Friedel Weinert The March of Time Evolving Conceptions of Time in the Light of Scientific Discoveries The March of Time Friedel Weinert The March of Time Evolving Conceptions of Time in the Light of Scientific Discoveries 123 FriedelWeinert Division ofSocial Sciences and Humanities Universityof Bradford Bradford UK ISBN 978-3-642-35346-8 ISBN 978-3-642-35347-5 (eBook) DOI 10.1007/978-3-642-35347-5 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013930626 (cid:2)Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience?BusinessMedia(www.springer.com) Preface The present volume originates from lectures and seminars, which I gave at Victoria University in Wellington (New Zealand), at the University of Bradford (UK) and at international conferences, organized by the International Society for theStudyofTime(ISST).Theyareheldevery3yearsandIattendedthemeetings inMonterey,California(2007),andCostaRica(2010).Thefollowingpagesreflect my long-standing interest in the philosophy of time, and develop themes, which I first explored in talks, which I gave at Sydney University, the University of Western Ontario, and in various published papers on the notion of time. I benefited from a British Academy Overseas Conference Award (2007) and from two research fellowships. The first draft of this book was completed at the Unit for History and Philosophy of Science, University of Sydney, where I was a visitingfellowfromJunetoSeptember2009.Iwouldliketothankthemembersof the Department for their hospitality. The final draft of the book took shape at the Rotman InstituteofPhilosophy, Universityof WesternOntario(Canada), where I wasaresearchfellowfromMaytoJuly2012.Iwouldliketothankthemembersof theInstitutefortheirhospitalityandthestimulatingintellectualatmosphere,which the Institute provides. I was fortunate to received constructive criticism from several readers. Meir Hemmo,fromtheUniversityofHaifa,readChap. 3.ClaudioCalosi(Universityof Urbino) and Roman Frigg (London School of Economics) both read the whole manuscript.ThankstotheirgenerousandexpertadviceIwasabletoimproveand clarify the ideas discussed in this book. Finally I must express my gratitude to Angela Lahee, my editor at Springer Verlag in Heidelberg, for her unwavering support and her enthusiasm for a book on time. I hope the reader will enjoy reading the book as much as I enjoyed writing it. Friedel Weinert v Contents 1 Evolving Conceptions of Time in the Light of Scientific Discoveries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Time and Cosmology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Greek Astronomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Plato and Aristotle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 The Need for Physical Time . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Saint Augustine (354–430 AD.). . . . . . . . . . . . . . . . . . 13 2.3.2 David Hume (1711–1776) and John Locke (1632–1704) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 Kant’s Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 Time and Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5.1 Immanuel Kant (1724–1804). . . . . . . . . . . . . . . . . . . . 23 2.5.2 Gottfried W. Leibniz (1646–1716). . . . . . . . . . . . . . . . 26 2.6 The Topology of Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6.1 Linearity of Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6.2 Closed Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.7 The Metric of Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8 Some Advances in the Theory of Time in Classical Physics. . . 46 2.8.1 Galileo’s Physical Time . . . . . . . . . . . . . . . . . . . . . . . 46 2.8.2 Newton’s Mathematical Time . . . . . . . . . . . . . . . . . . . 48 2.8.3 Newton and Leibniz, Compared . . . . . . . . . . . . . . . . . 51 2.8.4 The Arrow of Time . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.8.5 Maxwell’s Demon. . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.9 Time in Modern Physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.9.1 The Measurement of Time in the Special Theory of Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.9.2 Invariants of Space–Time: Speed of Light . . . . . . . . . . 67 2.9.3 Further Invariants in Space–Time . . . . . . . . . . . . . . . . 69 vii viii Contents 2.9.4 The Measurement of Time in the General Theory of Relativity. . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.10 The Measurement of Time in Quantum Mechanics . . . . . . . . . 74 2.11 Why Measurement? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2.12 On Permissible Inferences from Scientific Theories. . . . . . . . . 84 3 Flux and Stasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.1 Parmenidean Stasis and Heraclitean Flux . . . . . . . . . . . . . . . . 89 3.2 Idealism About Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.2.1 Saint Augustine (A.D 354–430). . . . . . . . . . . . . . . . . . 91 3.2.2 Immanuel Kant (1724–1804). . . . . . . . . . . . . . . . . . . . 93 3.2.3 John McTaggart (1866–1925) . . . . . . . . . . . . . . . . . . . 97 3.3 Realism About Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.3.1 Isaac Barrow (1630–1677) . . . . . . . . . . . . . . . . . . . . . 99 3.3.2 Isaac Newton (1642–1727). . . . . . . . . . . . . . . . . . . . . 101 3.3.3 Newtonian and Neo-Newtonian (Galilean) Space–Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.4 Relationism About Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.4.1 Relationism According to Leibniz . . . . . . . . . . . . . . . . 112 3.4.2 The Geometry of Situations . . . . . . . . . . . . . . . . . . . . 114 3.4.3 The Order of Succession. . . . . . . . . . . . . . . . . . . . . . . 116 3.4.4 Leibnizian Space–Time . . . . . . . . . . . . . . . . . . . . . . . 118 3.4.5 Possible Orders of Succession and Coexistence. . . . . . . 120 3.5 The Theory of Relativity and the Block Universe . . . . . . . . . . 122 3.5.1 The Time Machine . . . . . . . . . . . . . . . . . . . . . . . . . . 123 3.5.2 Einstein and the Block Universe . . . . . . . . . . . . . . . . . 124 3.5.3 The Block Universe. . . . . . . . . . . . . . . . . . . . . . . . . . 129 3.6 Minkowski Spacetime and the Block Universe . . . . . . . . . . . . 130 3.6.1 Minkowski Space–Time. . . . . . . . . . . . . . . . . . . . . . . 130 3.6.2 The Philosophy of Being . . . . . . . . . . . . . . . . . . . . . . 136 3.7 An Alternative Representation of Minkowski Space–Time . . . . 141 3.7.1 Alfred Arthus Robb’s Account . . . . . . . . . . . . . . . . . . 142 3.7.2 Constantin Carathéodory’s Account. . . . . . . . . . . . . . . 143 3.8 Space–Time and Invariance. . . . . . . . . . . . . . . . . . . . . . . . . . 145 3.8.1 Invariant Relationships c and ds . . . . . . . . . . . . . . . . . 145 3.8.2 Thermodynamic Clocks . . . . . . . . . . . . . . . . . . . . . . . 150 3.8.3 Philosophy of Becoming. . . . . . . . . . . . . . . . . . . . . . . 154 3.9 The General Theory of Relativity . . . . . . . . . . . . . . . . . . . . . 155 3.9.1 Gödel’s Argument for the Unreality of Time . . . . . . . . 160 3.9.2 Thermodynamic and Cosmological Arrows. . . . . . . . . . 162 3.10 Substantivalism and Relationism About Space–Time . . . . . . . . 165 Contents ix 4 Symmetry and Asymmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 4.1 Fundamental Equations and Human Experience. . . . . . . . . . . . 169 4.2 Entropy and Order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 4.3 Reversibility and Irreversibility . . . . . . . . . . . . . . . . . . . . . . . 182 4.4 The Role of Boundary Conditions . . . . . . . . . . . . . . . . . . . . . 186 4.4.1 The Asymmetry of Boundary Conditions . . . . . . . . . . . 189 4.4.2 The Sectional Nature of Time. . . . . . . . . . . . . . . . . . . 193 4.4.3 De Facto and De Jure Irreversibility . . . . . . . . . . . . . . 195 4.4.4 The Law of Conditional Independence. . . . . . . . . . . . . 198 4.4.5 The Switch-Over Problem. . . . . . . . . . . . . . . . . . . . . . 200 4.4.6 The Symmetry of Boundary Conditions . . . . . . . . . . . . 201 4.5 The Emergence of Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 4.6 Time in Basic Quantum Mechanics . . . . . . . . . . . . . . . . . . . . 211 4.6.1 Spin Echo Experiment . . . . . . . . . . . . . . . . . . . . . . . . 219 4.6.2 Quantum Mechanics and Branching Events . . . . . . . . . 221 4.6.3 Consistent Histories and Decoherence . . . . . . . . . . . . . 225 4.6.4 Environmental Decoherence . . . . . . . . . . . . . . . . . . . . 231 4.6.5 Cosmological Decoherence. . . . . . . . . . . . . . . . . . . . . 235 4.7 Time Travel Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 4.7.1 Is it Possible to Travel into the Future? . . . . . . . . . . . . 241 4.7.2 Is it Possible to Travel into the Past?. . . . . . . . . . . . . . 245 4.7.3 Two Coherent Solutions to Time Travelling into the Past . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Chapter 1 Evolving Conceptions of Time in the Light of Scientific Discoveries Theconceptoftimeisperhapsoneofthemostintegratinginhumanknowledge.Itappears inmanyfields,includingphilosophy,biologyand,mostprominently,inphysics,whereit plays a central role. It has interested Man of all Ages, and the finest minds from Saint- Augustine to Kant and Einstein have paid attention to its meaning, and the mystique shroudingitsmostnotoriousproperty:thatofflowingonlyforward,itsirreversibility. JoséAngelSánchezAsiain,Forword,inJ.J.Halliwelletal.(1994),xiii. 1.1 Introduction Our earliest ancestors must have had a dim awareness of time, since their very existence was heavily dependent on the cycle of seasons. They will have been aware of the rhythm of day and night and no doubt of lunar cycles. Their pre- occupation with daily survival and the hunt for food and shelter may not have granted them much time for thoughts of a more abstract nature but one may speculate that in quiet moments by the fireside on starry nights they may have succumbed to reflections about the nature of time. No written records of these musings exist but cave drawings and large stone structures, like Stonehenge, testify to the curiosity of our earliest ancestors about the universe. The Greeks, however, left numerous written documents about their preoccupation with the cosmos and the nature of time. They demonstrate that time is one of the most fundamental notions, which is dominant in both human existence and human endeavours to understand the surrounding world. Many thinkers have grappled withthenotionoftimeandtheircollectiveeffortshaveproducedsomeinfluential modelsoftime(Chap.2).Althoughthesephilosophicalmodelsestablishimportant insights into the notion of time, and are therefore of considerable value as guidelines of investigation, they cannot be divorced from scientific discoveries about time (Chaps. 3, 4) so that our evolving conceptions of time have to be considered in the light of scientific discoveries. New discoveries in cosmology F.Weinert,TheMarchofTime,DOI:10.1007/978-3-642-35347-5_1, 1 (cid:2)Springer-VerlagBerlinHeidelberg2013 2 1 EvolvingConceptionsofTimeintheLightofScientificDiscoveries abouttheevolutionoftheuniversehaveledtoradicalnewviewsaboutthenotion of time. When these ideas are considered and our views of the history of time reckoning are extended to the present day, three striking features, which will structure the contents of this book, stand out. 1. Most considerations of time, up to the 21st century establish a link between time and cosmology (Chap. 2). Cosmology is the study of the large-scale structure of the universe, to which the Greeks made significant contributions. The particular cosmological feature, which struck early observers, was the periodicregularityofplanetarymotions.Asweshallsee,thisfeatureisclearly present in the views of Plato and Aristotle, as well as Ptolemy. In Greek cosmologytheuniverseisaclosedsystem.The‘fixedstars’constitutetheouter boundaryofthecosmosbeyondwhichthedeitiesreside.TheEarthismodeled as a stationary sphere near the center of the universe, and all the planets and stars perform circular motions around the ‘central’ Earth. Their preoccupation with the eternal regularity of celestial motions predestined the Greeks to con- sider the passage of time and its measurement. Modern cosmology has moved to different preoccupations, especially to the question of the origin of the universe and its overall history and its eventual demise. Modern cosmology is more concerned with the question of the arrow of time at least insofar as this concerns the observable expansion of the cosmos and the question of its eventualfate––willtheuniverseexpandforeverorwillitsexpansiongrindtoa halt and then enter a phase of recontraction? All these processes depend on certain regularities, which are required for the measurement of the arrow and the passage oftime.Talkofthe direction or anisotropy of time may thus refer eithertoanexperienceofaone-directional,forwardmovementofeventsinour galactic vicinity, which will be characterized as the passage of time; or to the globalmovementofthe whole universe, pointing like anarrow froman initial beginning in the Big Bang to its eventual end, either in a contraction of the universe (Big Crunch) or the complete disappearance of all energy gradients (HeatDeath).Time, ofcourse,cannot bemeasureddirectly; regular events are needed to measure time. But the anisotropy of time could conceivably be experienced in the absence of such regularities. Imagine a universe, in which only random sounds can be heard or in which occasional light flashes appear fromdifferentdirections.Ifyouarethe unfortunateinhabitantofsuchalonely universe, you will be at a loss to establish a regular pattern between the intervalsofthesoundsorflashes.Youcouldnottellhowlongtheintervalslast between the flashes and the sounds. Nevertheless, you could count the sounds and flashes you experience, say up to 100, which would give you a basic ‘before-after’ relationship between the series of observed sounds and flashes. Hence you could determine the passing of time by the irregular events you perceive although you would not be able to measure the passage of time. The measurement of the passage of time requires some regularity, often of a peri- odickind.Suchaperiodicregularityrequiresregularintervalsbetweenevents, astheGreeksobservedintheorbitsoftheplanets.However,regularityisnota