ebook img

The Mathematical Legacy of Srinivasa Ramanujan PDF

186 Pages·2012·3.508 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Mathematical Legacy of Srinivasa Ramanujan

The Mathematical Legacy of Srinivasa Ramanujan M. Ram Murty (cid:2) V. Kumar Murty The Mathematical Legacy of Srinivasa Ramanujan M.RamMurty V.KumarMurty DepartmentofMathematicsandStatistics DepartmentofMathematics Queen’sUniversity UniversityofToronto Kingston,Ontario Toronto,Ontario Canada Canada ISBN978-81-322-0769-6 ISBN978-81-322-0770-2(eBook) DOI10.1007/978-81-322-0770-2 SpringerNewDelhiHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012949894 ©SpringerIndia2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Onaheighthestoodthatlookedtowards greaterheights. Ourearlyapproaches totheInfinite Aresunrisesplendoursonamarvellousverge Whilelingersyetunseen theglorioussun. What nowweseeisashadow ofwhatmust come. SriAurobindo, Savitri1.4 HowIwishI couldshowyoutheworld through myeyes. Vivekananda Preface 22December2012marksthe125thbirthanniversaryoftheIndianmathematician SrinivasaRamanujan.Beinglargelyself-taught,heemergedfromextremepoverty to become one of 20th century’s most influential mathematicians. His story is a phenomenal “rags to mathematical riches” story. In his short life, he had a wealth ofideasthathavetransformedandreshaped20thcenturymathematics.Theseideas continuetoshapemathematicsofthe21stcentury. This book is meant to be a panoramic view of his essential mathematical con- tributions. It is not an encyclopedicaccount of Ramanujan’s work. Rather, it is an informalaccountofsomeofthemajordevelopmentsthatemanatedfromhiswork inthe20thand21stcenturies.Thetwelveessaysfocusonasubsetofhissignificant papersandshowhowthesepapersshapedthecourseofmodernmathematics. These essays are based on lectures given by the authors over the years at the Chennai Mathematical Institute, Harish-Chandra Research Institute, IISER (Kolkata), IISER (Bhopal), IIT (Powai), IIT (Chennai), Institute for Mathematical Sciences(Chennai),andtheTataInstituteforFundamentalResearch(Mumbai)as wellasQueen’sUniversity,theFieldsInstitute,andtheUniversityofToronto.The lectures were given so that the material is accessible to undergraduates and grad- uate students. We have striven to not be too technical. At the same time, we tried toconveysomedepthofthemathematicaltheoriesemergingfromtheworkofRa- manujan.Surely,itisimpossibletobecomprehensiveinsuchamammothtask.Still, wehopethatthereaderwillseehowthevastlandscapeofRamanujan’sgardenhas blossomedoverthepastcentury. Toronto,Canada M.RamMurty V.KumarMurty vii Contents 1 TheLegacyofSrinivasaRamanujan . . . . . . . . . . . . . . . . . . 1 2 TheRamanujanτ-Function . . . . . . . . . . . . . . . . . . . . . . . 11 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Theτ-FunctionandPartitions . . . . . . . . . . . . . . . . . . . . 12 3 RelatedGeneratingFunctions . . . . . . . . . . . . . . . . . . . . 13 4 Valuesoftheτ-Function . . . . . . . . . . . . . . . . . . . . . . . 14 5 Parityoftheτ-Function . . . . . . . . . . . . . . . . . . . . . . . 17 6 CongruencesSatisfiedbytheτ-Function . . . . . . . . . . . . . . 17 7 Vanishingoftheτ-Function . . . . . . . . . . . . . . . . . . . . . 18 8 Divisibilityofτ(p)byp. . . . . . . . . . . . . . . . . . . . . . . 20 9 Lehmer’sConjectureandHarmonicWeakMaassForms . . . . . . 21 3 Ramanujan’sConjectureand(cid:3)-AdicRepresentations . . . . . . . . 25 1 TheWeilConjectures . . . . . . . . . . . . . . . . . . . . . . . . 26 2 TheCaseofEllipticCurves . . . . . . . . . . . . . . . . . . . . . 28 3 (cid:3)-AdicRepresentations . . . . . . . . . . . . . . . . . . . . . . . 30 4 EllipticCurvesandModularForms . . . . . . . . . . . . . . . . . 31 5 GeometricRealizationofModularFormsofHigherWeight . . . . 35 4 TheRamanujanConjecturefromGL(2)toGL(n) . . . . . . . . . . . 39 1 TheRamanujanConjectures . . . . . . . . . . . . . . . . . . . . . 39 2 MaassFormsofWeightZero . . . . . . . . . . . . . . . . . . . . 45 3 UpperBoundforFourierCoefficientsandEigenvalueEstimates . . 47 4 EisensteinSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5 EisensteinSeriesandNon-vanishingofζ(s)on(cid:2)(s)=1 . . . . . 51 6 TheRankin–SelbergL-Function . . . . . . . . . . . . . . . . . . 54 7 PoincaréSeriesforSL (Z) . . . . . . . . . . . . . . . . . . . . . 57 2 8 FourierCoefficientsandKloostermanSums . . . . . . . . . . . . 60 9 TheKloosterman–SelbergZetaFunction . . . . . . . . . . . . . . 64 10 Rankin–SelbergL-FunctionsforGL . . . . . . . . . . . . . . . . 65 n ix x Contents 5 TheCircleMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2 ThePartitionFunction . . . . . . . . . . . . . . . . . . . . . . . . 69 3 Waring’sProblem . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.1 SchnirelmannDensity . . . . . . . . . . . . . . . . . . . . 75 3.2 SchnirelmannDensityandWaring’sProblem . . . . . . . . 78 3.3 ProofofLinnik’sTheorem . . . . . . . . . . . . . . . . . 80 4 Goldbach’sConjecture . . . . . . . . . . . . . . . . . . . . . . . . 87 4.1 BasicLemmas . . . . . . . . . . . . . . . . . . . . . . . . 89 4.2 MajorArcs . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.3 ApplicationofPartialSummation . . . . . . . . . . . . . . 91 4.4 PrimesinArithmeticProgressions . . . . . . . . . . . . . 91 4.5 TheSingularSeries . . . . . . . . . . . . . . . . . . . . . 92 4.6 TheMinorArcsEstimateUsingGRH. . . . . . . . . . . . 95 6 RamanujanandTranscendence . . . . . . . . . . . . . . . . . . . . . 97 1 Nesterenko’sTheorems . . . . . . . . . . . . . . . . . . . . . . . 97 2 SpecialValuesoftheΓ-FunctionatCMPoints . . . . . . . . . . . 100 3 SpecialValuesofJacobi’sThetaSeries . . . . . . . . . . . . . . . 101 4 TheRogers–RamanujanContinuedFraction . . . . . . . . . . . . 102 5 Nesterenko’sConjectures . . . . . . . . . . . . . . . . . . . . . . 103 6 SpecialValuesoftheRiemannZetaFunctionandq-Analogues . . 104 7 ArithmeticofthePartitionFunction . . . . . . . . . . . . . . . . . . 109 1 Ramanujan’sCongruences . . . . . . . . . . . . . . . . . . . . . . 109 2 HigherCongruences . . . . . . . . . . . . . . . . . . . . . . . . . 113 3 Dyson’sRanksandCranks . . . . . . . . . . . . . . . . . . . . . 114 4 ParityQuestions . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8 SomeNonlinearIdentitiesforDivisorFunctions . . . . . . . . . . . . 119 1 AQuadraticRelationAmongstDivisorFunctions . . . . . . . . . 119 2 QuadraticRelationsAmongstEisensteinSeries . . . . . . . . . . . 120 3 AFormulafortheτ-Function . . . . . . . . . . . . . . . . . . . . 121 4 DerivativesofModularForms . . . . . . . . . . . . . . . . . . . . 122 5 DifferentialOperatorsandNonlinearIdentities . . . . . . . . . . . 124 6 Quasi-modularForms . . . . . . . . . . . . . . . . . . . . . . . . 125 7 Non-linearCongruencesandTheirInterpretation . . . . . . . . . . 127 9 MockThetaFunctionsandMockModularForms . . . . . . . . . . 129 1 HistoricalIntroduction . . . . . . . . . . . . . . . . . . . . . . . . 129 2 Ramanujan’sExamples . . . . . . . . . . . . . . . . . . . . . . . 130 3 TheWorkofZwegers . . . . . . . . . . . . . . . . . . . . . . . . 130 4 TheSpaceofMockModularForms . . . . . . . . . . . . . . . . . 132 5 SomeApplications . . . . . . . . . . . . . . . . . . . . . . . . . . 133 10 PrimeNumbersandHighlyCompositeNumbers . . . . . . . . . . . 135 1 TheDivisorFunctions . . . . . . . . . . . . . . . . . . . . . . . . 135 Contents xi 2 RamanujanandthePrimeNumberTheorem . . . . . . . . . . . . 138 3 HighlyCompositeNumbers . . . . . . . . . . . . . . . . . . . . . 141 4 RelationtotheSixExponentialConjecture . . . . . . . . . . . . . 143 5 CountingHighlyCompositeNumbers . . . . . . . . . . . . . . . 144 6 MaximalOrderofDivisorFunctionsandOtherArithmetic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7 MaximalOrdersofFourierCoefficientsofCuspForms . . . . . . 147 11 ProbabilisticNumberTheory . . . . . . . . . . . . . . . . . . . . . . 149 1 TheNormalOrderMethod . . . . . . . . . . . . . . . . . . . . . 149 2 TheErdös–KacTheorem . . . . . . . . . . . . . . . . . . . . . . 150 3 TheHardy–Ramanujan-TypeTheoremfortheτ-Function . . . . . 151 4 Non-abelianGeneralizationsoftheHardy–RamanujanTheorem . . 153 12 TheSato–TateConjecturefortheRamanujanτ-Function . . . . . . 155 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 2 Weyl’sCriterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 3 Wiener–IkeharaTauberianTheorem. . . . . . . . . . . . . . . . . 161 4 Weyl’sTheoremforCompactGroups . . . . . . . . . . . . . . . . 163 5 SymmetricPowerL-SeriesofEllipticCurves . . . . . . . . . . . 164 6 AnOutlineoftheProofoftheSato–TateConjecture . . . . . . . . 166 7 AChebotarev–Sato–TateTheoremandGeneralizations . . . . . . 168 8 ConcludingRemarks. . . . . . . . . . . . . . . . . . . . . . . . . 170 Erratumto:TheRamanujanτ-Function . . . . . . . . . . . . . . . . . . E1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Chapter 1 The Legacy of Srinivasa Ramanujan Mathematicsenjoysthefreedomofartandtheprecisionofscience.Thereisfree- domofcombinationofideasandconcepts,butthereisalsotheprecisionoflogicand theringoftruth.Itislikeamastersymphony.TheSovietmathematician,I.R.Sha- farevich[186]onceremarkedthat“asuperficialglanceatmathematicsmaygivean impressionthatitisaresultofseparateindividualeffortsofmanyscientistsscattered aboutincontinentsandinages.However,theinnerlogicofitsdevelopmentreminds one much more of the work of a single intellect, developing its thought systemat- icallyandconsistentlyusingthevarietyofhumanindividualitiesonlyasameans. Itresemblesanorchestraperformingasymphonycomposedbysomeone.Atheme passesfromoneinstrumenttoanother,itistakenupbyanotherandperformedwith irreproachableprecision.” This is no doubt true and yet, the music reaches a crescendo in the hands of certainluminaries.OnesuchluminarywasSrinivasaRamanujan.Whatisfascinat- ingaboutRamanujanisthathewaslargelyself-taughtandemergedfromextreme povertytobecomeoneofthe20thcentury’sinfluentialmathematicians.Hisstoryis a“ragstomathematicalriches”story.Inthecosmicsymphonyofmathematics,he playedamajorrole. The music of Ramanujan emanates both from his life and his work. Born on 22December1887inhumbleandpoorsurroundingsinthetownofErodesituated in present day Tamil Nadu, India, Ramanujan cultivated his love for mathematics singlehandedlyandintotalisolation.Asachild,hewasquietandoftentohimself. Thosethatknewhimwereimpressedbyhisshininglargeeyeswhichwerehismost prominentfeatures.Hehadaprodigiousmemory,andatschool,hewouldentertain hisfriendsbyrecitingthevariousdeclensionsofSanskritrootsandbyrepeatingthe valueoftheconstantπ toanynumberofdecimalplaces. Attheageof12,heborrowedabookontrigonometryfromanolderstudentand completelymastereditscontents.ThisbookwasLoney’sPlaneTrigonometrypub- lishedbyCambridgein1894andcontainsagreatdealofinformationonsummation of series, logarithms of complex numbers, calculation of π and Gregory’s series. Thiscertainlygoesfarbeyondanymoderncurriculumoftrigonometrytaughtinour highschoolstoday.ButthebookthatinfluencedhimthemostwasCarr’sAsynopsis M.R.Murty,V.K.Murty,TheMathematicalLegacyofSrinivasaRamanujan, 1 DOI10.1007/978-81-322-0770-2_1,©SpringerIndia2013

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.