7):1616–1630 Suntsovaetal.•EffectsoftheMnPNonPF/LHNeuronalActivity microdialysismembranewasincontactwitha dorsalsurfaceofthenucleus. The probe was continuously perfused at a flow rate of 2.0 (cid:1)l/min with filtered artificial CSF(aCSF)containingthefollowing(inmM): 145NaCl,2.7KCl,1.3MgSO ,1.2CaCl ,and2 4 2 Na HPO ,pH7.2.Alldrugsweredissolvedin 2 4 this solution. Gastight Bee Stinger syringes were filled with perfusates and mounted on BabyBeeSyringePumpsconnectedtoBeeHive Pumpcontrollers(BioanalyticalSystems,West Lafayette,IN).Tochangesyringesduringmi- crodialysiswithoutinterruptingflow,aliquid switch(UniSwitch;BioanalyticalSystems)was used.Afterdeliveryofsubstances,theperfusion solution was switched back to aCSF and the recordingcontinuedforanother45–90minor untilthedischargeratewasatbaselinelevels. To examine the effects of MnPN chemical activationanddisinhibitiononPF/LHneuro- nalactivity,1mML-glutamate,50(cid:1)Mbicucul- line,and50(cid:1)Mmuscimolconcentrationshave beenchoseninpreliminaryexperiments.These concentrations,ononehand,werebelowthe thresholdforinductionofEEGandbehavioral manifestationsofabsence-likeseizuresbut,on theotherhand,wereshowntobeeffectiveto modulatebehavior,neuronaldischarge,c-Fos immunoreactivity, and neurotransmitter re- lease while applied by reverse microdialysis into the other structures (Karreman and Moghaddam, 1996; Materi and Semba, 2001; Westetal.,2002;Satohetal.,2004;Alametal., 2005a).ExcessesofeitherL-glutamateorbicu- culline can potentially inactivate instead of 3 Figure 1. Anatomical localization of stimulating elec- trodes,microdialysisprobes,andrecordedneurons.A,D, Schematicdrawingshowingtargetedplacementofstimulat- ingelectrodes(A)andmicrodialysisprobes(D)atsagittalsec- tionoftheratbrain.B,E,Histologicallyverifiedlocationsof thetipsofstimulatingelectrodes(B,asterisks)andmicrodi- alysisprobes(E,verticalbars)plottedondiagramsofcoronal sections.Thelocationsofthetipsofstimulatingelectrodes withinrostralandcaudalMnPNinBareshownonthetopand bottompanels,respectively.TheMnPNishighlightedwith bluecolor.C,F,PhotomicrographsofNissl-stainedsections showingthelocationsofstimulatingelectrodesandmicrodi- alysisprobes.Thearrowsindicatethesitesofelectrolyticle- sionswithintherostral(C,top)andcaudal(C,bottom)MnPN andtrackofthetipofmicrodialysisprobewithintherostral MnPN(F).Scalebar,250(cid:1)m.G,H,Locationsofneuronswith differentsleep–wakedischargepatternsrecordedwithinthe PF/LHduringexperimentswithelectricalstimulation(G)and microdialyticperfusion(H)oftheMnPN.Forbettervisualiza- tion,AW/REMsleep-relatedneurons(circles)areshownon theleftsideandAW-related(triangles),NREM/REMsleep- related (diamonds), REM sleep-related (rectangles), and state-indifferent(asterisks)unitsareshownontherightside ofthedrawings.Theperifornicalareaisoutlinedwithbrown. I,Photomicrographsofstainedforhypocretin-1histological sectionsshowingthelocationsofmicrowiretracks(arrows) within lateral (1) and medial (2) parts hypocretin- immunoreactiveneuronalfield.Scalebar,50(cid:1)m.MS,Medial septalnucleus;ac,anteriorcommissure;och,opticchiasm;f, fornix;VDB,nucleusoftheverticallimbofthediagonalband; 3V,thirdventricle;Br.,bregma. Suntsovaetal.•EffectsoftheMnPNonPF/LHNeuronalActivity J.Neurosci.,February14,2007•27(7):1616–1630•1619 stimulateMnPNneuronsbecauseofdepolarizationblock.However,sig- thebeginningofdrugapplication.ThepercentagesoftimespentinAW, nificantlyhigherconcentrationsofthesedrugshavebeenusedpreviously QW,NREM,andREMsleepwerecalculatedperhour. tophysiologicallyactivatebrainregions(GeorgesandAston-Jones,2001; ToquantifytheeffectofchemicalmanipulationsoftheMnPNonthe ZhangandFogel,2002;Hanamori,2003;Puigetal.,2003).Theconcen- dischargeofthePF/LHneurons,meanfiringrateswerecalculatedfor trationofbicucullineusedinourstudy(0.025(cid:1)g/(cid:1)lintheperfusion sleep–wakestatesduringbaselineaCSFperfusionanddrugadministra- fluidand(cid:5)10timeslessinthetissue)wasmuchlowerthanreportedto tion. Average firing rates obtained during different sleep–wake states produceadepolarizationblockage(0.75(cid:1)g/(cid:1)l)inmicroinjectionexper- before and during drug application were compared with two-way iments(Perieretal.,2002).Inaddition,inourpreliminarystudies,we repeated-measuresANOVAwithtwowithin-subjectsfactors.Onefactor never observed inhibitory responses of preoptic area neurons to wasdefinedasasleep–wakestatewithfourlevels(AW,QW,NREM,and L-glutamateandbicucullinelocallymicrodialyzedatconcentrationsused REMsleep).Theotherfactorwasdrugtreatmentwithtwolevels(aCSF in this study. These preliminary experiments and our previous data perfusionanddrugadministration).Incasesofviolationofsphericity (Alametal.,2005a)basedonc-Fosanalysisallowedustoestimatethe assumption (Mauchley sphericity test), to avoid erroneous results of effective spread of drugs delivered by reverse microdialysis (0.5–0.75 univariateANOVA,amultivariateapproachwasappliedtotestthesig- mmaroundtheprobe). nificanceofunivariaterepeated-measuresfactorswithmorethantwo Dataanalysis.Todeterminethestate-relatedchangesindischargeof levels(Wilk’smultivariatetest).Inpresenceofasignificantmaineffect, therecordedcells,themeanfiringrateswerecalculatedfor1015–60s posthoccomparisonsweredoneusingTukey’sHSDtest. artifact-freeperiodsofAW,QW,NREM,andREMsleep,whichwere Resultsareexpressedthroughoutasmean(cid:7)SEM.Thelevelofsignif- identifiedonthebasisofEEGandEMGparametersusingstandardcri- icancewassetatp(cid:6)0.05. teria(Timo-Iariaetal.,1970).Recordedcellswereclassifiedintogroups Histology.Attheendofarecordingsession,underdeepanesthesia withdifferentsleep–wakefiringrateprofilesbasedontheresultsofa (pentobarbital;100mg/kg,i.p.),microlesionsweremadeatthetipof K-meansclusteranalysisfollowedbyevaluationofstate-relatednessfor microwires(20(cid:1)Aanodaldirectcurrent;15–20s)atthemostventral eachmemberofthecluster(Suntsovaetal.,2002).One-wayANOVA recordedsite.Afterinjectionwithheparin(500U,i.p.),animalswere followedbyTukey’shonestlysignificantdifference(HSD)posthoctest wasusedtoexaminetheinterstatedifferencesinthemeanfiringratesof perfusedtranscardiallywith30–50mlof0.1Mphosphatebuffer,pH7.2, followedby300mlof4%paraformaldehydeinphosphatebuffercon- individual neurons and groups of cells with different sleep–wake dis- chargeprofiles. taining15%saturatedpicricacidsolution,100mlof10%sucrose,and TheorthodromicresponsesofPF/LHneuronsevokedbyMnPNstim- finally100mlof30%sucroseinphosphatebuffer.Thebrainswerere- ulationwerecharacterizedbymeasuringtheonsetlatencyandduration movedandequilibratedin30%sucrose.Serialcoronalsections(40(cid:1)m) of stimulation-induced effects from peristimulus time histograms werestainedforNissl(cresylviolet)toverifythepositionofthestimu- (PSTHs).TogeneratePSTHs,atleast80trialsofsingle-pulsestimulation latingelectrodes.Toverifythepositionofmicrowiretrackswithinthe performedduringAWwereselected.Thetrialsweredividedinto1ms hypocretinneuronalfield,sectionsthroughthePF/LHwereimmuno- bins,andactionpotentialsoccurringwithineachbinweresummedover stainedforhypocretin-1asdescribedpreviously(Alametal.,2002). all stimulation trials. Significant excitatory or inhibitory poststimulus Reconstructions of tracts of stimulation electrodes, microdialysis neuronalresponseswereidentifiedinthosebinswhosecountswere(cid:4)2 probes,andmicrowiresweremadewiththeaidofNeurolucidaimaging SDsaboveorbelow,respectively,thebaselinemean(averagedovera system(MicroBrightField,Colchester,VT)guidedbytheratbrainatlases prestimulus period of 200 ms). For slowly firing cells, inhibition was ofPaxinosandWatson(1998)andSwanson(1998)forPF/LHareaand definedbya(cid:4)50%decreaseinthefiringratewithrespecttothepre- theMnPN,respectively.Accordingtoreconstructions,stimulatingelec- stimulus value. The neuronal response onset latency and offset were trodes were correctly positioned in five rats (Fig. 1B,C). From these definedasthefirstoffiveconsecutivebinsmeetingtheresponsecriterion animals,87cells,recordedwithinhypocretin-immunoreactiveneuronal andnolongermeetingthecriterion,respectively.Fivemillisecondwin- fieldwithsignal-to-noiseratio(cid:2)3(Fig.1G),wereexaminedfortheir dowsallowedustoidentifybothshort-andlong-durationresponses. sleep–wake discharge patterns and responses to the MnPN electrical GiventhatconductiontimefromtheMnPNtothePF/LHisunknown, stimulation. The vast majority (85%; n (cid:8) 74) of these neurons were neuronal responses with onset latencies less than (cid:5)15 ms potentially recordedlateraltothefornixandwereconsideredtobeintheLH.The couldbeconsideredasantidromicormonosynaptic,takingintoaccount restofthecellswererecordeddorsalormedialtothefornix,withinthe possibilityoflowconductionvelocity(StockerandToney,2005)and perifornical and dorsomedial hypothalamic nucleus. Localizations of slowsynaptictransmission.Short-latencyexcitatoryresponseswereop- bothmicrodialysisprobes(Fig.1E,F)andmicrowires(Fig.1H)within erationallydefinedasmonosynapticiflatencyjitter(SDofthetimefrom thetargetswerehistologicallyconfirmedinthreerats.Responsesof54 thebeginningofthestimulusartifacttothebeginningofthefirstevoked PF/LHneuronswithidentifiedsleep–wakedischargeprofilestochemical spike)was(cid:6)0.5ms.Antidromiccriteriaincludedtheabilitytofollow stimulationand/orinhibitionoftheMnPNwereanalyzed. single pulses with a constant latency ((cid:6)0.1 ms latency jitter) and to followhigh-frequencystimulustrainsat100–200pulses/s. ToestimatetheeffectsofMnPNtrainstimulationonthefiringrateof Results PF/LHneurons,PSTHs(0.1sbinwidth;250bins;summationofatleast EEGresponsestoMnPNelectricalstimulation 30stimulationtrials)andrasterdisplaysweregenerated,whichprovided TheeffectsoftheMnPNsingle-pulseandtrainstimulationon graphicrepresentationofneuronalactivityoccurringfrom5sbeforeto PF/LHneuronalactivitywerestudiedduringactivewaking.Five 15saftertheendofthetrainstimulation.TogeneratePSTHs,pulses secondtrainstimulationoftheMnPN(200(cid:1)s,100(cid:1)Asquare initiatingtrainsofstimuliwereusedastriggers.Themeanfiringrates werecalculatedfor5sepochsbeforeandduringstimulationaswellasfor pulseswith150msperiod)evokedrhythmicactivityresembling threeconsecutiveepochsthatfollowedthestimulation.Thesemeasure- recruitingresponsesorspindle-likeactivityincombinationwith mentsweredoneforeachindividualtrialandforaveragedtrials.The high-amplitude(cid:3)waves.Trainsofhigh-frequencystimuli(100– statisticalsignificanceofchangesinthefiringrateforeachindividual 200pulses/s)alsotriggeredEEGsynchronizationwithinthefre- neuron and for subsets of the cells was determined using one-way quencyrangeofsleepspindles.Singlestimuluspulsesofthesame repeated-measuresANOVAwithtimeasarepeatedmeasurefollowedby durationandintensityatfrequency0.5pulses/sfailedtoinduce Tukey’sHSDposthoctest. EEGsynchronizationinAW.However,inQWandNREMsleep, To quantify the sleep–wake parameters during baseline conditions stimulation with these parameters evoked slow (180–300 ms) andchemicaltreatmentsoftheMnPN,EEGandEMGrecordingswere scored on the basis of the predominant state within each 10 s epoch wavesfollowedbyrhythmicafterdischarges(seriesofwavesthat during1hofpredrugaCSFperfusionandduring1hperiodstartingfrom occurredat10–25Hzandlastedupto1.5s). 1620•J.Neurosci.,February14,2007•27(7):1616–1630 Suntsovaetal.•EffectsoftheMnPNonPF/LHNeuronalActivity Table1.SummaryofelectrophysiologicalresponsesofPF/LHneuronstoasingle-pulseMnPNstimulation Initialresponse Secondresponse Inhibition Excitation Excitation Inhibition Number Latency Number Latency Duration Number Duration Number Duration Sleep–wakedischargeprofile ofcells (ms) Duration(ms) ofcells (ms) (ms) ofcells (ms) ofcells (ms) AW/REMsleep-relatedwithSPFM(n(cid:8)41) 31 6.5(cid:7)0.9 87.1(cid:7)7.7 10 44.2(cid:7)5.9 AW/REMsleep-relatedwithMFM(n(cid:8)16) 6 24.0(cid:7)1.1 119.3(cid:7)25.5 8 3.6(cid:7)0.4 5.3(cid:7)1.6 8 74.6(cid:7)14.4 AW-related(n(cid:8)5) 4 6.8(cid:7)2.5 82.3(cid:7)22.1 NREM/REMsleep-related(n(cid:8)9) 9 9.0(cid:7)1.8 9.1(cid:7)1.8 7 60.6.(cid:7)11.2 REMsleep-related(n(cid:8)9) 7 7.4(cid:7)1.2 11.4(cid:7)3.3 3 49.7(cid:7)8.1 State-indifferent(n(cid:8)7) 4 21.0(cid:7)1.9 30.5(cid:7)8.7 PF/LHneurons:sleep–wakedischargepatternsandresponses tionfollowedbyinhibition(Table1).Thepercentagesandrep- toMnPNelectricalstimulation resentativeexamplesoftheseresponsesareshowninFigure2,C The electrophysiological responses of 87 PF/LH neurons were andD–F,respectively. analyzed. Exclusively inhibitory reactions or initial inhibitions were InagreementwithpreviousPF/LHunitactivitystudies(Alam foundin37cells(82%ofresponsiveunits).Thevastmajorityof etal.,2002;Koyamaetal.,2003),theexaminedcellswereheter- theseresponderswereSPFMneurons(n(cid:8)31).Theoverallmean ogeneousintermsoftheirsleep–wakedischargeprofiles.Based responselatencyanddurationofexclusivelyandinitiallyinhibi- ontheresultsofclusteranalysisfollowedbyevaluationofstate- toryresponsesareshowninTable1. relatedness for each member of the cluster, PF/LH cells were Twenty-sevenAW/REMsleep-relatedcells(21SPFMneurons subdivided into five groups designated in accordance with the and6MFMcells)exhibitedpureinhibitoryresponses(Figs.2D, state(s) in which unit discharge was the highest, namely: 3B).K-meanclusteringanalysisshowedexistenceofthreeclus- AW/REMsleep-related,AW-related,NREM/REMsleep-related, tersofunits(n (cid:8)10;n (cid:8)11;n (cid:8)6)differinginlatencyof 1 2 3 REMsleep-related,andstate-indifferentneurons. response(2.0(cid:7)0.2,11.5(cid:7)0.9,and24.0(cid:7)1.1ms,respectively). Single-pulsestimulationoftheMnPNperformedduringAW ThefirsttwoclustersincludedSPFMneurons,whereasthelong- eliciteddischargechangesin69ofthe87PF/LHcells(79.3%).No est latencies were found in MFM cells, which constituted the cells were activated antidromically. Although the predominant thirdcluster(Fig.2G).Overallmeanonsetlatencyandduration MnPN-inducedtransynapticeffectwasinhibitory,neuronswith ofpureinhibitoryresponseswere10.4(cid:7)1.7and105.1(cid:7)9.1ms, differentsleep–wakedischargeprofilesexhibiteddifferentreac- respectively. tionstostimulation.Characteristicsoftheseresponsesaresum- Biphasic inhibitory–excitatory responses (Fig. 2E) were marizedinTable1. found only in SPFM cells (n (cid:8) 10; 18%). These neurons were groupedintotwoclusters(n (cid:8)4;n (cid:8)6)withdifferentlatency AW/REMsleep-relatedneurons ofinitialinhibitoryresponse1(1.5(cid:7)20.3and10.0(cid:7)0.7ms,re- Sleep–wake discharge pattern. Fifty-seven PF/LH cells (65.5%) spectively)(Fig.2H).Theperiodofdischargereductionlastedfor firedathigherratesduringAWandREMsleepcomparedwith 57.7(cid:7)8.6msandwasshorter(p(cid:6)0.01,Student’sttest)thanin QW and NREM sleep. The interstate differences in the mean purelyinhibitedSPFMcells(101.1(cid:7)9.3).Themeandurationof firing rate of these cells as a group and sleep–wake discharge postinhibitoryexcitationwas44.2(cid:7)5.9ms. profiles of individual units are shown in Figure 2, A and B, Biphasic excitatory–inhibitory responses were found exclu- respectively. sivelyinMFMneurons(n(cid:8)8;14%)(Figs.2F,3D).Theywere Themajority(n(cid:8)41;71.9%)ofAW/REMsleep-relatedcells excitedwithalatencyrangingfrom2to5ms(Fig.2I).Themean exhibited a single-pulse firing mode (SPFM) across all sleep– latencyanddurationofbothexcitatoryandinhibitorycompo- wake states (Fig. 3A). The rest of AW/REM sleep-related units nentsoftheseresponsesareshowninTable1. (n(cid:8)16;28.1%)generatedsinglepulsesduringwakingandREM During5sMnPNtrainstimulation,thevastmajority(84.2%) sleep and a combination of single pulses and high-frequency ofAW/REMsleep-relatedcellssignificantly(p(cid:6)0.05,Tukey’s (400–900pulses/s)burstdischargesduringNREMsleep.These HSD post hoc test) decreased their firing rates to 7.1–74.8% of cellswereidentifiedwithinthePF/LHforthefirsttimeandwere prestimulation firing. No neurons were facilitated. The overall designatedasmixedfiringmode(MFM)neurons(Fig.3C).An meanfiringrateofrespondingAW/REMsleep-relatedcellswas abilityofPF/LHneuronstogenerateburstsduringNREMsleepis reducedby42.7%duringstimulation(p(cid:6)0.001,Tukey’sHSD compatible with the findings that some LH neurons express a posthoctest).Dischargeremaineddecreasedby31.8%for5safter low-voltage-activatedcalciumcurrent(Fanetal.,2000)andre- theendofstimulustrains(p(cid:6)0.001)andby15.4%duringa ceiveinhibitoryinputsfromthereticularthalamus(Baroneetal., subsequent 5 s epoch (p (cid:6) 0.05) (Fig. 2J). The group of cells 1994).ThepercentageofAW/REMsleep-relatedcellswashigher inhibitedbytrainstimulationincludedboththeneuronsreactive amongtheneuronsrecordedwithinLH(70.3%)thanamongthe tosingle-pulsestimulationandunitsunresponsivetosinglestim- neurons recorded within the medial part of hypocretin- uli(Fig.2K,L).Inthelattercase,itislikelythattemporalsum- immunoreactiveneuronalfield(38.5%).AllcellswithMFMwere mation of postsynaptic potentials was needed to suppress dis- foundwithintheLH. chargeofthetargetneuron. Responses to stimulation. Forty-five AW/REM sleep-related cells(79%)respondedtoasingle-pulseMnPNstimulation.The AW-relatedneurons responsesfellintothreecategories:(1)apureinhibition,(2)an Sleep–wakedischargepattern.FivePF/LHcells(5.8%)exhibited initialinhibitionfollowedbyexcitation,and(3)aninitialexcita- maximumfiringratesduringAW.Theinterstatedifferencesin Suntsovaetal.•EffectsoftheMnPNonPF/LHNeuronalActivity J.Neurosci.,February14,2007•27(7):1616–1630•1621 the mean firing rate of these cells as a group and sleep–wake discharge profiles ofindividualunitsareshowninFigure4, AandB,respectively.AllAW-relatedneu- ronsexhibitedasingle-pulsefiringmode ineachstageofthesleep–wakecycle. Four AW-related cells were recorded dorsal or medial to the fornix (Fig. 1G). Their percentage within this region was 30.8%,whichiscomparablewiththatpre- viouslyreported(Alametal.,2002).Lat- eraltothefornix,onlyoneof74recorded neurons (1.4%) was AW-related. Hypo- cretin cells exhibit an AW-related dis- charge profile (Lee et al., 2005; Mileyk- ovskiyetal.,2005).Thelowpercentageof AW-relatedneuronswithinthelateraldi- visionofhypocretinfieldimpliesthatlat- eralhypocretincellsareeitherselectively active during specific waking behaviors underrepresented in our experimental conditionsorhaveadifferentsleep–wake dischargeprofile. Responses to stimulation. Four AW- related neurons responded to a single- pulseelectricalstimulationoftheMnPN withpureinhibition(Fig.4C,D,H).Two cells responded with 2 and 3 ms latency, andtheothertwocellswereinhibited10 and12msafterstimulusonset(Fig.4E). The mean onset latency and duration of responsesareshowninTable1.AllAW- relatedunitswereinhibitedduringMnPN train stimulation. The firing rates de- creasedto26.4–64.0%ofbaselinefiring. TheoverallmeanfiringrateofAW-related units decreased by 58.3% (p (cid:6) 0.001, Tukey’sHSDposthoctest)duringstimu- lationandremainedreducedduringtwo consecutive5sepochssubsequenttostim- ulationperiodby51.0%(p(cid:6)0.001)and 30.1% (p (cid:6) 0.05) compared with pre- stimulationfiring(Fig.4F). Figure2. SummaryofdischargecharacteristicsofAW/REMsleep-relatedPF/LHneuronsandtheirresponsestoMnPNelectrical stimulation.A,Groupmean(cid:7)SEMdischargerates(spikes/second)ofAW/REMsleep-relatedcellsacrosssleep–wakestates.The Sleep-relatedneurons meanfiringrateinAWandREMsleepwassignificantlyhigherthaninQWandNREMsleep(one-wayrepeated-measuresANOVA Sleep–wake discharge patterns. Eighteen followedbyTukey’sHSDtest).B,Meandischargeratesofindividualneurons.C,Percentagesofdifferenttypesofresponsesto PF/LH neurons (20.7%) were sleep- MnPNelectricalstimulationexhibitedbyneuronswithSPFMandMFM.Notethelowproportionofnonresponsive(NR)unitsand related. These cells were identified as ei- thehighpercentageofcellsexhibitingpureinhibitoryresponses(Inh)inbothSPFMandMFMsubsetsofneurons.TherestofSPFM ther NREM/REM sleep- or REM sleep- neuronsexhibitedinhibitory/excitatoryresponses(Inh/Exc),whereastheremainderofMFMneuronsrespondedwithinitial related, depending on the sleep state(s) excitationalwaysfollowedbyinhibition(Exc/Inh).D–F,Representativeexamplesofrasterplots(toppanel)andPSTHs(bottom panel)correspondingtoanInh(D),Inh/Exc(E),andExc/Inh(F)responsesaftersingle-pulseelectricalstimulationoftheMnPN.For duringwhichtheyexhibitedelevateddis- allPSTHshereandinsubsequentfigures,electricalpulses(200(cid:1)s;100(cid:1)A)wereappliedattime0(arrowheads),andbinwidth chargecomparedwithwaking. was1ms.Thescaleonthey-axisisinspikes/second.Rasterdisplayshowstheoccurrenceofspikesforeachtrialaccumulatedinthe NREM/REM sleep-related neurons PSTH.They-axisintherasterplotshowsthenumberoftrials.G–I,Histogramsshowingdistributionsofonsetlatenciesforpure (n(cid:8)9;10.3%)wereforthefirsttimeiden- inhibitory(G),initiallyinhibitory(H),andinitiallyexcitatory(I)responses.Noteasubstantialproportionofshort-latencyre- tified within the PF/LH. They increased sponses.J–L,ResponsesofAW/REMsleep-relatedunitstotrainstimulationoftheMnPN.J,Groupmean(cid:7)SEMfiringrateof48 their discharge during both NREM and unitscalculatedforfiveconsecutive5sepochsstartingwiththeepochimmediatelyprecedingstimulationperiod.Duringstimu- REMsleepcomparedwithwakingstates. lation200(cid:1)s,100(cid:1)ApulseswereappliedtotheMnPNwith150msperiodfor5s(horizontalbarnexttox-axis).Notethatthe REM sleep-related neurons (n (cid:8) 9; groupmeanfiringratesignificantlydecreasedduringstimulationandcontinuedtobereducedfor10saftercompletionof 10.3%)increasedfiringratesduringREM stimulation.K,Inhibitionbytrainstimulationofaneuronunresponsivetosingle-pulsestimulation.PSTH(0.1sbinwidth, sleep compared with waking states and summationof30stimulationtrials)andrasterdisplayprovidegraphicrepresentationofactivityofthiscelloccurringfrom5s beforethebeginningto10saftertheendofthetrainstimulation.L,Firingratehistogram,unitactivity,EMG,andEEGduringa NREMsleep.Activationofcellsoccurred singlestimulationtrialmarkedbythearrowinK.*p(cid:6)0.05;**p(cid:6)0.01;***p(cid:6)0.001;ns,nonsignificant. 8–46sbeforeREMsleeponset.Theinter- statedifferencesinthegroupmeanfiring 1622•J.Neurosci.,February14,2007•27(7):1616–1630 Suntsovaetal.•EffectsoftheMnPNonPF/LHNeuronalActivity ratesofsleep-relatedcellsandsleep–wake discharge profiles of individual units are showninFigure5,AandB,respectively. All sleep-related neurons exhibited a tonicfiringmodeacrosssleep–wakestates. The percentages of sleep-related cells amongneuronsrecordedmedialandlat- eraltothefornixwerecomparable. Responses to stimulation. All NREM/ REMsleep-relatedcellandsevenofnine REMsleep-relatedneuronswererespon- sivetotheMnPNsingle-pulsestimulation exhibitingeitherexclusivelyexcitatoryor excitatory–inhibitoryresponses(Fig.5C). Table 1 shows the overall mean latency anddurationofexcitatoryresponsesand themeandurationofpostexcitatoryinhi- bitions calculated separately for NREM/ REMsleep-andREMsleep-relatedunits. None of these parameters differs signifi- cantly between subsets of sleep-related cells. Pure orthodromic excitations were found in two NREM/REM sleep-related neurons(Figs.5D,6B)andinfourREM sleep-related cells with latencies ranging from2to18ms.SevenNREM/REMsleep- andthreeREMsleep-relatedneurons(Fig. 5E)wereinitiallyexcitedwith2–15msla- tencies.Thedistributionoflatenciesofex- clusivelyandinitiallyexcitatoryresponses of NREM/REM sleep- and REM sleep- relatedunitsisshowninFigure5F. Fourof14sleep-relatedcellsrespond- ingwith(cid:6)15msonsetlatencywereoper- ationallydefinedasmonosynapticallyac- tivated because they exhibited (cid:6)0.5 ms latency jitter and ability to follow high- frequency stimulation at 70–85 pulses/s (see Fig. 6B). The rest of the cells were classifiedaspolysynapticallyactivated. 4 withEEGdesynchronizationonarousalsfromNREMsleep (a).B,Responseofthesameneurontoasingle-pulsestim- 2 ulationoftheMnPN.PSTH(bottompanel),rasterplot(middle panel),andarawtrace(toppanel)ofasinglestimulationtrial markedbyarrowaredisplayed.Theneuronrespondedwitha short-latency(3ms)pureinhibition.C,ThedischargeofMFM cellacrossthesleep–wakingcycle.c,ExpandedtracingfromC markedbyhorizontalbar.1–4,Unitactivitytracingscorre- spondingtoepochsmarkedbyverticalbarsinC:1,NREM sleep;2,transitiontoREMsleep;3,REMsleep;4,AW.Note thatMFMneuronsdramaticallyincreasedtheirfiringrates 18–42sbeforeREMsleeponset(c)primarilybecauseofan increaseindensityofhigh-frequencyburstdischarges(c, Figure3. RepresentativeexamplesoftheresponsesevokedinAW/REMsleep-relatedPF/LHneuronswithSPFMandMFMby compare1,2).D,Responseofthesamecelltoasingle-pulse MnPNelectricalstimulation.A,ThedischargeofSPFMcellacrossthesleep–wakingcycle.Hereandinsubsequentfiguresshowing MnPN stimulation. The neuron responded with a short- polygraphicrecordingsthatillustratethesleep–wakedischargepatternsofPF/LHneurons,thefiringratehistogram(Rate), latency(4ms)excitationfollowedbyinhibition.Thetoppanel electromyogram(EMG),andelectroencephalogram(EEG)aredisplayed.Thescaleonthey-axisinthefiringratehistogramsisin ontheleftsideshowsrowtracesoftwosinglestimulation spikes/second.Thesleep–wakestates(wakefulness,NREMsleep,transitionfromNREMtoREMsleep,REMsleep)areindicated trialsmarkedbyarrowsinrasterdisplay(middlepanel)and undertheEEGtracingsusingthicksolid,dashed,dot-dash,anddottedlines,respectively.Extracellularlyrecordedunitactivity ontheright-handsidefragmentofthePSTHfromthebottom (Unit)isshownonexpandedtracingfromthesectionsmarkedbyhorizontalbars(a,a).Notethatthecellbelongstothesubset panelshowingathigherresolutiontheinitialpartofthe 1 2 ofSPFMcells(n(cid:8)15)thatdramaticallyincreasedtheirdischarge8–23sbeforeREMsleeponset(a)andalmostsimultaneously response. 1 Suntsovaetal.•EffectsoftheMnPNonPF/LHNeuronalActivity J.Neurosci.,February14,2007•27(7):1616–1630•1623 Theresponsesofsleep-relatedneurons to train stimulation of the MnPN were tested on six NREM/REM sleep- and on fiveREMsleep-relatedunits.Firingrates ofoneNREM/REMsleep-andthreeREM sleep-related neurons were significantly affectedbytrainstimulations(p(cid:6)0.001, one-wayrepeated-measuresANOVA).All reactions were excitatory and strictly timed to the stimulation period. During stimulation, NREM/REM sleep-related unitincreaseditsdischargeby137%and REM sleep-related neurons by 30–46% (mean,38.9(cid:7)4.7%)comparedwiththe prestimulation firing rate (p (cid:6) 0.001, Tukey’sHSDposthoctest).Thefiringrate was at its maximum at the beginning of stimulationanddecreasedtothebaseline level after 2–3 s. Every cell responsive to trainstimulationexhibitedexclusivelyex- citatoryreactionstosingle-pulsestimula- tion, whereas the two cells that did not show significant responses during train stimulationexhibitedbiphasicexcitatory/ inhibitoryresponsestosinglepulses. State-indifferentneurons Sleep–wake discharge pattern. Seven PF/LHcells(8%)withasingle-pulsefiring modedidnotshowsignificantchangesin the mean firing rate across sleep–wake states(F (cid:8)1.9;p(cid:4)0.05).Individual (3,18) cells exhibited (cid:6)25% between-state differences. Responses to stimulation. Four state- indifferentneuronsrespondedtoasingle- pulse stimulation of the MnPN. They showed pure orthodromic excitations, whichstarted17–26msafterMnPNstim- ulation.Themeanlatencyanddurationof theseresponsesareshowninTable1. Train stimulation of the MnPN had significant effects only on discharge of those cells that showed excitatory re- sponse to single-pulse stimulation. The meanfiringratesofindividualneuronsin- creased during stimulation by 61–105% (mean,88.3(cid:7)9.5%)comparedwiththe baseline.Ateachofthethreepoststimula- tionintervals(5seach),thefiringratedid notdiffersignificantlyfromtheprestimu- lationvalue(p(cid:4)0.05,Tukey’sHSDpost Figure4. SummaryofdischargecharacteristicsofAW-relatedPF/LHneuronsandtheirresponsestoMnPNelectricalstimula- tion.A,Groupmean(cid:7)SEMdischargeratesofAW-relatedneuronsacrosssleep–wakestates.ThemeanfiringrateinAWwas hoctest). highercomparedwithQWandbothphasesofsleep(one-wayrepeated-measuresANOVAfollowedbyTukey’sHSDtest).B,Mean ComparisonoftypesofPF/LHneuro- dischargeratesofindividualneurons.C,Percentagesofdifferenttypesofresponsestosingle-pulseelectricalstimulationofthe nalresponsesandtheirratiosinfiverats MnPN.NotethatallresponderswereinhibitedbyMnPNstimulation.Inh,Inhibitoryresponses;NR,nonresponsive.D,Rasterplot with different localization of stimulating andPSTHcorrespondingtoaresponsethatappearedwith10msonsetlatency.E,Histogramofdistributionofonsetlatenciesof electrodetipswithintheMnPN(Fig.1B) responses.Notethepresenceoflatenciescompatiblewithamonosynapticlinkage.F,Groupmean(cid:7)SEMfiringrateofAW- didnotrevealdifferencesinresponsesof relatedunitscalculatedforfiveconsecutive5sepochsbefore,during,andaftertrainstimulationoftheMnPN.Notethatneurons either arousal- or sleep-related units. In wereinhibitedduringstimulationperiod(markedwithhorizontalbarnexttox-axis)andfor10sthereafter.G,Thedischargeof cases when stimulating electrodes were AW-relatedcellacrossthesleep–wakingcycle.g,g,ExpandedtracingsfromGmarkedbyhorizontalbars.Onthetoprightcorner 1 2 misplaced((cid:5)200and400(cid:1)mlaterallyor oftheexpandedtracingssuperimposedareallactionpotentialsthatappearedduringcorrespondingfragmentsofrecordings.Note 150 (cid:1)m dorsally/200 (cid:1)m caudally from thatneuronincreasesitsfiringratebeforearousalfromNREMsleep(g)andawakeningfromREMsleep(g).H,PSTHandrasterplot 1 2 showingshort-latency(2ms)inhibitoryresponseofthiscelltosingle-pulseMnPNstimulation.*p(cid:6)0.05;***p(cid:6)0.001. MnPN margins), we observed different 1624•J.Neurosci.,February14,2007•27(7):1616–1630 Suntsovaetal.•EffectsoftheMnPNonPF/LHNeuronalActivity EEG- and PF/LH neuronal responses. Low-frequency stimulation of these sites failed to induce EEG-synchronizing re- sponses,whereashigh-frequencystimula- tion caused EEG desynchronization. Among arousal-related units, we did not find cells exhibiting inhibitory responses with(cid:6)15mslatency.NREM/REMsleep- relatedneuronswereeitherunresponsive (twoofthreecells)orinhibitedbystimu- lationofextra-MnPNsites. ResponsesofPF/LHneuronsto chemicalstimulationandinhibitionof theMnPN Activation of MnPN neuronal popula- tionswithoutinfluenceonpassingfibers wasachievedby1hmicrodialyticperfu- sionofexcitatoryaminoacidL-glutamate ortheGABA receptorantagonist,bicu- A culline,atconcentrationsof1mMand50 (cid:1)M, respectively. Experiments were con- ductedduringthedarkphaseofthelight/ darkcycle(ZT13–ZT16),becauseduring applicationofthedrugsinthelightphase, sustained waking episodes were absent Figure5. Summaryofdischargecharacteristicsofsleep-relatedPF/LHneuronsandtheirresponsestoMnPNelectricalstimu- and,therefore,theeffectsofMnPNchem- lation.A,Groupmean(cid:7)SEMdischargeratesofNREM/REMsleep-relatedneurons(blackbars)andREMsleep-relatedneurons ical stimulation on discharge of wake- (hatchedbars).ThemeanfiringrateofNREM/REMsleep-relatedcellssignificantlyincreasedinQWversusAW,inNREMsleep active PF/LH neurons could not be esti- versusQW,andinREMversusNREMsleep.ThemeandischargeofREMsleep-relatedneuronsdidnotdiffersignificantlybetween mated. Table 2 shows the percentage of AW,QW,andNREMsleepandincreasedinREMsleepcomparedwitheveryotherstate.B,Individualmeandischargeratesof time spent in different sleep–wake states NREM/REMsleep-relatedneurons(solidlines)andREMsleep-relatedneurons(dashedlines)acrosssleep–wakestates.C,Per- 1 h before and during perfusion of centagesofdifferenttypesofresponsestosingle-pulseelectricalstimulationoftheMnPN.Notethatallresponderswereexclu- L-glutamateandbicucullineaveragedfor sivelyorinitiallyexcitedbyMnPNstimulation.D,E,RasterplotsandPSTHscorrespondingtoapureexcitatoryresponseof allexperimentsconductedduringthedark NREM/REMsleep-relatedcell(D)andanexcitatory–inhibitoryresponseofREMsleep-relatedcell(E)tosingle-pulseMnPN stimulation.F,HistogramsshowingdistributionofonsetlatenciesofresponsesofNREM/REMsleep-relatedcells(blackbars)and phase. REMsleep-relatedcells(hatchedbars).Notethepresenceofcellsrespondingwithshortlatencieswithinbothsubsetsofsleep- ToassesseffectsofMnPNdeactivation relatedcells.NR,Nonresponsive;Exc,excitatory;Exc/Inh,excitatory/inhibitoryresponses.*p(cid:6)0.05;***p(cid:6)0.001. on PF/LH neuronal activity, the MnPN was microdialytically perfused with the ingthetreatments(n(cid:8)12)werepooledtogetherwiththecells GABA receptoragonist,muscimol,duringthelightphase(ZT3– A recordedthroughouttheentireexperiment.Forallneuronsde- ZT6)ofthelight/darkcycle.Applicationofthisdrugat50(cid:1)M creasingdischargeinresponsetochemicaltreatments(n(cid:8)6), concentrationfor15minresultedinaprolongedAWstate,which theabsenceofdataonrecoveryofthebaselinedischargeisem- appeared 1–3 min after the start of muscimol perfusion and phasizedbecauseofuncertaintyregardingthecauseofchangesin lastedfor35–84min(mean,61.3(cid:7)3.9).Duringthe1hperiod theactivityoftheseneurons. that started from the beginning of drug application compared with1hpredrugaCSFperfusion,animalsspent91%ofthetime AW/REMsleep-relatedcells inAW,NREMsleepwasdramaticallyreduced(p(cid:6)0.001,one- Effects of chemical stimulation and deactivation of the MnPN wayrepeated-measuresANOVA)andREMsleepepisodeswere werestudiedon35AW/REMsleep-relatedPF/LHneurons. almostabsent(Table2). Thechangesinthegroupmeanfiringratesof12and8AW/ Perfusion of the MnPN with 50 (cid:1)M muscimol was used to REM sleep-related units in response to administration of evaluate responses of AW-, AW/REM sleep-related, and state- L-glutamateandbicuculline,respectively,areshowninFigure7, indifferentunits.Toexamineresponsesofsleep-relatedneurons, AandB.Theneuronalresponsestothesetreatmentsweresimilar. 20(cid:1)Mmuscimolwasappliedfor1hduringthelightsonphaseof Two-wayrepeated-measuresANOVAinbothcasesrevealedsig- thelight/darkcycle(ZT3–ZT6).Withthislowerconcentration, nificantmaineffectsofwithin-subjectsfactors(sleep–wakestate sustainedperiodsofNREMandREMsleepwerepresentduring anddrugtreatment)ondischargeofAW/REMsleep-relatedcells drugadministration(Table2). and significant interaction between the factors. During The effects of chemical stimulation and inhibition of the L-glutamateandbicucullineadministration,themeanfiringrate MnPNwerestudiedon36PF/LHcellsrecordedthroughoutall of AW/REM sleep-related cells decreased compared with aCSF thestagesoftheexperiment(baselineaCSFperfusion,drugtreat- perfusion(F (cid:8)45.7,p(cid:6)0.001;andF (cid:8)24.5,p(cid:6)0.01, (1,11) (1,7) ment,andpostdrugaCSFperfusion).Amongthesecells,allre- respectively). The effects of both treatments depended on the sponsive units recovered their baseline discharge during post- state of the sleep–waking cycle (L-glutamate: F(3,9) (cid:8) 5.1, p (cid:6) drugaCSFperfusion.Inaddition,wearereportingresponsesof 0.05,Wilk’smultivariatetest;bicuculline:F (cid:8)4.0,p(cid:6)0.05). (3,21) 18neurons,whichwererecordedduringbaselineanddrugtreat- Discharge suppression during L-glutamate and bicuculline ad- mentsonly.Neuronsincreasingornotchangingdischargedur- ministrationwasstatisticallysignificantonlyinAW(p(cid:6)0.001 Suntsovaetal.•EffectsoftheMnPNonPF/LHNeuronalActivity J.Neurosci.,February14,2007•27(7):1616–1630•1625 L-glutamate on discharge of an AW- relatedPF/LHunit.Duringdrugadminis- tration,comparedwithpredrugaCSFper- fusion,thecellexhibiteda98%reduction initsfiringrateandbecamevirtuallysilent in AW, whereas during QW and NREM sleepthechangesofdischargeratedidnot exceed25%.REMsleepdidnotoccurdur- ing drug perfusion. L-Glutamate treat- mentchangedthefiringrateofoneoftwo cells, which were lost during postdrug aCSF perfusion. This neuron decreased dischargeonlyinAWto57%ofbaseline firing. Inresponsetobicucullineadministra- tion,oneunitalmostceasedtodischarge during the whole period of drug perfu- sion, whereas the other cell showed 44% decreaseinitsfiringrateexclusivelydur- ingAW. During MnPN perfusion with musci- mol, one neuron increased discharge by 43%,andtheotherwasunresponsive. Sleep-relatedcells Atotalof11sleep-relatedPF/LHneurons weretestedforresponsestoMnPNperfu- sionwithL-glutamate(n(cid:8)2),bicuculline Figure6. RepresentativeexampleoftheresponseofanNREM/REMsleep-relatedPF/LHneurontoMnPNelectricalstimulation. (n(cid:8)3),andmuscimol(n(cid:8)6). A,Thedischargeofthecellacrossthesleep–wakingcycle.a,ExpandedtracingsfromAmarkedbyhorizontalbar.Notethat Microdialytic application of L- NREM/REMsleep-relatedneuronsceasedtodischargeordramaticallyreducedtheirfiringratesafewsecondsbeforearousal.B, glutamateresultedinadramaticincrease ResponseofthiscelltoMnPNelectricalstimulation.Rasterplot,PSTH,superpositionofrawtracesoffiveconsecutivestimulation inthefiringrateofaNREM/REMsleep- trials(1),andneuronalresponsesto80(2)and100pulses/s(3)repetitivestimuliaredisplayed.Noteshortlatency(2ms),lowjitter ofresponse(1),andabilityofthecelltofollowrepetitivestimuliat80pulses/s(2).At100pulses/s,theneuronrespondsonlyto relatedneuronto250,500,260,and190% everyotherstimuli(3).Thesefindingssuggestmonosynapticactivation. ofbaselinefiringinAW,QW,NREM,and REM sleep, respectively (Fig. 9A). An REMsleep-relatedcellincreaseddischarge and p (cid:6) 0.01, respectively; Tukey’s HSD test). Individually, in by28and42%inNREMandREMsleep,respectively. AW in response to L-glutamate and bicuculline treatments, 92 Duringbicucullineperfusion,twoNREM/REMsleep-related and85%ofneurons,respectively,exhibitedchangesintheirac- unitsincreasedtheirfiringratesby44and54%inAWandby44 tivitymeetingtheresponsecriterion((cid:4)25%changeinthefiring and120%inQW.DuringNREMsleep,thechangesintheactivity rate).Nocellswereactivated.DuringL-glutamateandbicucul- ofonecelldidnotmeettheresponsecriterion;theotherneuron lineperfusion,responsivecellsreducedtheirdischargeto34.7(cid:7) increasedfiringby63%.DuringREMsleep,spikeactivityofthese 4.0%(range,11–59%)andto58.5(cid:7)4.3%(range,44–73%)of cellsincreasedby25and29%.AnREMsleep-relatedneuronwas baseline firing, respectively. The effect of L-glutamate on dis- unresponsivetobicucullinetreatment. chargeofanindividualcellacrosssleep–wakestatesisshownin In response to muscimol perfusion, the discharge of one of Figure8A.Allcellsrecordedduringbaselineanddrugtreatment two NREM/REM sleep-related cells decreased by 43 and 25% only(n(cid:8)3)reducedtheirdischargeinresponsetoL-glutamate duringNREMandREMsleep,respectively,andby(cid:6)25%during (n(cid:8)2)andbicuculline(n(cid:8)1)treatmentsto29–45%ofbaseline waking(Fig.9B).Aunitthatwasnotrecordedduringpostdrug firingandwerenotincludedintostatisticalanalysis. aCSFperfusionalsoexhibitedareductionoffiringto27,34,and TheeffectsofMnPNperfusionwithmuscimolwerestudied 45%ofbaselinevaluesduringQW,NREM,andREMsleep,re- on 12 AW/REM sleep-related cells. During the muscimol- spectively.TwooffourREMsleep-relatedcells(onewithverified induced AW state, the mean firing rate of these neurons as a recoveryofthebaselinedischarge,theothernotrecordedduring group increased (F (cid:8) 23.9, p (cid:6) 0.001, one-way repeated- postdrug aCSF perfusion) exhibited 37 and 28% decreases in (1,11) measuresANOVA)(Fig.7C).Individually,75%ofcellsincreased firingratesexclusivelyduringREMsleep.TheremainingREM theirdischargeonaverageto220.8(cid:7)48.5%(range,134–600%) sleep-related neurons did not exhibit criterion responses to of baseline firing; the rest of the cells were unresponsive. The muscimol. effect of muscimol perfusion on discharge of AW/REM sleep- State-indifferentneurons relatedneuronisshowninFigure8B. Intotal,responsesofeightstate-indifferentPF/LHunitstochem- AW-relatedcells icaltreatmentsoftheMnPNwereanalyzed. ResponsesofsevenAW-relatedPF/LHneuronstomicrodialytic ThefiringrateoffivePF/LHstate-indifferentneuronswasnot application of L-glutamate (n (cid:8) 3), bicuculline (n (cid:8) 2), and affectedbyMnPNperfusionwithL-glutamate(n(cid:8)2)andmus- muscimol(n(cid:8)2)intotheMnPNwerestudied. cimol(n(cid:8)3)by(cid:4)10%.Onecellincreaseddischargeby28%in Figure 8C shows the effect of MnPN perfusion with responsetomicrodialyticapplicationofL-glutamate.MnPNper-
Description: