Heritage of European Mathematics Advisory Board Ciro Ciliberto, Roma Ildar A. Ibragimov, St. Petersburg Wladyslaw Narkiewicz, Wroclaw Peter M. Neumann, Oxford Samuel J. Patterson, Göttingen Previously published Andrzej Schinzel, Selecta, Volume I: Diophantine Problems and Polynomials; Volume II: Elementary, Analytic and Geometric Number Theory, Henryk Iwaniec, Wladyslaw Narkiewicz, and Jerzy Urbanowicz(Eds.) Thomas Harriot’s Doctrine of Triangular Numbers: the ‘Magisteria Magna’, Janet Beery and Jacqueline Stedall (Eds.) Hans Freudenthal, Selecta,Tony A. Springer and Dirk van Dalen (Eds.) Nikolai I. Lobachevsky, Pangeometry, Athanase Papadopoulos (Transl. and Ed.) Jacqueline Stedall, From Cardano’s great art to Lagrange’s reflections: filling a gap in the history of algebra Peter M. Neumann The mathematical writings of Évariste Galois Author: Peter M.Neumann The Queen’s College Oxford,OX1 4AW United Kingdom E-mail:[email protected] 2010 Mathematics Subject Classification (primary;secondary):01-02;01-55,01A75,00B55,11-03, 11A55,12-03,12E12,12E20,12F10,20-02,20-03,20B05,20B15,20D05,33-03,33E05 Key words:History of mathematics, Galois,Galois Theory,group,Galois group,equation,theory of equations,Galois field,finite field,elliptic function,modular equation,primitive equation,primitive group,solubility,simple group,soluble group ISBN 978-3-03719-104-0 The Swiss National Library lists this publication in The Swiss Book,the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright.All rights are reserved,whether the whole or part of the material is concerned,specifically the rights of translation,reprinting,re-use of illustrations,recitation,broad- casting,reproduction on microfilms or in other ways,and storage in data banks.For any kind of use permission of the copyright owner must be obtained. © 2011 European Mathematical Society Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum FLI C4 CH-8092 Zürich Switzerland Phone:+41 (0)44 632 34 36 Email:[email protected] Homepage:www.ems-ph.org Typeset using the author’s TEX files:I.Zimmermann,Freiburg Printing and binding:Beltz Bad Langensalza GmbH,Bad Langensalza,Germany ∞Printed on acid free paper 9 8 7 6 5 4 3 2 1 Àmeschèresamies JackieStedall, SabineRommevaux, laVilledeParis, et laBibliothèquedel’InstitutdeFrance AfamilysketchofÉvaristeGaloisaged15. Firstpublishedin1896byPaulDupuy. Preface Before he died aged twenty, shot in a mysterious early-morning duel at the end of May 1832, Évariste Galois created mathematics which changed the direction of algebra. His revolutionary ideas date from around May 1829 to June 1830, the twelvetothirteenmonthssurroundinghiseighteenthbirthday. Anarticlepublished inJune1830createdthetheoryofGaloisimaginaries,afore-runnerofwhatarenow knownasfinitefields;hisso-calledPremierMémoirecreatedgrouptheoryandGalois Theory—the modern version of the theory of equations. The Lettre testamentaire, the letter that he wrote to his friendAuguste Chevalier on 29 May 1832, the eve of the duel, is an extraordinary summary of what he had achieved and what he might haveachievedhadhelivedtodevelopandexpoundmoreofhismathematicalideas. AlthoughtherehavebeenseveralFrencheditionsofhiswritings,therehasnever untilnowbeenasystematicEnglishtranslation. Translationsofhistoricalmaterialare oflittleusewithouttheoriginalsalongside,however. Whatisofferedherethereforeis abilingualedition. TheFrenchtranscriptionisanewone. Followingprecedentsset byTanneryin1906/07andbyBourgne&Azrain1962itisasclosetotheoriginal manuscripts as I have been able to make it. Main text, afterthoughts, deletions, insertions,over-writings—allarerecordedasfaithfullyasIcouldmanagewithinthe inevitableconstraintsimposedbythedifferencesbetweenmanuscriptandprint. In addition I offer three levels of commentary. First there is general contextual information; secondly there are notes on the physical state of the manuscripts and onthedispositionoftheircontent;third,therearecomparisonsofthevariousprevi- ous editions, including variant readings, in minutely pedantic and minutely printed marginal notes. Little of the commentary here is mathematical. It is focussed on thesymbolsonthepage,onthesyntax,onestablishinganaccuratetext. Commen- tariesonthesemantics,themeaningofwhatGaloiswrote,wouldbeaquitedifferent exercise. That comes next, but must be the subject of other studies. I have neither thespacenorthetime. Spaceisaconcernbecausethebookisalreadysubstantially longerthanIhadanticipatedinlightoftheshortnessofGalois’productivelife. Time isshortbecauseapropermodernstudyofhiswritingswouldtakeyears,whereasit isplannedthatthisbookshouldappearon25October2011ashomagetoGaloison the200th anniversaryofhisbirth. The book is conceived as a contribution to the history of mathematics. I hope, however,thatitmaybringthemathematicalwritingsofthisextraordinarygeniusto a wider mathematical public than has hitherto been able to appreciate them. At the very least it may serve to dispel some of the common myths that surround Galois and his understanding of mathematics. It is simply not true, for example, that he proved and used the simplicity of alternating groups. He did not need to: he was much cleverer than that; his treatment of solubility of equations is at once simpler andmoreelegantthanwhathasnowbecometextbooktradition. Thedetailsofwhat he did, the proper evidence of his genius, deserve to be as well understood and appreciated amongst mathematicians as amongst historians of mathematics. If this viii Preface edition extends his readership beyond the bounds presently imposed by linguistic constraintsitwillhavesucceeded. Acknowledgements Itisapleasuretobeabletopublishmyverywarmthankstoalargenumberofpeople without whose help and advice this book would have been greatly the poorer. First comeMmeMireillePastoureau,DirectoroftheLibraryoftheInstitutdeFrance,and her staff. They have all accorded me the highest level of kindness and assistance. If I pick out two people, Mme Fabienne Queyroux and MmeAnnie Chassagne, as havingearnedmyspecialthanksforthemanytimestheyhavegivenmespecialhelp, I hope it will not detract from my thanks to all their colleagues. I thank also the Commission des bibliothèques et archives de l’Institut de France, and its president, MmeHélèneCarrèred’Encausse,Secrétaireperpétueldel’Académiefrançaise,for kind permission to include images of some of the Galois manuscripts in this work; thesethanksextendtoMmeFlorenceGreffe,ArchivistoftheAcadémiedeSciences, who has made available an image of Galois’letter of 31 March 1831 and a pam- phlet by Jacques Tits. Professor Jean-Pierre Kahane, a member of that committee, has been very supportive and it is a pleasure to record my personal thanks to him. Mr F. Xavier Labrador of the Société d’Ingénierie et de Microfilmage made those high quality photographs, and I am very grateful to him. I thank also Jonathan Crayford for photographs and much enthusiasm about Galois and his work. The Governing Body of the Queen’s College, Oxford, and the Research Committee of the Mathematical Institute in the University of Oxford provided financial support towardsthepurchaseofdigitalimagesofthemanuscriptsandIthankthemalso. Several colleagues read an early draft of the book, or parts of it, and I have benefitted from their suggestions. Two referees, Massimo Galuzzi and Caroline Ehrhardt,sentpertinentandveryhelpfulcriticisms. Itisagreatpleasuretobeable to thank them publicly, not only for their kind comments and help, but also for agreeingtowaivetheconventionalanonymitythatusuallypreventssuchthanksand acknowledgment. Jackie Stedall and Sabine Rommevaux also checked the whole workforme—theyknowalreadyhowgratefulIam. IamgratefulalsotoCatherine GoldsteinandAdrianRiceforbibliographicaladvice,andtoTessaShawandLynette DobsonoftheQueen’sCollegelibraryfordetailedandhighlyskilledbibliographical assistance. ProfessorRogerPearson,FBA,TutorinFrenchatTheQueen’sCollege, offeredhelpwiththemottosandsomeothermysteriousconstructions. Iamnotthe first,norwillIbethelast,tobegratefulforhisgreatscholarshipandtutorialskills. ThroughoutthewholeprojectmyeditorsManfredKarbeandhiswifeIreneZim- mermannhaveprovidedanextraordinarylevelofsupportandencouragement,freely andpatientlysharingwithmetheirtechnicalandTEXnicalexpertise,experienceand wisdom. Onecouldnotpossiblyhaveabettereditorialteam. …MN Oxford,September2011 Contents Preface vii Listoffacsimiles xi I Introduction 1 I.1 ÉvaristeGalois1811–1832,revolutionarymathematician . . . . 1 I.2 WhatGaloismighthaveread . . . . . . . . . . . . . . . . . . . 4 I.3 Themanuscripts . . . . . . . . . . . . . . . . . . . . . . . . . . 6 I.4 PublicationhistoryofGalois’mathematicalwritings . . . . . . . 8 I.5 ThereceptionofGalois’ideas . . . . . . . . . . . . . . . . . . . 10 I.6 Scopeofthisedition . . . . . . . . . . . . . . . . . . . . . . . . 11 I.7 Editorialambitionandpolicy . . . . . . . . . . . . . . . . . . . 12 I.7.1 AugusteChevalier . . . . . . . . . . . . . . . . . . . . . . 12 I.7.2 JosephLiouville . . . . . . . . . . . . . . . . . . . . . . . 13 I.7.3 JulesTannery . . . . . . . . . . . . . . . . . . . . . . . . 14 I.7.4 RobertBourgne&Jean-PierreAzra . . . . . . . . . . . . 15 I.7.5 Thepresentwork . . . . . . . . . . . . . . . . . . . . . . 16 I.8 Translationandinterpretation . . . . . . . . . . . . . . . . . . . 17 I.8.1 Thewordsanalyste,géomètre . . . . . . . . . . . . . . . . 18 I.8.2 Thephraseséquationalgébrique,équationnumérique . . . 19 I.8.3 Thewordspermutation,substitution . . . . . . . . . . . . 20 I.8.4 Thewordgroupe . . . . . . . . . . . . . . . . . . . . . . 22 I.8.5 Thewordsemblable . . . . . . . . . . . . . . . . . . . . . 23 I.8.6 Thewordprimitif . . . . . . . . . . . . . . . . . . . . . . 24 I.8.7 Otherwordsandphrases . . . . . . . . . . . . . . . . . . 25 I.8.8 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 I.9 A‘wartsandall’transcription . . . . . . . . . . . . . . . . . . . 27 I.10 Thetranscription: editorialconventions . . . . . . . . . . . . . . 31 II Thepublishedarticles 33 II.1 Atheoremoncontinuedfractions . . . . . . . . . . . . . . . . . 35 II.2 Abstractofanarticleonsolutionofequations . . . . . . . . . . 49 II.3 Anoteonthenumericalsolutionofequations . . . . . . . . . . 55 II.4 Onthetheoryofnumbers . . . . . . . . . . . . . . . . . . . . . 61 II.5 Onsomepointsofanalysis . . . . . . . . . . . . . . . . . . . . 77 III TheTestamentaryLetterof29May1832 83 III.1 Theletter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 III.2 Notesontheletter . . . . . . . . . . . . . . . . . . . . . . . . . 101 x Contents IV TheFirstMemoir 105 IV.1 TextoftheFirstMemoir . . . . . . . . . . . . . . . . . . . . . . 105 IV.2 NotesontheFirstMemoir . . . . . . . . . . . . . . . . . . . . . 145 IV.3 Letterof31March1831totheAcademy . . . . . . . . . . . . . 165 V TheSecondMemoir 169 V.1 TextoftheSecondMemoir . . . . . . . . . . . . . . . . . . . . 169 V.2 NotesontheSecondMemoir . . . . . . . . . . . . . . . . . . . 195 VI Theminormathematicalmanuscripts 199 VI.1 Dossier6: An1830versionofPropositionI . . . . . . . . . . . 201 VI.2 Dossier7: An1830draftofPropositionV . . . . . . . . . . . . 209 VI.3 Dossier8: Atornfragment . . . . . . . . . . . . . . . . . . . . 219 VI.4 Dossier9: Preliminarydiscussion . . . . . . . . . . . . . . . . . 225 VI.5 Dossier10: PublicationprojectandnoteonAbel . . . . . . . . . 233 VI.6 Dossier11: Prefacefortwomemoirs . . . . . . . . . . . . . . . 245 VI.7 Dossier12: Ontheprogressofpureanalysis . . . . . . . . . . . 259 VI.8 Dossier13: Here,asinallthesciences . . . . . . . . . . . . . . 269 VI.9 Dossier14: Science,Hierarchy,Schools . . . . . . . . . . . . . 275 VI.10 Dossier15: Fragmentsonpermutationsandequations . . . . . . 279 VI.11 Dossier16: FragmentsrelatingtoPropositionI . . . . . . . . . . 301 VI.12 Dossier17: Fragmentsonthetheoryofequations . . . . . . . . 311 VI.13 Dossier18: Noteonnon-primitiveequations . . . . . . . . . . . 323 VI.14 Dossier19: Additiontothememoironequations . . . . . . . . . 329 VI.15 Dossier20: Onthedivisionofellipticfunctions . . . . . . . . . 335 VI.16 Dossier21: Ontheintegrationoflinearequations . . . . . . . . 347 VI.17 Dossier22: Onsurfacesoftheseconddegree . . . . . . . . . . . 355 VI.18 Dossier23: Oneulerianintegrals . . . . . . . . . . . . . . . . . 367 VI.19 Dossier24: AtheoremofAbel . . . . . . . . . . . . . . . . . . 373 VII Epilogue: mythsandmysteries 383 VII.1 Myths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 VII.2 Mysteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 VII.3 Lastwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 Bibliography 391 Index 405