RePoSS: Research Publications on Science Studies #11: RePoSS The Mathematics of Niels Henrik Abel: Continuation and New Approaches in Mathematics During the 1820s Henrik Kragh Sørensen October 2010 Centre for Science Studies, University of Aarhus, Denmark Research group: History and philosophy of science Please cite this work as: Henrik Kragh Sørensen (Oct. 2010). The Mathematics of Niels Henrik Abel: Continuation and New Approaches in Mathemat- ics During the 1820s. RePoSS: Research Publications on Science Studies 11. Aarhus: Centre for Science Studies, University of Aarhus. url: http://www.css.au.dk/reposs. Copyright c Henrik Kragh Sørensen, 2010 (cid:13) The Mathematics of N H A IELS ENRIK BEL Continuation and New Approaches in Mathematics During the 1820s H K S ENRIK RAGH ØRENSEN For Mom and Dad who were always there for me when I abandoned all good manners, good friends, and common sense to pursue my dreams. The Mathematics of N H A IELS ENRIK BEL Continuation and New Approaches in Mathematics During the 1820s H K S ENRIK RAGH ØRENSEN PhD dissertation March 2002 Electronic edition, October 2010 History of Science Department The Faculty of Science University of Aarhus, Denmark This dissertation was submitted to the Faculty of Science, University of Aarhus in March 2002 for the purpose of ob- tainingthescientificPhDdegree. Itwasdefendedinapublic PhDdefenseonMay3,2002. Asecond,onlyslightlyrevised editionwasprintedOctober,2004. The PhD program was supervised by associate professor KIRSTI ANDERSEN, History of Science Department, Univer- sityofAarhus. Professors UMBERTO BOTTAZZINI (University of Palermo, Italy), JEREMY J. GRAY (Open University, UK), and OLE KNUDSEN (History of Science Department, Aarhus) served onthecommitteeforthedefense. c Henrik Kragh Sørensen and the History of Science De- (cid:13) partment (Department of Science Studies), University of Aarhus,2002–2010. ThedissertationwastypesetinPalatinousingpdfLATEX. First edition (March 2002, 7 copies) was copied and bound bythePrintshopattheFacultyofScience,Aarhus. Second edition (October 2004, 5 copies) was printed and bound by the Printshop at Agder University College, Kris- tiansand. ThiselectroniceditionwascompiledonOctober28,2010. For further information, additions, corrections, and contact to the author, please refer to the website http://www.henrikkragh.dk/phd/. Thepictureonthefrontpageisapaintingof NIELS HENRIK ABEL performed by the Norwegian painter JOHAN GØRB- ITZduringABEL’stimeinParis1826. Itistheonlyauthentic depictionof ABEL andisreproducedfrom(Ore,1957). The picture on the reverse shows a curlicue frequently used by ABELinhisnotebookstomarktheendofmanuscripts. It isreproducedfrom(Stubhaug,1996). Contents Contents i ListofTables vii ListofFigures ix ListofBoxes xi ListofTheoremsetc. xiii Summary xv Prefacetothe2004edition xvii Abel’smathematicsinthecontextoftraditionsandchanges . . . . . . . . . . xvii Recentliterature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii Prefacetothe2002edition xxi Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii I Introduction 1 1 Introduction 3 1.1 Thehistoricalandgeographicalsettingof ABEL’slife . . . . . . . . . . . 4 1.2 Themathematicaltopicsinvolved . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Themesfromearlynineteenth-centurymathematics . . . . . . . . . . . . 7 1.4 Reflectionsonmethodology . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Biographyof NIELS HENRIK ABEL 17 2.1 Childhoodandeducation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 “Studythemasters” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 TheEuropeantour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 BackinNorway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 i 3 Historicalbackground 39 3.1 Mathematicalinstitutionsandnetworks . . . . . . . . . . . . . . . . . . . 39 3.2 ABEL’spositioninmathematicaltraditions . . . . . . . . . . . . . . . . . 41 3.3 Thestateofmathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 ABEL’slegacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 II “My favorite subject is algebra” 47 4 Thepositionandroleof ABEL’sworkswithinthedisciplineofalgebra 49 4.1 Outlineof ABEL’sresultsandtheirstructuralposition . . . . . . . . . . . 50 4.2 Mathematicalchangeasahistoryofnewquestions . . . . . . . . . . . . . 53 5 Towardsunsolvableequations 57 5.1 Algebraicsolubilitybefore LAGRANGE . . . . . . . . . . . . . . . . . . . . 59 5.2 LAGRANGE’stheoryofequations . . . . . . . . . . . . . . . . . . . . . . . 65 5.3 Solubilityofcyclotomicequations . . . . . . . . . . . . . . . . . . . . . . . 72 5.4 Beliefinalgebraicsolubilityshaken . . . . . . . . . . . . . . . . . . . . . . 80 5.5 RUFFINI’sproofsoftheinsolubilityofthequintic . . . . . . . . . . . . . . 84 5.6 CAUCHY’theoryofpermutationsandanewproofof RUFFINI’stheorem 90 5.7 Somealgebraictoolsusedby GAUSS . . . . . . . . . . . . . . . . . . . . . 95 6 Algebraicinsolubilityofthequintic 97 6.1 Thefirstbreakwithtradition . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2 Outlineof ABEL’sproof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.3 Classificationofalgebraicexpressions . . . . . . . . . . . . . . . . . . . . 101 6.4 ABEL andthetheoryofpermutations . . . . . . . . . . . . . . . . . . . . . 108 6.5 Permutationslinkedtorootextractions . . . . . . . . . . . . . . . . . . . . 110 6.6 Combinationintoanimpossibilityproof . . . . . . . . . . . . . . . . . . . 112 6.7 ABEL and RUFFINI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.8 Limitingtheclassofsolvableequations . . . . . . . . . . . . . . . . . . . 124 6.9 Receptionof ABEL’sworkonthequintic . . . . . . . . . . . . . . . . . . . 125 6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7 Particularclassesofsolvableequations 141 7.1 SolubilityofAbelianequations . . . . . . . . . . . . . . . . . . . . . . . . . 142 7.2 Ellipticfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 7.3 Theconceptofirreducibilityatwork . . . . . . . . . . . . . . . . . . . . . 157 7.4 Enlargingtheclassofsolvableequations . . . . . . . . . . . . . . . . . . . 160 8 Agrandtheoryinspe 163 8.1 Invertingtheapproachonceagain . . . . . . . . . . . . . . . . . . . . . . 163 8.2 Constructionoftheirreducibleequation . . . . . . . . . . . . . . . . . . . 165 ii 8.3 Refocusingontheequation . . . . . . . . . . . . . . . . . . . . . . . . . . 171 8.4 Furtherideasonthetheoryofequations . . . . . . . . . . . . . . . . . . . 176 8.5 Generalresolutionoftheproblemby E. GALOIS . . . . . . . . . . . . . . 181 IIIInterlude: ABEL and the ‘new rigor’ 189 9 Thenineteenth-centurychangeinepistemictechniques 191 10 Towardrigorizationofanalysis 193 10.1 EULER’svisionofanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 10.2 LAGRANGE’snewfocusonrigor . . . . . . . . . . . . . . . . . . . . . . . 197 10.3 Earlyrigorizationoftheoryofseries . . . . . . . . . . . . . . . . . . . . . 198 10.4 Newtypesofseries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 11 CAUCHY’snewfoundationforanalysis 207 11.1 Programmaticfocusonarithmeticalequality . . . . . . . . . . . . . . . . 207 11.2 CAUCHY’sconceptsoflimitsandinfinitesimals . . . . . . . . . . . . . . . 209 11.3 Divergentserieshavenosum . . . . . . . . . . . . . . . . . . . . . . . . . 210 11.4 Meansoftestingforconvergenceofseries . . . . . . . . . . . . . . . . . . 212 11.5 CAUCHY’sproofofthebinomialtheorem . . . . . . . . . . . . . . . . . . 214 11.6 Earlyreceptionof CAUCHY’snewrigor . . . . . . . . . . . . . . . . . . . 218 12 ABEL’sreadingof CAUCHY’snewrigorandthebinomialtheorem 221 12.1 ABEL’scriticalattitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 12.2 Infinitesimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 12.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 12.4 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 12.5 ABEL’s“exception” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 12.6 Acuriousreaction:LehrsatzV . . . . . . . . . . . . . . . . . . . . . . . . . 241 12.7 Frompowerseriestoabsoluteconvergence . . . . . . . . . . . . . . . . . 246 12.8 Producttheoremsofinfiniteseries . . . . . . . . . . . . . . . . . . . . . . 251 12.9 ABEL’sproofofthebinomialtheorem . . . . . . . . . . . . . . . . . . . . 254 12.10Aspectsof ABEL’sbinomialpaper . . . . . . . . . . . . . . . . . . . . . . . 260 13 ABEL and OLIVIER onconvergencetests 265 13.1 OLIVIER’stheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 13.2 ABEL’scounterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 13.3 ABEL’sgeneralrefutation . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 13.4 Morecharacterizationsandtestsofconvergence . . . . . . . . . . . . . . 272 14 Receptionof ABEL’scontributiontorigorization 277 14.1 Receptionof ABEL’srigorization . . . . . . . . . . . . . . . . . . . . . . . 277 iii 14.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 IVElliptic functions and the Paris mémoire 283 15 Ellipticintegralsandfunctions:Chronologyandtopics 285 15.1 Elliptictranscendentalsbeforethenineteenthcentury . . . . . . . . . . . 286 15.2 Thelemniscate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 15.3 LEGENDRE’stheoryofellipticintegrals . . . . . . . . . . . . . . . . . . . . 292 15.4 Leftinthedrawer: GAUSS onellipticfunctions . . . . . . . . . . . . . . . 296 15.5 Chronologyof ABEL’sworkonelliptictranscendentals . . . . . . . . . . 297 16 Theideaofinvertingellipticintegrals 299 16.1 Theimportanceofthelemniscate . . . . . . . . . . . . . . . . . . . . . . . 299 16.2 InversionintheRecherches . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 16.3 Thedivisionproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 16.4 Perspectivesoninversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 17 Stepsintheprocessofcomingto“know”ellipticfunctions 321 17.1 Infiniterepresentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 17.2 Ellipticfunctionsasratiosofpowerseries . . . . . . . . . . . . . . . . . . 325 17.3 Characterizationof ABEL’srepresentations . . . . . . . . . . . . . . . . . 328 17.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 18 Toolsin ABEL’sresearchonelliptictranscendentals 331 18.1 Transformationtheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 18.2 Integrationinlogarithmicterms . . . . . . . . . . . . . . . . . . . . . . . . 339 18.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 19 TheParismemoir 347 19.1 ABEL’sapproachtotheParismemoir . . . . . . . . . . . . . . . . . . . . . 347 19.2 Thecontentsof ABEL’sParisresultanditsproof . . . . . . . . . . . . . . 351 19.3 Additional,tentativeremarkson ABEL’stools . . . . . . . . . . . . . . . . 371 19.4 ThefateoftheParismemoir . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 19.5 ReceptionoftheParismemoir . . . . . . . . . . . . . . . . . . . . . . . . . 376 19.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 20 Generalapproachestoellipticfunctions 379 20.1 ABEL’sversionofageneraltheoryofellipticfunctions . . . . . . . . . . . 379 20.2 Otherwaysofintroducingellipticfunctionsinthenineteenthcentury . . 381 20.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 iv
Description: