ol Copyrighted Material Butterworth-Heinemann is an imprint of Elsevier Linacre House, Jordan Hill, Oxford OX2 8DP, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA Copyright © 2008 Elsevier Ltd. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by iting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloguing in Publication Data A catalogue record for this book is available from the Library of Congress ISBN: 978-0-7506-8987-8 For information on all Butterworth-Heinemann publications visit our web site at http://elsevierdirect.com ‘Typeset by Charon Tec Ltd., A Macmillan Company. (www.macmillansolutions.com) Printed and bound in Hungary 0809101112 10987654321 Working together to grow libraries in developing countries wwwelseviercom | wwwbookaid.org | www.sabre.org ELSEVIER BOOKAID_ Sabre Foundation Copyrighted Material Copyrighted Material Contents Preface 1 The marine environment The ship in the marine environment Wind Variations in level of sea surface Regular waves 1.4.1 The trochoid 1.4.2 Higher order waves. Stokes and Airy Theory 1.5 The sinusoidal wave 15.1 Basic relationships to describe regular waves in deep water Normal dispersion of awave field Orbital motion of water particles in a wave Irregular waves Spectrum formulae by Pierson/Moskowitz and Bretschneider 1.8 The JONSWAP sea spectrum 1.9 Maximum wave height in a stationary random sea 1.10 Long-term statistics of irregular seaway 1.11 Wave data from observations 1.12 Wave climate 1 Ld 1 1 1 1 BORE 152 153 LL 1 3 Freak waves 4 Oceanography 1.14.1 Distribution of water on earth 1.14.2 Properties of water 1142.1 Chlorophyll 1142.2 Circulation 1,142.3 Compressibility 1.14.24 Conductivity 1142.5 Density 1142.6 Depth 1,142.7 Dissolved gases 1142.8 Fresh water 1.14.2.9 Tonic concentration uuseos 13 16 17 18 20 21 22 22 22 23 24 25 25 27 28 30 30 1.14.2.10 Light and other electro-magnetic transmissions through water Pressure Salt water and salinity Solar radiation Sonic velocity and sound channels 1.14.2.15 Turbidity 1.14.2.16 Viscosity 1.14.2.17 Water quality 1,14.2.18 Water temperature 1.14.3 Coastal zone classifications and bottom types 1.15 Ambient air 1.16 Climatic extremes 1.17 Marine pollution References 1.14.21 1.14.2.12 1.14.2.13 1.14.2.14 2 Marine vehicle types 2.1 Overview 2.2. Merchant ships 2.2.1 General cargo ships 2.2.2 Container ships 2.2.3 Roll-on roll-off ships (Ro-Ro ships) 2.2.4 Car carriers 2.2.5 Bulk cargo carriers 2.2.5.1 Tankers 2.2.5.2 Dry bulk carriers 2.2.6 Passenger ships 2.2.7 Tugs 2.2.8 Ieebreakers and ice strengthened ships 2.2.9 Fishing vessels High speed craft 2.3.1 Monohulls 23 Copyrighted Material Copyrighted Material vi Contents 24 25 2.3.2 Surface effect ships (SESs) 2.3.3 Hydrofoil craft 2.3.4 Multi-hulled vessels 2.3.5 Rigid inflatable boats (RIBs) 2.3.6 Comparison of high speed types Yachts Warships 2.5.1 Stealth 2.5.2 Sensors 2.5.3 Own ship weapons 2.5.4 Enemy weapons 2.5.5 Sustaining damage 2.5.6 Vulnerability studies 2.5.7 Types of warship 2.5.7.1 Frigates and destroyers 2.5.72 Mine countermeasures vessels 2.5.73 Submarines References 31 3.2 33 3.4 Equilibrium. 3.1.1 Equilibrium ofa body floating in still water 3.1.2. Underwater volume Stability at small angles 3.2.1 Concept 3.2.2 Transverse metacentre 3.2.3 Transverse metacentre for simple geometrical forms 3.2.4 Metacentric diagrams 3.2.5 Longitudinal stability Hydrostatic curves 3.3.1 Surface ships 3.3.2 Fully submerged bodies Problems in trim and stability 3.4.1 Determination of displacement from observed draughts Longitudinal position of the centre of gravity 3.4.3 Direct determination of displacement and position of G 3.4.4 Heel due to moving weight 3.4.5 Wall-sided ship 3.4.6 Suspended weights Free surfaces 3.5.1 Effect of liquid free surfaces ‘The inclining experiment Stability at large angles 3.7.1 Atwood’s formula 3.7.2 Curves of statical stability 3.7.3 Metacentric height in the lolled condition 3.4.2 3.1L 3.12 3.7.4 Cross curves of stability 3.7.5 Curves of statical stability from cross curves 3.7.6 Features of the statical stability curve Weight movements 3.8.1 Transverse movement of weight Dynamical stability Flooding and damaged stability 3.10.1 Background 3.10.2 Sinkage and trim when a compartment is open to the sea 3.10.3. Stability in the damaged condition 3.10.4 Asymmetrical flooding 3.10.5 Floodable length Intact stability regulations 3.11.1 Introduction 3.11.2 The IMO code on intact stability 3.11.2.1 Passenger and cargo ships 3.1.2.2 Cargo ships carrying timber deck cargoes 11.2.3 Fishing vessels 1.2.4 Mobile offshore drilling units 3.1.2.5 Dynamically supported craft 3.11.2.6 Container ships greater ‘than 100m 1.2.7 Teing 1.28 Inclining and rolling tests 3.1.2.9 High-speed craft 3. Regulations of the US Navy 4 Regulations of the UK Navy 5 Acriterion for sail vessels 6 A Code of practice for small workboats and pilot boats 3.11.7 Regulations for internal water vessels 3.11.7.1 EC regulations 3.11.7.2. Swiss regulations 3.11.8 Summary of intact stability regulations Damage stability regulations 3.12.1 SOLAS 3.12.2 Probabilistic regulations 3.12.3 The US Navy 3.12.4 The UK Navy 3.12.5 The German Navy 3.12.6 A code for large commercial sailing or motor vessels 3.12.7 A code for small workboats and pilot boats Copyrighted Material o1 o1 o1 92 92 93 94 94 94 96 96 96 98 98 98 98 101 101 101 101 102 102 102 102 103 106 107 108 109 109 109 109 110 110 il 112 113 113 114 14 Copyrighted Material Contents vii 3.12.8 EC regulations for internal water 4.2.12 Loading and failure 149 vessels 114 4.2.1.3 Structural units ofa ship 150 References 14 4.2.2 Stiffened plating 151 4.2.2.1 Simple beams 151 4.2.2.2 Grillages 151 4 Ship structures 16 4.2.2.3 Swedged plating 155 4.1 Main hull strength 8 4.2.2.4 Comprehensive 4.1.1 Introduction 118 treatment 4.1.2. The standard calculation 119 of stiffened plating 155 4.1.2.1 The wave 120 4.2.3 Panels of plating 155 4.1.2.2 Weight distribution 121 4.2.3.1 Behaviour of panels 4.1.2.3 Buoyancy and under lateral loading 155 balance 122 4.2.3.2 Available results for 4.1.2.4 Loading, shearing force flat plates under lateral and bending moment 123 pressure 156 4.1.2.5 Second moment of area 123 4.2.3.3 Buckling of panels 159 4.1.2.6 Bending stresses 125 4.2.4 Frameworks 159 4.1.2.7 Shear stresses 126 4.2.4.1 Overview 159 4.1.2.8 Influence lines 126 4.2.4.2 Methods of analysis 161 4.1.2.9 Changes to section 4.2.4.3 Elastic stability of modulus 129 a frame 166 Slopes and deflections 129 4.2.4.4 End constraint 167 Horizontal flexure 130 4.2.5 Finite element analysis (FEA) — 168 Behaviour of a hollow 4.2.6 Realistic assessment of structural box girder 130 elements 169 Wave pressure 4.2.7 Composite materials 170 correction 131 4.3. Ship vibration 171 Longitudinal strength 43.1 Overview 71 standards by rule 132 4.3.2. Flexural vibrations 172 Full scale trials 134 4.3.3. Torsional vibrations 172 ‘The nature of failure 134 43.4 Coupling 172 Realistic assessment of 4.3.5 Formulae for ship vibration 173 longitudinal strength 135 4.3.6 Direct calculation of vibration 173 Realistic assessment of 4.3.7 Approximate formulae 174 loading longitudinally 136 43.8 Amplitudes of vibration 175 Realistic structural 4.3.9 Checking vibration levels 175 response 137 4.3.10 Reducing vibration 175 Assessment of structural 4.3.11 Propeller-induced forces 175 safety 140 4.3.12 Vibration testing of equipment 178 Hydroelastic analysis 142 References 178 1.2.22 Slamming, 142 4.1.3. Material considerations 142 4.1.3.1 Geometrical 5 Powering 181 discontinuities 1425.1 Resistance and propulsion 183 4.1.3.2. Built-in stress 5.1.1 Froude’s analysis procedure 183 concentrations 143 5.1.2 Components of calm 4.1.3.3. Crack extension, brittle water resistance 184 fracture 144 5.1.2.1 Wave making 4.1.3.4 Fatigue 146 resistance Ry 184 4.1.3.5. Discontinuities in 5.1.2.2 The contribution of structural design 147 the bulbous bow 188 4.1.3.6 Superstructures and 5.1.2.3 Transom deckhouses 147 immersion resistance 190. 4.2. Structural design and analysis 149 5.1.2.4 Viscous form resistance 190 4.2.1 Introduction 149 5.1.2.5 Naked hull skin friction 4.2.1.1 Overview 149 resistance 191 Copyrighted Material 5.2 53 5.4 55 Copyrighted Material Contents 5.1.2.6 Appendage skin friction 5.1.2.7 Viscous resistance Methods of resistance evaluation 5.1.3.1 Traditional and standard series analysis methods 5.1.3.2 Regression-based methods 5.1.3.3 Direct model tests 5.1.3.4 Computational fluid dynamics Propulsive coefficients 5.1.4.1 Relative rotative efficiency 5.1.4.2 Thrust deduction factor 5.1.4.3 Hull efficiency 5.1.4.4 Quasi-propulsive coefficient Influence of rough water Restricted water effects High-speed hull form resistance 5.1.7.1 Standard series data 5.1.7.2. Model test data 5.1.7.3 Summary of problems for fast and unconventional ships 5.1.8 Air resistance Wake 5.2.1 General wake field characteristics 5.2.2 Wake field definition 5.2.3 The nominal wake field 5.2.4 Estimation of wake field parameters 5.25 Effective wake field 5.2.6 Wake field scaling Propeller performance characteristics 5.3.1 General open water characteristics 5.3.2 Effect of cavitation on open water characteristics 5.3.3 Propeller scale effects 5.3.4 Specific propeller open water characteristics 5.3.4.1 Fixed pitch propellers 5.3.4.2 Controllable pitch propellers 5.3.4.3 Ducted propellers 5.3.4.4 High-speed propellers 5.3.5 Standard series data Propeller theories 5.4.1 Early theories Lifting surface models Lifting-line-lifting-surface hybrid models Vortex lattice methods Boundary element methods Methods for specialist propulsors Computational fluid dynamics methods Cavitation 5.5.1 The basic physics of cavitation 5.5.2. Types of cavitation experienced by propellers 5.5.3. Cavitation considerations in design 5.1.3 5.14 192 192 195 195 197 200 206 210 2u 2u1 212 213 213 214 215 216 216 217 220 220 220 222 223 25 228 230 233 233 230 239 243 243 265 272 5.6 Propeller design 5.6.1 The design and analysis loop 5.6.2 Design constraints 5.6.3 Choice of propeller type 5.6.4 The propeller design bas 5.6.5 Use of standard series data in design 5.6.5.1 Determination of diameter 5.6.5.2 Determination of mean. pitch ratio 5.6.5.3 Determination of open water efficiency 5.6.5.4 Required propeller rpm to give required Pp or Pe Determination of propeller thrust at given conditions 5.6.5.6 Effects of cavitation Design considerations 5.6.6.1 Direction of rotation 5.6.6.2. Blade number 5.6.6.3 Diameter, pitch-diameter ratio and rotational speed Blade area ratio Section form Cavitation Skew Hub form Shaft inclination Duct form The balance between propulsion efficiency and cavitation effects Propeller tip considerations Propellers operating in partial hull tunnels ‘Composite propeller blades 5.6.6.15. The propeller basic design process 5.6.7 The design process 5.7 Service performance and analysis 5.7.1 Effects of weather 5.7.2 Hull roughness and fouling 5.7.3 Hull drag reduction 5.7.4 Propeller roughness and fouling 5 Generalized equations for the roughness-induced power penalties in ship operation 5.7.6 Monitoring ship performance References 5.6.5.5 5.6.64 5.6.6.5 5.6.6.6 5.6.6.7 5.6.6.8 5.6.6.9 5.6.6.10 5.6.6.1 5.6.6.12 5.6.6.13 5.6.6.14 6 Marine engines and auxiliary machinery 6.1 Introduction 6.2 Propulsion systems 6.2.1 Fixed pitch propellers Copyrighted Material 282 282 283 284 287 292 292 293 293 293 295 295 295 295 297 208 298 299 299 299 299 300 300 300 301 302 302 303 303 309 309 309 317 317 321 324 334 344 346 346 346 64 65 Copyrighted Material 6.2.2 6.23 Ducted propellers Podded and azimuthing propulsors Contra-rotating propellers Overlapping propellers ‘Tandem propellers Controllable pitch propellers ‘Waterjet propulsion Cycloidal propellers Paddle wheels Magnetohydrodynamic propulsion Superconducting motors for marine propulsion Diesel engine performance 63.1 Rating 6.3.2. Maximum rating 6.3.3 Exhaust temperatures 6.3.4 Derating 6.3.5 Mean effective pressures 6.3.6 Propeller slip 6.3.7 Propeller law 6.3.8 Fuel coefficient 6.3.9 Admiralty coefficient 6.3.10 Apparent propeller slip 6.3.11 Propeller performance 6.3.12 Power build-up 6.3.13 Trailing and locking of propeller 6.3.14 Astern running Engine and plant selection 6.4.1 Introduction 6.4.2 Diesel-mechanical drives 6.4.2.1 Overview 6.4.2.2 Auxiliary power generation 6.4.2.3 Geared drives 6.4.2.4 Father-and-son layouts Diesel-electrie drive 6.43.1 Overview 6.43.2 Flexibility of layout 6.4.3.3 Load diversity 6.43.4 Economical part load running Ease of control Low noise 6.24 6.25 6.2.6 6.27 6.28 6.2.9 6.2.10 6.2.11 6.2.12 643 6.4.3.5 6.43.6 6.43.7 and ship safety 6.4.3.8 Podded propulsors 6.4.3.9 Combined systems Propulsion engines 6.5.1 Diesel engines 6.5.1.1 Low speed engines 6.5.1.2. Medium speed engines 6.5.1.3 High speed engines Gas turbines 6.5.2.1 Overview 6.5.2.2 Plant configurations 65.2 Environmental protection 348 350 351 352 353 353 356 357 357 359 362 362 362 362 364 365 365 365 366 366 366 367 367 367 368 368 370 370 373 373 373 34 314 375 315 317 378 378 379 379 379 379 380 381 381 381 300 309 403 403 404 65.3 Contents 6.5.2.3 Cycles and efficiency 6.5.2.4 Emissions 65.2.5 Lubrication 6.5.2.6 Air filtration 6.5.2.7 Marine gas turbine designs Steam turbines 6.5.3.1 Introduction 6.5.3.2 Turbine types 65.3.3 Astern arrangements 6.5.3.4 Turbine construction 6.6 Auxiliary machinery and equipment 6.6.1 6.6.2 6.6.3 Ship service systems 6.6.1.1 Bilge systems 6.6.1.2. Oil/water separators 6.6.1.3 Ballast arrangements 6.6.1.4 Domestic water systems 6.6.1.5 Sewage systems 6.6.1.6 Incinerators Shafling and propellers 6.6.2.1 Overview 6.6.2.2. Thrust block 6.6.2.3 Shaft bearings 6.6.2.4 Sterntube bearing, 6.6.2.5 Sterntube seals 6.6.2.6 Shafting 6.6.2.7 Propeller 6.6.2.8 Propeller mounting 6.6.2.9 Controllable-pitch propeller 6.6.2.10 Cavitation 6.6.2.1 Propeller maintenance Steering gear 6.6.3.1 Overview 6.6.3.2 Variable delivery pumps 6.6.3.3 Telemotor control 6.6.3.4 Electrical control 6.6.3.5 Power units 6.6.3.6 All-electric steering 6.6.3.7 Twin-system steering gears Steering gear testing 6.6.3.8 6.7 Instrumentation and control 67.1 Instrumentation 6.1.2 Control 6.7.2.1 6.7.2.2 6.7.2.3 6.7.2.4 6.7.2.5 6.7.2.6 6.7.2.7 6.7.2.8 Control theory Transmitters Controller action Controllers Correcting unit Control systems Centralized control Unattended machinery spaces 6.7.2.9 Bridge control 6.7.2.10 Integrated control References Copyrighted Material 406 409 410 4il 412 414 414 414 416 416 47 418 418 420 425 426 436 439 439 439 440 443 443 444 444 44g 445 445 445 445 446 446 448 448 450 452 458 458 461 461 461 462 462 463 465 467 469 470 475 475 475 480 481 Copyrighted Material x Contents 7 Seakeeping 7.1 Seakeeping qualities 7.1.1 Motions 7.1.2 Speed and power in waves 7.1.3 Wetness 7.1.4 Slamming T.L5 Ship routing 7.1.6 Importance of good seakeeping 7.2 Ship motions 7.2.1 Degrees of freedom 7.2.2 Undamped motion in still water 72.2.1 Rolling 72.2.2 Heaving Damped motion in still water Approximate period of roll Motion in regular waves 7.2.5.1 Assumptions 7.2.5.2 Rolling in a beam sea 7.2.5.3 Pitching and heaving Presentation of motion data Motion in irregular seas Motion in oblique seas Surge, sway and yaw 7.2.9.1 Surge 7.2.92 Sway 72.93 Yaw 7.2.10 Large amplitude rolling 7.2.11 Roll excitation and influence of speed and heading 7.2.1.1 Motion directions of rigid body 7.2.1.2 Mass moment of inertia 7.2113 Linear restoring moment 72.114 Natural roll period 72.115 Roll damping 72.1.6 GM-To relationship and rolling period test 7.2.1.7 Modes of roll excitation in a seaway 7.2.1.8 Ship roll in beam seas 7.2.11.9 Roll in beam seas at large amplitudes 72.11.10 GZ-Variation in longitudinal waves 72.11.11 Encounter period of ship and waves 7.2.11.12 Encounter frequency 7.2.11.13 Wave group of two regular waves 7.2.11.14 Wave encounter of a ship in irregular seas 7.2.11.15 Wave energy and encounter spectra 523 13 14 75 16 17 18 19 7.10 7.2.11.16 Relevant frequencies of the spectrum and encounter 7.2.11.17 Bandwidth of the transformed sea spectrum 72.11.18 Irregular time series of wave encounter Limiting seakeeping criteria 7.3.1 Limiting critera 73.1.1 Speed and power in waves Slamming Weiness Propeller emergence Degradation of human performance Overall seakeeping performance Data for seakeeping assessments 7.5.1 Selection of wave data 7.5.2. Obtaining response amplitude operators 7.5.2.1 Theory 7.5.2.2 Model experiments 7.5.2.3. Ship trials Non-linear effects Numerical prediction of seakeeping 7.1.1 Overview of computational methods 7.1.2 Strip theory 7.7.3 Rankine singularity methods 7.7.4 Problems for fast and unconventional ships 7.7.5. Further quantities in regular BEG 1.1.6 responses in stationary seaway 7.2.7 Simulation methods 1.78 Long-term distributions Experiments and trials 781 Test facilities 7.8.2 Ship seakeeping trials 7.83 Stabilizer trials Improving seakeeping performance 7.9.1 Design and operational changes 7.9.2. Influence of form on seakeeping 7.9.3 Summary Ship motion conirol 7.10.1 Background 7.10.2 Roll stabilization 7.10.2.1 Stabilization systems 7.10.22 Comparison of principal systems 7.10.2.3 Performance of stabilizing systems 7.10.24 Fin stabilizers: Design procedure Copyrighted Material 523 526 527 529 529 530 531 537 537 537 538 541 541 543 543 543 344 544. 545 545 547 551 552 554 555 556 5357 558 558 558 560 560 560 561 561 562 562 562 562 564 564 567 Copyrighted Material 7.10.3 Pitch damping, 7.10.3.1 Pitch damping fins 7.10.3.2 Transom flaps 7.10.3.3 Interceptors References 8 Manoeuvring 8.1 82 83 8.4 8.5 8.6 87 88 8.9 8.10 8.11 8.12 8.13, 8.14 8.15 8.16 General concepts Directional stability Stability and control of surface ships Rudder action Limitations of theory Assessment of manoeuvrability 8.6.1 Turning circle 8.6.1.1 Drift angle 8.6.1.2 Advance 8.6.1.3 Transfer 8.6.1.4 Tactical diameter 8.6.1.5 Diameter of steady turning circle 8.6.1.6 Pivoting point Loss of speed on turn Heel when turning Turning ability 8.9.1 Zig-zag manoeuvre 8.9.2 Spiral manoeuvre 8.9.3 Pull-out manoeuvre Standards for manoeuvring and directional stability Dynamic positioning Automatic control systems Ship interaction 8.13.1 Interaction 8.13.2 Ship to ground (squat) interaction 8.13.3 Ship to ship interaction 8.13.4 Ship to shore interaction, 8.13.5 Summary Shallow water/bank effects Broaching, Experimental approaches 8.16.1 Manoeuvring tests in sea trials 8.16.2 Model tests 7 CED for ship manoeuvring 8 Stability and control of submarines 8.19 8.18.1 Control requirements and equations. 8.18.2 Experiments and trials 8.18.3 Design assessment Rudders and control surfaces 8.19.1 Control surfaces and ‘applications 8.19.1.1 Rudder types 8.19.1.2 Hydroplanes 8.19.1.3 Efficiency of control surfaces 573 573 574 374 515 578 580 580 581 583 584 584 584 585 585 585 585 585 585 586 586 587 587 588 588 589 590 590 591 591 592 593 598 598 598 599 599 599 599 600 603 603 605, 606 606 606 607 609 609 Contents 8.19.2 Presentation of rudder data 8.19.3 Rudder design within the ship design process Detailed rudder design 8.19.4.1 Background 8.19.4 8.19.4.2 Rudder design process 8.19.5 8.19.5.1 Rudder forces 8.19.5.2 Hull upstream, 8.19.5.3 Influence of drit 8.19.5.4 Low and zero Rudder manoeuvring forces ft angle speed and four quadrants 8.19.6 Numerical modelling of rudder 8.19.61 8.19.6.2 Potential flow methods 8.19.6.3 methods Rudder-propel interaction 8.19.6.4 Available methods Navier-Stokes ler 8.19.65 Unsteady behaviour 8.19.7 Guidelines for rudder design References 9 Ship design, construction and operation 9.1 Introduction 9.2 Ship design 9.2.1 Overview 9.2.1.1 General 9.2.1.2 Ship design process 9.2.2 Technical ship design 9.2.2.1 Principal requirements 9.2.2.2 Specification 9.2.3 9.2.3.1 Deadweight and dimensions Deadweight determined designs 9.2.3.2 Cargo capacity check 9.2.3.3 Summary of overall model: Deadweight approach 924 designs 9.2.4.1 Cargo ships 9.2.4.2 Passenger ships 9.2.4.3 Container ships Capacity (or space) determined 9.2.4.4 High speed passenger/ vehicle ferries Stability check Lightship mass estimates 9.2.6.1 Steel mass 9.2.6.2 Outfit mass 9.2.6.3 Machinery mass 9.2.6.4 Margin 925 9.2.6 Copyrighted Material 609 611 612 612 615 621 621 621 621 622 627 627 627 628 629 630 630 631 636 638 638 638 638 639 639 639 640 641 641 642 643 643 643 643 645 646 647 649 649 651 652 652 93 94 Copyrighted Material Contents 9.2.6.5 Masses of fast ferries 9.2.6.6 Vertical centre of gravity (KG) 9.2.7 Design of ship lines 9.2.7.1 Sectional area curve (SAC) ~ definitions 9.2.7.2. Modifications to sectional area curve 9.2.7.3 Sectional area curve transformations 9.2.7.4 Preparation of body plan 9.2.8 Statutory regulations 9.2.9 Concepi design content: example Materials. 9.3.1 Introduction 9.3.2 Steel 9.3.2.1 Manufacture of steel 9.3.2.2 Heat treatment of steels 9.3.2.3 Steel sections 9.3.2.4 Shipbuilding steels 9.3.2.5 High tensile steels 9.3.2.6 Corrosion resistant steels 9.3.2.7 Steel sandwich panels 9.3.2.8 Steel castings 9.3.2.9 Steel forgings 93.3 Aluminium alloy 9.3.3.1 General 9.3.3.2 Production of aluminium 9.3.3.3 Aluminium alloy sandwich panels 9.3.3.4 Fire protection 9.3.4 Composite materials 9.3.4.1 Overview 9.3.4.2 Introduction 9.3.4.3, Materials selection 4 Design concepts 5 Design synthesis 6 External issues 9.3.5 Corrosion 9.3.5.1 Nature and forms of corrosion 9.3.5.2. Corrosion control 9.3.5.3 Anti-fouling systems 9.3.5.4 Painting ships Ship construction 9.4.1 Introduction 9.4.2 Typical examples of structure 9.4.3 Shipyard layout 9.4.4 Ship drawing office, Loftwork and CADICAM 9.4.4.1 Ship drawing office 9.4.4.2 Loftwork following. drawing office 652 653 653 653 653 654 655 657 657 657 657 659 659 660 660 660 661 661 662 662 662 662 662 663 664 665 665, 665 665 665 671 675, 682 683 683 686 688 689 691 691 691 691 692 692 696 9.4.4.3 Computer Aided Design (CADy/Computer Aided Manufacturing (CAM) 9.5 Ship economies 9.5.1 Shipowners and operators 9.5.1.1 Types of trade 9.5.1.2 Methods of employment 9.5.2 Economic criteria 9.5.2.1 The basis of these criteria 9.5.2.2 Interest 9.5.2.3 Present worth 9.5.2.4 Repayment of principal 9.5.2.5 Sinking fund factor 9.5.2.6 Net present value 9.5.2.7 Required freight rate 9.5.2.8 Yield 9.5.2.9 Inflation and exchange rates 9.5.3 Operating costs 9.5.3.1 Capital charges 9.5.3.2 Capital amortization 9.5.3.3 Profit and taxes 9.5.3.4 Depreciation 9.5.3.5 Ship values 9.5.4 Daily running costs 9.5.4.1 Crew costs 9.5.4.2 Provisions and stores 9.5.4.3 Maintenance and repair 9.5.4.4 Insurance 9.5.4.5 Administration and ‘general charges 9.5.5 Voyage costs 9.5.5.1 Bunkers 9.5.5.2 Port and canal dues, pilotage, towage etc. 9.5.6 Cargo handling costs 9.6 Optimization in design and operation 9.6.1 Overview 9.6.2 Introduction to methodology of optimization 9.6.3 Scope of application in ship desi; 9.6.4 Economic basics for optimization 9.6.4.1 Discounting 9.6.4.2 Initial costs (building. costs) 9.6.4.3 Annual income and expenditure 9.6.4.4 The ‘cost-difference” method 9.6.4.5 Discontinuities in propulsion unit costs cussion of some important parameters 9.6.5.1 Width 9.6.5 Copyrighted Material 698 703 703 703 704 705 705 705 705 705 706 706 706 706 706 706 706 706 107 707 107 707 707 707 708 708 708 708 708 709 709 709 709 709 712 113 713 74 115 716 nT 17 NT