ebook img

The Maslov index in weak symplectic functional analysis PDF

0.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Maslov index in weak symplectic functional analysis

manuscriptNo. (willbeinsertedbytheeditor) The Maslov index in weak symplectic functional analysis BernhelmBooß-Bavnbek ChaofengZhu · 3 1 thedateofreceiptandacceptanceshouldbeinsertedlater 0 2 Abstract WerecalltheChernoff-Marsdendefinitionofweaksymplecticstructureandgive n a a rigorous treatment of the functional analysis and geometry of weak symplectic Banach J spaces.WedefinetheMaslovindexofacontinuous pathofFredholmpairsofLagrangian 0 subspacesincontinuouslyvaryingBanachspaces.WederivebasicpropertiesofthisMaslov 3 indexandemphasizethenewfeaturesappearing. ] Keywords Closedrelations,FredholmpairsofLagrangians,Maslovindex,spectralflow, G symplecticsplitting,weaksymplecticstructure. D 2010MathematicsSubjectClassification Primary53D12;Secondary58J30 . h t a m 1 Introduction [ 1.1 Oursettingandgoals 1 v First,werecallthemainfeaturesoffinite-dimensionalandinfinite-dimensionalstrongsym- 8 plectic analysis and geometry and argue for the need to generalize from strong to weak 4 assumptions. 2 7 . 1.1.1 Thefinite-dimensionalcase 1 0 3 ThestudyofdynamicalsystemsandthevariationalcalculusofN-particleclassicalmechan- 1 icsautomaticallyleadtoasymplecticstructureinthephasespaceX =R6N ofpositionand : v ThesecondauthorwaspartiallysupportedbyKPCMENo.106047andNNSFNo.10621101. i X B.Booß-Bavnbek r DepartmentofScience,SystemsandModels/IMFUFA a RoskildeUniversity,DK-4000Roskilde,Denmark E-mail:[email protected] C.Zhu ChernInstituteofMathematicsandLPMC NankaiUniversity,Tianjin300071,thePeople’sRepublicofChina E-mail:[email protected] 2 impulsevariables:whenwetracethemotionofNparticlesin3-dimensionalspace,wedeal withabilinear(inthecomplexcasesesquilinear)anti-symmetric(inthecomplexcaseskew- symmetric)andnon-degenerateformw : X X R.Thereasonfortheskew-symmetryis × → theasymmetrybetweenpositionandimpulsevariablescorresponding totheasymmetryof differentiation. To carry out the often quite delicate calculations of mechanics, the usual trickistoreplacetheskew-symmetricform w byaskew-symmetricmatrixJwithJ2= I − suchthat w (x,y) = Jx,y forallx,y X, (1) h i ∈ where , denotestheinnerproductinX. h· ·i For geometric investigations, the key concept is a Lagrangian subspace of the phase space.FortwocontinuouspathsofLagrangiansubspaces,anintersectionindex,theMaslov indexiswell-defined.Itcanbeconsideredasare-formulationorgeneralizationofcounting conjugate points on a geodesic. In Morse Theory, this number equals the classical Morse index, i.e.,thenumber ofnegativeeigenvalues oftheHessian(the secondvariation ofthe action/energyfunctional).ThisMorseIndexTheorem(cf.M.Morse[30])forgeodesicson RiemannianmanifoldswasextendedbyW.Ambrose[1],J.J.Duistermaat[22],P.Piccione andD.V.Tausk[34,35],andthesecondauthor[43,44].SeealsotheworkofM.Musso,J. Pejsachowicz,andA.PortalurionaMorseindextheoremforperturbedgeodesicsonsemi- Riemannianmanifolds in[31]whichhasinparticularleadN. Waterstraattoa K-theoretic proofoftheMorseIndexTheoremin[39]. Forasystematicreview ofthebasicvectoranalysisand geometry andforthephysics background,werefertoV.I.Arnold[2]andM.deGosson[25]. 1.1.2 Thestrongsymplecticinfinite-dimensionalcase AsshownbyK.Furutaniandthefirstauthorin[7],thefinite-dimensional approachofthe MorseIndexTheoremcanbegeneralizedtoaseparableHilbertspacewhenweassumethat theformw isboundedandcanbeexpressedasin(1)withabounded operatorJ,whichis skew-self-adjoint (i.e., J = J) and not only injective but invertible. The invertibility of ∗ − J isthewholepointofastrongsymplecticstructure.Then,withoutlossofgenerality,one can assume J2 = I like in the finite-dimensional case (see Lemma 1 below), and many − calculationsofthefinite-dimensionalcasecanbepreservedwithonlyslightmodifications. Themodel spaceforstrongsymplecticHilbert spacesisthevonNeumann spaceb (A):= dom(A )/dom(A)ofnaturalboundaryvaluesofaclosedsymmetricoperatorAinaHilbert ∗ spaceX withsymplecticformgivenbyGreen’sform w (g (u),g (v)):= A∗u,v u,A∗v forallu,v dom(A∗), (2) h i−h i ∈ where , denotes the inner product in X and g : dom(A ) b (A) is the trace map. A ∗ h· ·i → typicalexampleisprovidedbyalinearsymmetricdifferentialoperatorAoffirstorderover amanifoldM withboundary S .Herewehavetheminimaldomaindom(A)=H1(M)and 0 the maximal domain dom(A ) H1(M). Note that the inclusion is strict for dimM >1. ∗ RecallthatH1(M)denotesthec⊃losureofC¥ (M S )inH1(M).Forbetterreadingwedonot 0 0 \ mention the corresponding vectorbundles in the notation of the Sobolev spaces of vector bundlesections. As in the finite-dimensional case, the basic geometric concept in infinite-dimensional strong symplectic analysis is the Lagrangian subspace, i.e., a subspace which is isotropic and co-isotropic at the same time. Contrary to the finite-dimensional case, however, the 3 common definition of a Lagrangian as a maximal isotropic space or an isotropic space of halfdimensionbecomesinappropriate. InordertodefinetheMaslovindexintheinfinite-dimensionalcaseasintersectionnum- ber of two continuous paths of Lagrangian subspaces, one has to make the additional as- sumption that corresponding Lagrangians make a Fredholm pair so that, in particular, we havefiniteintersectiondimensions. In[23],A.Floersuggestedtoexpressthespectralflowofacurveofself-adjointopera- torsbytheMaslovindexofcorrespondingcurvesofLagrangians.Followinghissuggestion, a multitude of formulae was achieved by T. Yoshida [41], L. Nicolaescu [32], S. E. Cap- pell,R.Lee,andE.Y.Miller[18],thefirstauthor, jointlywithK.Furutani andN.Otsuki [8,9] and P. Kirk and M. Lesch [27]. The formulae are of varying generality: Some deal withafixed(elliptic)differentialoperatorwithvaryingself-adjointextensions(i.e.,varying boundary conditions); others keep the boundary condition fixed and let the operator vary. Anexampleforapathofoperators isacurveofDiracoperators onamanifoldwithfixed RiemannianmetricandCliffordmultiplicationbutvaryingdefiningconnection(background field). Seealso theresults by the present authors in[13] for varying operator and varying boundaryconditionsbutfixedmaximaldomainandin[14](inpreparation)alsoforvarying maximal domain. Recently, M. Prokhorova [36] considered a path of Dirac operators on a two-dimensional disk with a finite number of holes subjected to local elliptic boundary conditions andobtainedabeautiful explicitformulaforthespectralflow(respectively,the Maslovindex). 1.1.3 Beyondthelimitsofthestrongsymplecticassumption Weak(i.e.,notnecessarilystrong)symplecticstructures ariseonthewaytoaspectralflow formula in the full generality wanted: for continuous curves of, say linear formally self- adjoint elliptic differential operators of first order over a compact manifold of dimension 2withboundary andwithvaryingmaximaldomain(i.e.,admittingarbitrarycontinuous ≥ variation of thecoefficients of first order) and with continuously varying regular(elliptic) boundary conditions, see[14]. An interesting new feature for the comprehensive general- ization is the following “technical” problem: For regular (elliptic) boundary value prob- lems(sayforalinearformallyself-adjointellipticdifferentialoperatorAoffirstorderona compactsmoothmanifoldMwithboundaryS ),therearethreecanonicalspacesofbound- ary values: the above mentioned von Neumann space b (A)=dom(A )/dom(A), which ∗ isasubspace ofthe distributional Sobolev space H 1/2(S );thespaceof boundary values − H1/2(S ) H1(M)/H1(M)oftheoperatordomainH1(M);andthemostfamiliarandbasic L2(S ).1A≃sin(2),Gre0en’sforminducessymplecticformsonallthreesectionspaceswhich aremutuallycompatible. Moreprecisely,Green’sformyieldsastrongsymplecticstructurenotonlyonb (A),but alsoonL2(S )by w (x,y):= −hJx,yiL2(S ). Here J denotes the principal symbol of the operator A over the boundary in innernormal direction.Themultiplicativeoperatorinducedby J isinvertible(=injectiveandsurjective, 1 Inthetraditionofgeometricallyinspiredanalysis,wethinkmostlyofhomogeneoussystemswhentalk- ingofellipticboundaryvalueproblems.Ourkeyreferenceisthemonograph[11]byK.P.Wojciechowski andthefirstauthorandthesupplementaryelaborationsbyJ.Bru¨ningandM.Leschin[16].Foramorecom- prehensivetreatment,emphasizingnon-homogeneousboundaryvalueproblemsandassemblingallrelevant sectionspacesinahugealgebra,werefertothemorerecentarticle[38]byB.-W.Schulze. 4 i.e.,with bounded inverse) since A is elliptic. Forthe induced symplectic structure on the Sobolev space H1/2(S ) the corresponding operator J is not invertible for dimS 1, see ′ Remark2binSection2.1below.So,fordimS 1thespaceH1/2(S )becomesonly≥aweak ≥ symplecticHilbertspace,touseanotionintroducedbyP.R.ChernoffandJ.E.Marsden[19, Section1.2,pp.4-5]. Anadditionalincitementtoinvestigateweaksymplecticstructurescomesfromastun- ning observation of E. Witten (explained by M.F. Atiyah in [3] in a heuristic way). He considered a weak (and degenerate) symplectic form on the loop space Map(S1,M) of a finite-dimensional closed orientable Riemannian manifold M and noticed that a (future) thoroughunderstandingoftheinfinite-dimensionalsymplecticgeometryofthatloopspace “shouldleadratherdirectlytotheindextheoremforDiracoperators”(l.c.,p.43).Ofcourse, restrictingourselvestothelinearcase,i.e.,tothegeometryofLagrangiansubspacesinstead ofLagrangianmanifolds,wecanonlymarginallycontributetothatprograminthispaper. 1.2 Mainresultsandplanofthepaper Inthispaperweshalldealwiththeprecedingtechnicalproblem.Todothat,wegeneralize the results of J. Robbin and D. Salamon [37], S.E. Cappell, R. Lee, and E.Y. Miller[17], K.Furutani,N.Otsukiandthefirstauthorin[8,9]andofP.KirkandM.Leschin[27].We givearigorous definition oftheMaslovindexforcontinuous curves ofFredholm pairs of LagrangiansubspacesinafixedBanachspacewithvaryingweaksymplecticstructuresand continuouslyvaryingsymplecticsplittingsandderiveitsbasicproperties.Partofourresults willbeformulatedandprovedforrelationsinsteadofoperatorstoadmitwiderapplication. Throughout,weaimforacleanpresentationinthesensethatresultsareprovedinsuit- ablegenerality.Wewishtoshowclearlytheminimalassumptionsneededinordertoprove the various properties. We shall, e.g., prove purely algebraic results algebraically in sym- plecticvectorspacesandpurelytopologicalresultsinBanachspaceswheneverpossible-in spiteofthefactthatweshalldealwithsymplecticHilbertspacesinmostapplications. Theroutesof[8,9]and[27]arebarredtousbecausetheyrely ontheconceptofstrong symplecticHilbertspace.Consequently,wehavetoreplacesomeofthefamiliarreasoning of symplectic analysis by new arguments. A few of the most elegant lemmata of strong symplectic analysis cannot beretained, but, luckily, thenew weak symplecticset-up will showaconsiderablestrengththatisillustrativeandapplicablealsointheconventionalstrong case. InSection2,wegive athorough presentation of weaksymplecticfunctional analysis. Basic concepts are defined in Subsection 2.1. A new feature of weak symplectic analysis isthelackofacanonicalsymplecticsplitting:forstrongsymplecticHilbertspace,wecan assume J2 = I by smooth deformation of the metric, and obtain the canonical splitting − X=X+ X intomutuallyorthogonalclosedsubspacesX :=ker(J iI)whichareboth − ± ⊕ ∓ invariantunderJ.ThatpermitstherepresentationofallLagrangiansubspacesasgraphsof unitaryoperators from X+ toX (seeLemma2),whichyieldsatransferofcontractibility − fromtheunitarygrouptothespaceofLagrangiansubspaces.Moreover,thatrepresentation isthebasisforafunctionalanalyticaldefinitionoftheMaslovindex.Forweaksymplectic HilbertorBanachspaces,theprecedingconstructiondoesnotworkanylongerandwemust assumethatasymplectic splittingisgiven andfixed(itsexistencefollows,however, from Zorn’s Lemma). Given an elliptic differential operator A of first order over a manifold M withboundary S ,however,wehaveanaturalsymplecticsplittingofthesymplecticspaces 5 ofsectionsoverS ,bothinthestrongandweaksymplecticcase,seeRemark3a,Equation 11. In Subsection 2.2, we turn to Fredholm pairs of Lagrangian subspaces to prepare for thecountingofintersectiondimensionsinthedefinitionoftheMaslovindex.Hereanother newfeatureofweaksymplecticanalysis isthat theFredholm indexofaFredholmpairof Lagrangiansubspacesdoesnotneedtovanish.Ontheonehand,thisopensthegatetonew interestingtheorems. Ontheotherhand, there-formulation ofwell-known definitions and lemmata in the weak symplectic setting becomes rather heavy since we have to add the vanishingoftheFredholmindexasanexplicitassumption. As a sideeffect of our weak symplectic investigation, we hope to enrich the classical literature with our new purely algebraic conditions for isotropic subspaces becoming La- grangians,inLemma4andPropositions1and2. Atpresent, thehomotopy types ofthefull Lagrangian Grassmannianand oftheFred- holmLagrangianGrassmannianremainunknown forweaksymplecticstructures.Wegive alistofrelated open problems inSubsection 2.3below. Tous, however, it seemsremark- ablethat awiderange offamiliargeometric features canbere-gainedinweaksymplectic functionalanalysis—inspiteoftheincomprehensibilityofthebasictopology. InSubsection2.4,welaythenextfoundationforarigorousdefinitionoftheMaslovin- dexbyinvestigatingcontinuouscurvesofoperatorsandrelationsthatgenerateLagrangians inthenewwidersetting.ReferringtotheconceptsofourAppendix,wedefinethespectral flowofsuchcurves. InSection3wefinallycometotheintersectiongeometry.InSubsection3.1,weshow howtotreatvaryingweaksymplecticstructuresinafixedBanachspacewithcontinuously varyingsymplecticsplittingsanddefinetheMaslovindexforcontinuouscurvesofFredholm pairsofLagrangiansubspacesinthissetting.Weobtainthefulllistofbasicpropertiesofthe MaslovindexaslistedbyS.E.Cappell,R.Lee,andE.Y.Millerin[17].Wecannot claim thatthisnewMaslovindexisalwaysindependentofthesplittingprojections.However,for strong symplectic Banach space the independence will be proved in Proposition 6. That establishesthecoincidencewiththecommondefinitionoftheMaslovindex. In Subsection 3.2, in our general context, we establishthe relation between real sym- plecticanalysis(inthetraditionofclassicalmechanics)ontheoneside,andthemoreelegant complexsymplecticanalysis(asfoundedbyJ.Lerayin[28])ontheotherside. In Subsection 3.3, we pay special attention to questions related to the embedding of symplecticspaces,Lagrangiansubspacesandcurvesintolargersymplecticspaces.Ourin- vestigations are inspired by the extremely delicate embedding questions between the two strongsymplecticHilbertspacesb (A)andL2(S )asstudiedbyK.Furutani,N.Otsukiand thefirstauthorin[9].Oneadditionalreasonforourinterestinembeddingproblemsisour observationofRemark2c,thateachweaksymplecticHilbertspacecannaturallybeembed- dedinastrongsymplecticHilbertspace,imitatingtheembeddingofH1/2(S )intoL2(S ). InAppendixA.1andA.2,werecallthebasicknowledgeandfixournotationsregarding gapsbetweenclosedsubspacesinBanachspace,uniformproperties,closedlinearrelations andtheirspectralprojections. Then, inAppendix A.3,wegivearigorous definitionofthe spectralflowforadmissiblefamiliesofclosedrelations.Ourdiscussionofcontinuousoper- atorfamiliesinSubsection2.4andthewholeofSection3isbasedonthatdefinition. Themainresultsofthispaperwereachievedmanyyearsagoby theauthorsandinfor- mallydisseminatedin[12].Throughalltheyears,ourgoalwastoestablishatrulygeneral spectralflowformulabyapplyingtheweaksymplecticfunctionalanalysis.Butherewemet atechnical gapintheargumentation: Onlyrecentlywefound thecorrect sufficient condi- tionsforcontinuousvariationoftheCauchydataspaces(or,alternativelystated,thecontin- 6 uousvariationofthepseudo-differentialCaldero´nprojection)forcurvesofellipticoperators injointworkwithG.ChenandM.Lesch[6].Nowthatgapisbridged,afullgeneralspectral flow formula isobtained in[14]and therelevance ofweaksymplecticfunctional analysis hasbecomesufficientlyclearforaregularpublicationofourresults. 2 Weaksymplecticfunctionalanalysis 2.1 Basicsymplecticfunctionalanalysis Wefixournotation.Tokeeptrackoftherequiredassumptions,weshallnotalwaysassume that the underlying space is a Hilbert space but permit Banach spaces and — for some concepts—evenjustvectorspaces.Foreasierpresentationandgreatergenerality,webegin withcomplexsymplecticspaces. Definition1 LetX beacomplexBanachspace.Amapping w : X X C × −→ iscalleda(weak)symplecticformonX,ifitissesquilinear,bounded,skew-symmetric,and non-degenerate,i.e., (i)w (x,y)islinearinxandconjugatelineariny; (ii) w (x,y) C x y forallx,y X; (iii)|w (y,x)|=≤ kw k(kx,yk); ∈ (iv)Xw := x−X w (x,y) = 0forally X = 0 . Thenwecall{(X∈,w )|a(weak)symplecticBa∈nac}hspa{ce}. Thereisapurelyalgebraicconcept,aswell. Definition2 LetX beacomplexvectorspaceandw aformwhichsatisfiesalltheassump- tionsofDefinition1except(ii).Thenwecall(X,w )acomplexsymplecticvectorspace. Definition3 Let(X,w )beacomplexsymplecticvectorspace. (a)Theannihilatorofasubspacel ofX isdefinedby l w := y X w (x,y) = 0 forallx l . { ∈ | ∈ } (b)Asubspacel iscalledsymplectic,isotropic,co-isotropic,orLagrangianif l l w = 0 , l l w , l l w , l = l w , ∩ { } ⊂ ⊃ respectively. (c)TheLagrangianGrassmannianL(X,w )consistsofallLagrangiansubspacesof(X,w ). Definition4 Let(X,w )beasymplecticvectorspaceandX+,X belinearsubspaces.We − call (X,X+,X ) a symplectic splitting of X, if X =X+ X , the quadratic form iw is − − ⊕ − positivedefiniteonX+andnegativedefiniteonX ,and − w (x,y) = 0 forallx X+andy X−. (3) ∈ ∈ 7 Remark1 (a) By definition, each one-dimensional subspace in real symplectic space is isotropic,andtherealwaysexistsaLagrangiansubspace.However,therearecomplexsym- plectic Hilbert spaces without any Lagrangian subspace. That is, in particular, the case if dimX+=dimX inN ¥ forasingle(andhenceforall)symplecticsplittings. − (b)Ifdim6 X isfinite,as∪u{bsp}acel isLagrangianifandonlyifitisisotropicwithdiml = 1dimX. 2 (c)InsymplecticBanachspaces,theannihilatorl w isclosedforanysubspacel .Inpartic- ular,allLagrangiansubspacesareclosed,andwehaveforanysubspacel theinclusion l ww l . (4) ⊃ (d)LetXbeavectorspaceanddenoteits(algebraic)dualspacebyX .Theneachsymplectic ′ formw inducesauniquelydefinedinjectivemappingJ: X X suchthat ′ → w (x,y) = (Jx,y) forallx,y X, (5) ∈ whereweset(Jx,y):=(Jx)(y). If(X,w )isasymplecticBanach space,then theinduced mapping J isabounded, in- jective mapping J: X X where X denotes the (topological) dual space. If J is also ∗ ∗ surjective (so, invertibl→e), the pair (X,w ) is called a strong symplectic Banach space. As mentionedintheIntroduction,wehavetakenthedistinctionbetweenweakandstrongsym- plecticstructuresfromChernoffandMarsden[19,Section1.2,pp.4-5]. IfX isaHilbertspacewithsymplecticformw ,weidentifyX andX .Thentheinduced ∗ mapping J isabounded, skew-self-adjoint operator(i.e., J = J)onX withkerJ= 0 ∗ − { } iA 0 andcanbewrittenintheformJ= + withA >0boundedself-adjoint(butnot 0 iA ± necessarilyinvertible,i.e.,A 1 not(cid:18)necess−aril−y(cid:19)bounded).Asinthestrongsymplecticcase, − wethenhavethatl X isL±agrangianifandonlyifl =Jl . ⊥ ⊂ Theproofofthefollowinglemmaisstraightforwardandisomitted. Lemma1 AnystrongsymplecticHilbertspace(X, , ,w )(i.e.,withinvertibleJ)canbe madeintoastrongsymplecticHilbertspace(X, , h,·w·i)withJ2= Ibysmoothdeforma- ′ ′ h· ·i − tionoftheinnerproductofX into hx,yi′ := h√J∗Jx,yi withoutchangingw . Remark2 (a) In a strong symplectic Hilbert space many calculations become quite easy. E.g.,theinclusion(4)becomesanequality,andallFredholmpairsofLagrangiansubspaces havevanishingindex,seebelowDefinition5,Equations(12)-(14). (b) From the Introduction, we recall an important example of a weak symplectic Hilbert space: Let A be a formally self-adjoint linear elliptic differential operators of first order over a smooth compact Riemannian manifold M with boundary S . As mentioned in the Introduction,wehave(wesuppressmentioningthevectorbundle) H1/2(S ) H1(M)/H1(M) (6) ≃ 0 with uniformly equivalent norms. Green’s form yields a strong symplectic structure on L2(S )by {x,y} := −hJx,yiL2(S ). (7) 8 Here J denotes the principal symbol of the operator A over the boundary in innernormal direction.ItisinvertiblesinceAiselliptic.FortheinducedsymplecticstructureonH1/2(S ) wedefineJ by ′ {x,y} = −hJ′x,yiH1/2(S ) forx,y∈H1/2(S ). LetBbeaformallyself-adjointellipticoperatorBoffirstorderonS .ByGa˚rding’sinequal- ity,theH1/2 norm isequivalent totheinduced graph norm. This yields J =(I+ B) 1J. ′ − SinceBiselliptic,ithascompactresolvent.So,(I+ B) 1 iscompactinL2(S );a|nd|sois − J.HenceJ isnotinvertible.Inthesameway,anyden|se|subspaceofL2(S )inheritsaweak ′ ′ symplecticstructurefromL2(S ). (c)EachweaksymplecticHilbertspace(X, , ,w )withinducedinjectiveskew-self-adjoint Jcannaturallybeembeddedinastrongsymhp·l·eicticHilbertspace X , , ,w withinvert- ′ ′ ′ h· ·i ibleinducedJ bysetting x,y := J x,y asinLemma1andthencompletingthespace. ′ ′ Thisimitatesthesituationhofthieemhb|ed|dinigofH1/2(S )intoL2(S(cid:0)).Itshowst(cid:1)hattheweak symplectic Hilbert space H1/2(S ) with its embedding into L2(S ) yields a model for all weaksymplecticHilbertspaces.InSection3.3,weshallelaborateontheembeddingweak ֒ strongalittlefurther. → Thefollowing lemmaisakeyresult insymplectic analysis.Therepresentation ofLa- grangiansubspacesasgraphsofunitarymappingsfromonecomponentX+ tothecomple- mentarycomponent X oftheunderlyingsymplecticvectorspace(tobeconsidered asthe − induced complex spaceinclassicalrealsymplecticanalysis,see,e.g.,K.Furutani andthe firstauthor[7,Section1.1])goesbacktoJ.Leray[28].Wegiveasimplificationforcomplex vectorspaces,firstannouncedin[43].Ofcourse,themainideaswerealreadycontainedin therealcase.TheLemmaisessentiallywell-knownandwillbeobtainedinthemoregeneral settingbelow:(i)isclear;(ii)willfollowfromLemma3;and(iii)fromProposition2. Lemma2 Let(X,w )beastrongsymplecticHilbertspacewithJ2= I.Then − (i) thespaceX splitsintothedirectsumofmutuallyorthogonalclosedsubspaces X = ker(J iI) ker(J+iI), − ⊕ whicharebothinvariantunderJ; (ii) thereisa1-1correspondencebetweenthespaceUJ ofunitaryoperatorsfromker(J iI)toker(J+iI)andL(X,w )underthemappingU l :=G(U)(=graphofU); − (iii) ifU,V UJ andl :=G(U),m :=G(V),then(l ,m )7→isaFredholmpair(seeDefinition 5b)ifa∈ndonlyifU V,or,equivalently,UV 1 I isFredholm.Moreover,we − − − ker(J+iI) haveanaturalisomorphism ker(UV−1−Iker(J+iI))≃l ∩m . (8) The preceding method to characterize Lagrangian subspaces and to determine the di- mensionoftheintersectionofaFredholmpairofLagrangian subspacesprovidesthebasis for defining the Maslov index in strong symplectic spaces of infinite dimensions (see, in different formulations anddifferent settings,thequoted references [7],[9], [24],[27],and ZhuandLong[45]). Surprisingly, itcanbegeneralized toweaksymplecticBanachspacesinthefollowing way. 9 Lemma3 Let(X,w )beasymplecticvectorspacewithasymplecticsplitting(X,X+,X ). − (a)Eachisotropicsubspacel canbewrittenasthegraph l = G(U) ofauniquelydeterminedinjectiveoperator U: dom(U) X− −→ withdom(U) X+.Moreover,wehave ⊂ w (x,y) = w (Ux,Uy) forallx,y dom(U). (9) − ∈ (b) If X is a Banach space, then X are always closed and the operator U defined by a ± Lagrangian subspace l is closed as an operator from X+ toX (not necessarilydensely − defined). (c) For a closed isotropic subspace l in a strong symplectic Banach space X, we have dom(U)andimUareclosed.Moreover,ifl isLagrangian,thendom(U)=X+andimU= X ;i.e.,thegeneratingU isboundedandsurjectivewithboundedinverse. − Proof a. Let l X be isotropic and v +v ,w +w l with v ,w X . By the + + ± isotropicpropert⊂yofl andourassumptionab−outthespl−itti∈ngX=X+± X± ∈wehave − ⊕ 0 = w (v +v ,w +w ) = w (v ,w )+w (v ,w ). (10) + + + + − − − − Inparticular,wehave w (v +v ,v +v ) = w (v ,v )+w (v ,v ) = 0 + + + + − − − − and sov =0 ifand only if v =0. So, ifthe first(respectively thesecond) components + oftwop−oints v +v ,w +w l coincide, thenalsothesecond (respectivelythefirst) + + componentsmustcoi−ncide. −∈ Nowweset dom(U) := x X+ y X−suchthatx+y l . { ∈ |∃ ∈ ∈ } Bytheprecedingargument, yisuniquelydetermined,andwecandefineUx:=y.Bycon- struction,theoperatorU isaninjectivelinearmapping,andproperty(9)followsfrom(10). b. By Definition 4 of a symplectic splitting, Equation (3) we have X (X+)w . Now − let x +x (X+)w withx X . Then w (x +x ,x )=w (x ,x )=⊂0 x =0 + ± + + + + + since iw −is∈positivedefinite±o∈nX+.ThatprovesX −=(X+)w ,andcorrespon⇐din⇒glyX+= − (X )w−.AsnoticedinRemark1c,annihilatorsarealwaysclosed.Thisprovesthefirstpart − of(b).Nowletl beaLagrangiansubspaceandletU betheuniquelydeterminedinjective operatorU: dom(U) X withdom(U) X+ andG(U)=l .ByDefinition3bwehave − l =l w ,hencel iscl→osedasanannihilator⊂andsoisthegraphofU,i.e.,U isclosed. c. Let l =G(U). Let x be a sequence in dom(U) convergent to x X+. Since X is n { } ∈ strong,weseefrom(9)thatthesequence Ux isaCauchysequenceandthereforeisalso n convergent. Denote by y the limit of U{x . S}ince l is closed, we have x domU and n y=Ux.Thusdom(U)isclosed.Weap{plyth}esameargumenttodom(U 1) ∈X ,relative − − totheinnerproductiw andobtainthatimU isclosed.Thisprovesthefirstpa⊂rtof(c). Nowassumethatl isaLagrangiansubspace.FirstlyweshowthatU isdenselydefined in X+. Indeed, if dom(U)=X+, there would be a v V, v=0, where V denotes the 6 ∈ 6 orthogonal complement ofdom(U)inX+ withrespecttotheinnerproduct on X+ defined 10 by iw .Clearly(dom(U))w =V+X .So,V =(dom(U))w X+.Thenv+0 l w l . − Tha−tcontradictstheLagrangianpropertyofl .So,wehavedom∩(U)=X+. ∈ \ We have shown that dom(U) is closed and dense. Hence dom(U) =X+. Now the boundedness ofU follows fromtheclosednessof G(U).Applying thesamearguments to dom(U 1) X relativetotheinnerproduct iw yieldsimU =dom(U 1)=X andU 1 − − − − − ⊂ isbounded. Remark3 (a)Notethatthesymplecticsplittingisnotunique.Itsexistencecanbeprovedby Zorn’s Lemma. In our applications, the geometric background provides natural splittings. Let A be an elliptic differential operator of first order, acting on sections of a Hermitian vector bundle E over the Riemannian manifold M with boundary S . Then the symplectic Hilbertspacestructuresof L2(S ;E S )andH1/2(S ;E S )of(7)and(6)arecompatibleand | | theirsymplecticsplittingisdefinedbythebundleendomorphism(theprincipalsymbolofA ininnernormaldirection)J: E S E S inthefollowingway: | → | H± := H1/2(S ;E±S ) and L± := L2(S ;E±S ) | | positive withE±|S := lin.spanof negative eigenspacesofiJ. (11) (cid:26) (cid:27) NotethatL+,L changecontinuouslyifJchangescontinuously.Forvaryingsplittingssee − alsothediscussionbelowinSection3. (b)ThesymplecticsplittingandthecorrespondinggraphrepresentationofisotropicandLa- grangiansubspacesmustbedistinguishedfromthesplittingincomplementaryLagrangian subspaces which yields thecommon representation of Lagrangian subspaces as images in therealcategory(seeLemma11below). 2.2 FredholmpairsofLagrangiansubspaces AmainfeatureofsymplecticanalysisisthestudyoftheMaslovindex.Itisanintersection index between apath of Lagrangian subspaces with the Maslovcycle, or, more generally, withanotherpathofLagrangiansubspaces. Beforegivingarigorous definitionoftheMaslovindexinweaksymplecticfunctional analysis(seebelowSection3)wefixtheterminologyandgiveseveralsimplecriteriafora pairofisotropicsubspacestobeLagrangian. Werecall: Definition5 (a) The space of (algebraic) Fredholm pairs of linear subspaces of a vector spaceX isdefinedby F2 (X) := (l ,m ) diml m <+¥ anddimX/(l +m )<+¥ (12) alg { | ∩ } with index(l ,m ) := diml m dimX/(l +m ). (13) ∩ − (b)InaBanachspaceX,thespaceof(topological)Fredholmpairsisdefinedby F2(X) := (l ,m ) F2 (X) l ,m andl +m X closed . (14) { ∈ alg | ⊂ }

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.