ebook img

The Mathematics of Games and Gambling (Anneli Lax New Mathematical Library) PDF

190 Pages·2006·1.921 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Mathematics of Games and Gambling (Anneli Lax New Mathematical Library)

The Mathematics of Games and Gambling Cover design by Elizabeth Holmes Clark ©2006 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2006926250 Print ISBN 978-0-88385-646-8 Electronic ISBN 978-0-88385-943-8 Printed in the United States of America The Mathematics of Games and Gambling by Edward W. Packel Lake Forest College ® PublishedandDistributedby TheMathematicalAssociationofAmerica AnneliLaxNewMathematicalLibrary CouncilonPublications RogerNelsen,Chair EdwardW.Packel,Editor CarolS.Schumacher DanielJ.Teague DonnaL.Beers MichaelE.Boardman HaroldP.Boas RichardK.Guy ANNELILAXNEWMATHEMATICALLIBRARY 1. Numbers:RationalandIrrationalbyIvanNiven 2. WhatisCalculusAbout?byW.W.Sawyer 3. AnIntroductiontoInequalitiesbyE.F.BeckenbachandR.Bellman 4. GeometricInequalitiesbyN.D.Kazarinoff 5. The Contest Problem Book I Annual High School Mathematics Examinations 1950–1960.CompiledandwithsolutionsbyCharlesT.Salkind 6. TheLoreofLargeNumbersbyP.J.Davis 7. UsesofInfinitybyLeoZippin 8. GeometricTransformationsIbyI.M.Yaglom,translatedbyA.Shields 9. ContinuedFractionsbyCarlD.Olds 10. (cid:2) ReplacedbyNML-34 11. HungarianProblemBooksIandII,BasedontheEo¨tvo¨sCompetitions 12. 1894–1905and1906–1928,translatedbyE.Rapaport 13. EpisodesfromtheEarlyHistoryofMathematicsbyA.Aaboe 14. GroupsandTheirGraphsbyE.GrossmanandW.Magnus 15. TheMathematicsofChoicebyIvanNiven 16. FromPythagorastoEinsteinbyK.O.Friedrichs 17. The Contest Problem Book II AnnualHighSchoolMathematicsExaminations 1961–1965.CompiledandwithsolutionsbyCharlesT.Salkind 18. FirstConceptsofTopologybyW.G.ChinnandN.E.Steenrod 19. GeometryRevisitedbyH.S.M.CoxeterandS.L.Greitzer 20. InvitationtoNumberTheorybyOysteinOre 21. GeometricTransformationsIIbyI.M.Yaglom,translatedbyA.Shields 22. ElementaryCryptanalysis—AMathematicalApproachbyA.Sinkov 23. IngenuityinMathematicsbyRossHonsberger 24. GeometricTransformationsIIIbyI.M.Yaglom,translatedbyA.Shenitzer 25. TheContestProblemBookIIIAnnualHighSchoolMathematicsExaminations 1966–1972.CompiledandwithsolutionsbyC.T.SalkindandJ.M.Earl 26. MathematicalMethodsinSciencebyGeorgePo´lya 27. International Mathematical Olympiads—1959–1977. Compiled and with solutionsbyS.L.Greitzer 28. TheMathematicsofGamesandGambling,SecondEditionbyEdwardW. Packel 29. TheContestProblemBookIVAnnualHighSchoolMathematicsExaminations 1973–1982. Compiled and with solutions by R. A. Artino,A. M. Gaglione, andN.Shell 30. TheRoleofMathematicsinSciencebyM.M.SchifferandL.Bowden 31. InternationalMathematicalOlympiads1978–1985andfortysupplementary problems.CompiledandwithsolutionsbyMurrayS.Klamkin 32. RiddlesoftheSphinxbyMartinGardner 33. U.S.A.MathematicalOlympiads1972–1986.Compiledandwithsolutions byMurrayS.Klamkin 34. Graphs and Their Uses by Oystein Ore. Revised and updated by Robin J. Wilson 35. ExploringMathematicswithYourComputerbyArthurEngel 36. GameTheoryandStrategybyPhilipD.Straffin,Jr. 37. Episodes in Nineteenth and Twenthieth Century Euclidean Geometry by RossHonsberger 38. TheContestProblemBookVAmericanHighSchoolMathematicsExaminations andAmericanInvitationalMathematicsExaminations1983–1988. Compiled and augmentedbyGeorgeBerzsenyiandStephenB.Maurer 39. OverandOverAgainbyGengzheChangandThomasW.Sederberg 40. TheContestProblemBookVIAmericanHighSchoolMathematicsExaminations 1989–1994.CompiledandaugmentedbyLeoJ.Schneider 41. The Geometry of Numbers by C. D. Olds, Anneli Lax, and Giuliana P. Davidoff 42. Hungarian Problem Book III Based on the Eo¨tvo¨s Competitions 1929–1943 translatedbyAndyLiu 43. MathematicalMiniaturesbySvetoslavSavchevandTituAndreescu 44. GeometricTransformationsIVbyI.M.Yaglom,translatedbyA.Shenitzer Othertitlesinpreparation. MAAServiceCenter P.O.Box91112 Washington,DC20090-1112 1-800-331-1622 fax:1-301-206-9789 Contents PrefacetotheFirstEdition ix PrefacetotheSecondEdition xiii 1 ThePhenomenonofGambling 1 1.1 Aselectivehistory . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thegamblerinfactandfiction . . . . . . . . . . . . . . . 5 2 FiniteProbabilitiesandGreatExpectations 13 2.1 Theprobabilityconceptanditsorigins . . . . . . . . . . . 13 2.2 Dice,cards,andprobabilities . . . . . . . . . . . . . . . . 15 2.3 Roulette,probabilityandodds . . . . . . . . . . . . . . . 17 2.4 Compoundprobabilities:Therulesofthegame . . . . . . 20 2.5 Mathematicalexpectationanditsapplication. . . . . . . . 22 2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 BackgammonandOtherDiceDiversions 29 3.1 Backgammonoversimplified . . . . . . . . . . . . . . . . 29 3.2 Rollingspotsandhittingblots . . . . . . . . . . . . . . . 32 3.3 Enteringandbearingoff . . . . . . . . . . . . . . . . . . 34 3.4 Thedoublingcube . . . . . . . . . . . . . . . . . . . . . 36 3.5 Craps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.6 Chuck-a-Luck . . . . . . . . . . . . . . . . . . . . . . . . 45 3.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 Permutations,Combinations,andApplications 51 4.1 Carefulcounting:Isorderimportant?. . . . . . . . . . . . 51 4.2 Factorialsandothernotation . . . . . . . . . . . . . . . . 53 vii viii Contents 4.3 Probabilitiesinpoker . . . . . . . . . . . . . . . . . . . . 55 4.4 Bettinginpoker:Asimplemodel. . . . . . . . . . . . . . 59 4.5 Distributionsinbridge . . . . . . . . . . . . . . . . . . . 67 4.6 Kenotypegames . . . . . . . . . . . . . . . . . . . . . . 71 4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5 PlayitAgainSam:TheBinomialDistribution 79 5.1 Gamesandrepeatedtrials . . . . . . . . . . . . . . . . . . 79 5.2 Thebinomialdistribution . . . . . . . . . . . . . . . . . . 79 5.3 Beatingtheoddsandthe“law”ofaverages . . . . . . . . 83 5.4 Bettingsystems . . . . . . . . . . . . . . . . . . . . . . . 90 5.5 Abriefblackjackbreakthrough . . . . . . . . . . . . . . . 93 5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6 ElementaryGameTheory 99 6.1 Whatisgametheory? . . . . . . . . . . . . . . . . . . . . 99 6.2 Gamesinextensiveform . . . . . . . . . . . . . . . . . . 100 6.3 Two-persongamesinnormalform . . . . . . . . . . . . . 105 6.4 Zero-sumgames. . . . . . . . . . . . . . . . . . . . . . . 107 6.5 Nonzero-sumgames,Nashequilibriaandthe prisoners’dilemma . . . . . . . . . . . . . . . . . . . . . 113 6.6 Simplen-persongames . . . . . . . . . . . . . . . . . . . 118 6.7 Powerindices . . . . . . . . . . . . . . . . . . . . . . . . 120 6.8 Gamescomputersplay . . . . . . . . . . . . . . . . . . . 123 6.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7 OddsandEnds 135 7.1 Themathematicsofbluffingandthe TexasHoldeminvasion . . . . . . . . . . . . . . . . . . . 135 7.2 Offtotheraces . . . . . . . . . . . . . . . . . . . . . . . 141 7.3 Lotteriesandyourexpectation . . . . . . . . . . . . . . . 147 7.4 Thegambler’sruin . . . . . . . . . . . . . . . . . . . . . 158 Answers/HintsforSelectedExercises 165 Bibliography 167 Index 171 AbouttheAuthor 175 Preface to the First Edition The purpose of this book is to introduce and develop some of the impor- tant and beautiful elementary mathematics needed for rational analysis of variousgamblingand gameactivities.While theonlyformalmathematics background assumed is high school algebra, some enthusiasm for and facilitywithquantitativereasoningwillalsoservethereaderwell.Thebook will,Ihope,beofinterestto: 1. Brighthighschoolstudentswithagoodmathematicsbackgroundandan (oftenrelated)interestingamesofchance. 2. Studentsinelementaryprobabilitytheorycourseswhomightappreciate an informal supplementary text focusing on applications to gambling andgames. 3. Individualswithsomebackgroundinmathematicswhoareinterestedin some common and uncommon elementary game-oriented applications andtheiranalysis. 4. That subset of the numerate gambling and game-playing public who wouldliketoexaminethemathematicsbehindgamestheymightenjoy andwhowouldliketoseemathematicaljustificationforwhatconstitutes “good”(rational)playinsuchgames. One guiding principle of the book is that no mathematics is introduced without specific examples and applications to motivate the theory. The mathematicsdevelopedrangesfromthepredictableconceptsofprobability, expectation, and binomial coefficients to some less well-known ideas of elementarygametheory.Awidevarietyofstandardgamesareconsidered ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.