ebook img

The magnetic field generated by a charge in a uniaxial magnetoelectric material PDF

0.4 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The magnetic field generated by a charge in a uniaxial magnetoelectric material

Themagneticfieldgeneratedbyachargeinauniaxialmagnetoelectricmaterial M. Fechner and N. A. Spaldin Materials Theory, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zu¨rich, Switzerland I. E. Dzyaloshinskii School of Physical Sciences, University of California Irvine, Irvine, CA 92697, USA (Dated:January13,2014) We revisit the description of the magnetic field around antiferromagnetic magnetoelectrics in the context of recent developments regarding magnetoelectric monopoles. Using Maxwell’s equations, we calculate the magneticandelectricfieldsassociatedwithafreechargeinabulkuniaxialmagnetoelectric,aswellasinafinite sphereofmagnetoelectricmaterial. WeshowthatachargeintheprototypicalmagnetoelectricCr O ,which 2 3 isuniaxialwithadiagonalmagnetoelectricresponse,inducesaninternalmagneticfieldwithbothmonopolar and quadrupolar components, but that only the quadrupolar contribution extends beyond the sample surface. Wediscussthebehavioroftheexternalquadrupolarfieldandcompareitsmagnitudetothoseofmagneticfields fromothersources. 4 1 0 A linear magnetoelectric is a material inwhich an applied magnetoelectric response, it emerges that the first isotropic 2 magneticfieldinducesanelectricpolarizationandanapplied part corresponds to a “magnetoelectric monopolar” compo- electricfieldinducesamagnetization,withthesizeofthere- nent, and the second traceless part to a “magnetoelectric n sponseproportionaltothestrengthofthefield:1 quadrupolar” component2,5. (The antisymmetric part which a J is is zero in this case results from a magnetoelectric toroidal 0 Pi = αijHj moment6.) A free electric charge in such a magnetoelectric 1 M = α E . (1) should in turn generate a magnetic field that reflects these i ji j monopolarandquadrupolarcontributions. ] There has been increasing research interest in magneto- In this work we use Maxwell’s equations to calculate the i c electrics over the last fifteen years, motivated in part by the magneticandelectricfieldsassociatedwithafreechargeina s technological appeal of electric-field-controlled magnetism, magnetoelectric material. We begin with the mathematically - l aswellastheintriguingmechanismsthatallowaferroicprop- straightforwardcaseofanisotropicmagnetoelectricmaterial r t erty to be modified other than by its conjugate field. In ad- and confirm that, as required by symmetry, it has a purely m dition, it has been pointed out in the last months that cer- monopolar response. While isotropic magnetoelectrics have t. tain symmetry classes of magnetoelectrics exhibit behaviors been discussed in the literature7, none has been identified to a that can be described in terms of so-called magnetoelectric date, as the requirement that time- and space-inversion sym- m monopoles2leadingtopotentiallynewphysicssuchashidden metrybebrokenwithinacubicsymmetryisrestrictive. Inter- - ordersandnoveltransportproperties3. estinthemhasbeenrenewed recentlyinthecontextoftheir d n Themagnetoelectrictensor,αij,isanaxialsecondrankten- relationship to strong Z2 topological insulators8, as well as o sor,whichisantisymmetricunderbothspaceandtimeinver- theirpotentiallynoveltransportproperties3. Wethenproceed c sion.Asforanysquaretensoritcanbedecomposedintosym- to the physically more abundant and mathematically more [ metricandantisymmetricparts: complexuniaxialcaseandevaluatetherelativecontributions ofthemonopolarandquadrupolartermstothemagneticand 1 α=α +α (2) v S AS electricfields. Inbothcasesweobtainthesolutionforafree 8 charge in an infinite magnetoelectric medium, as well as for withtheanti-symmetriccomponentsindicatingresponsesper- 8 thecaseofafinitesphericalsample. Finally,basedonourre- 3 pendicular to the external field. The form of α, of course sultswerevisitliteraturemagnetometrymeasurementsofthe 2 reflects the symmetry of the system, and there exists a large magnetic field around Cr O 9,10. These were discussed pre- . numberofuniaxialmagnetoelectrics,includingtheprototype 2 3 1 viously in terms of the intrinsic quadrupolar response of an Cr O 4,inwhichtheresponseispurelydiagonalinthebasis 0 2 3 uncharged magnetoelectric11 as well as in terms of the sur- 4 ofthecrystallographicaxes. ForsuchmaterialsαASvanishes, face magnetization caused by the antiferromagnetism12 and 1 and it is useful to reduce the symmetric part further into its itscouplingtothemagnetoelectricity13. Weevaluatetherela- : isotropicdiagonalandtrace-freesymmetriccontributions: v tivemagnitudesofallthreecontributionstotheexternalmag- Xi 1 0 0  neticfieldanddiscusstheimplications. ar α=αS= 13(2α⊥+α(cid:107))I+α⊥−3 α(cid:107)0 1 0  . (3) 0 0 −2 I. ANISOTROPICMAGNETOELECTRIC Here α and α are the responses parallel and perpendicu- (cid:107) ⊥ lar to the high symmetry axis respectively, and I is the unit We provide a source of electric field within an isotropic matrix. Whenacorrespondenceismadebetweenthesecond- magnetoelectric by introducing a point charge ρ = qδ(r). ordertermsinthemagneticmultipoleexpansionandthelinear While in practice such a charge is likely to be an electron, 2 a) b) herewetreatthecaseofaspinlesscharge,anddonotinclude 0.4 inouranalysisthereciprocalmagnetoelectricresponsearising fromanelectronicspinmagneticmoment. Sincethematerial 15 isisotropic,theαtensorisgivenby EME(r) 0.2 α 0 0 V/m) 10 E(r) (m) 0.0 n y α=0 α 0. ( E 0 0 α 5 -0.2 Themagnetoelectricmediumaugmentsthedisplacementfield -0.4 and magnetic induction from their usual (cid:15)E and µH to in- 0.2 0.4 0.6 0.8 -0.4 -0.2 0.0 0.2 0.4 cludethemagnetoelectriccrossterms: r(m) x(m) D = (cid:15)E+αH FIG.1: (a)Electricfieldaroundapointchargeinanisotropicdi- B = µH+αE. (4) electric(bluesolidline)andinamagnetoelectricwithα increased byafactorof20,000(reddottedline). Theparametersusedarethe Here(cid:15)andµaretheusualdielectricpermittivityandmagnetic measured values for Cr2O3, averaged to give isotropic values. (b) permeability tensors, which have the same isotropic symme- Calculatedmagneticfield,H(r),generatedbyapointchargeinan try as the magnetoelectric tensor. Insertion of these field ex- isotropicmagnetoelectricinacutthroughtheaplanecontainingthe charge.Thearrowsindicatethefieldorientation. pressions into Maxwell’s equations yields a system of cou- pleddifferentialequationswhichwesolvebyintroductionof amagneticandelectricpotential14 (seeappendixA)toyield component α(ps/m) εr(ε0) µr(µ0) thefields: ⊥ 0.734 10.3 1.0014 µ q E(r) = e (cid:107) -0.233 10.9 1.0001 4π(εµ−α2)r2 r α q H(r) =− 4π(εµ−α2)r2er , (5) TatAivBeLpEerIm:EeaxbpielirtiymµenrtfaolrvaClru2eOs3o1f9–α2,1.reεlartiivsempeearmsuirtetidviatytrεoroamndtermel-- wheree istheunitvectorintheradialdirection.Firstwedis- perature,whereasµrandα arethelowtemperature(4K)values.SI r unitsareusedthroughout,soαhasunitsofinversevelocity. cusstheelectricfield. Weseethatitsformisidenticaltothat induced by a free charge in an ordinary dielectric – 1 q – 4πε r2 exceptthatthemagnitudeoftheinducedfieldismodifiedwith aneffective(lowered)dielectricconstantε =(ε−α2/µ). Themagneticfield,H(r),showsasimilarpurelydivergent eff radial dependence as the electric field. We illustrate this in To estimate the size of the lowering we use literature values Fig. 1 right panel, where the arrows represent the magnetic for Cr O (Table I) averaged as in Eqn. (3) to extract the 2 3 fieldlines.Note,however,thatwhileH(r)diverges,M(r)= isotropic part, and find that the change in relative permittiv- ityissmall,with∆ε =α2/(µε )∼1.5×10−8. InFig.1(a) αE alsodivergesandexactlycompensatesthedivergencein r 0 H. As a result, ∇·B(r)=0, Maxwell’s equations are not wecomparetheelectricfieldofapuredielectricwiththatof violatedandno“true”magneticmonopoleisgenerated. anisotropicmagnetoelectric,withα 20,000timeslargerthan that of Cr O , for the true α the curves would be indistin- 2 3 guishablefromeachother. Eqns.5indicatethatifα2→εµ,boththeelectricandmag- A. Afinitesphereofanisotropicmagnetoelectric neticfieldsinsidethemediumwoulddivergecausinga“mag- netoelectriccatastrophe”. Thisisconsistentwiththeinequal- We now extend our discussion to the case of a sphere of ity an isotropic magnetoelectric with a charge at its center in a α ≤(cid:112)µ ε vacuum.Thefieldsinsideandoutsideofthespherearesubject ij ii jj totheboundaryconditions: required for thermodynamic stability15 and the stricter con- straint,derivedusingthermodynamicperturbationtheoryand φi (R) = φo (R) e,m e,m requiring positive definiteness of the free energy with re- Di(R)·n = Do(R)·n spect to external fields16, that α2 < χ χ . Even close m e to a phase transition where α may diverge, either ε or Bi(R)·n = Bo(R)·n (6) µ will diverge simultaneously avoiding a magnetoelectric catastrophe. This scenario was discussed recently for a whereφ aretheelectricandmagneticpotentials,theoandi e,m magnetoelectric-multiferroic phase transition using Landau superscriptsindicateoutsideandinsideofthesphere,respec- mean-field theory17 and demonstrated numerically for the tively,Risthesphereradius,andnisaunitvectoralongthe case of a strain-induced multiferroic phase transition18 in surface normal. Di and Bi are given by the expressions of CaMnO . Eqns.4includingthemagnetoelectricresponses,whereasfor 3 3 thevacuumregiontheusualrelations a) b) D = ε E 0 -3 B = µ H 0 V) -2 A) 0.3 µ p anpopmlyia.lsW,eanedxpsainncdetthheepsoytsetnetmialissirnadaiablalysissyomfmLeegtreincdarlelpcoolmy-- r()(e -1 r()(m 00..12 φ φ ponentsapartfroml=0vanish. Thefullderivationisgiven 0 0.0 intheappendixB,andoursolutionsare: 0 R/3 2R/3 R 0 R/3 2R/3 R c) d) φi(r) = µ q+(α2+µ(ε−ε0)) q -3 e 4π(εµ−α2)r (α2−ε µ) 4πεR 0 m) -2 m) 0.4 φo(r) = 1 q V/ A/ e 4πε r m -1 n 0.2 0 ( ( φmi(r) = −4π(εµα−α2)rq+4π(εµα−α2)Rq Er() 00 R/3 2R/3 R Hr() 0.00 R/3 2R/3 R φo(r) = 0 . (7) m FIG.2: (a)Electricand(b)magneticpotentialasafunctionofdis- tance from the center of the sphere. (c) Electric and (d) magnetic We plot our calculated potentials and fields, obtained using field.Thesphereradius,R=1mm. the parameters for Cr O and a sphere radius, R=1mm, in 2 3 Fig.2. Again we begin by discussing the electric field case. In We obtain the fields in the same manner as in the isotropic Figs. 2 (a) and (c) we show the radial components of the case, working in this case in elliptical coordinates to more electric potential and the electric field inside and outside of readily treat the different responses along the perpendicular thesphere. Weseethatthebehaviorisanalogoustothatofa and parallel axes. We note that, by symmetry, the µ and (cid:15) chargeatthecenterofadielectricsphere,withthefieldfalling tensors have the same form as α, but the ratios of their par- off radially within the sphere, then more sharply in the vac- allelandperpendicularcomponentsarenotnecessarilyequal. uumregion. Thereisarenormalizationofthedielectriccon- Asaresultfullyanalyticalsolutionsarenotaccessibleandthe stant,however,fromthemagnetoelectricresponse. InFigs.2 solutions–giveninappendixC–mustbeevaluatednumeri- (b) and (d) we show the corresponding magnetic quantities. cally. As in the case of the infinite medium, the H field diverges We begin by discussing the differences we expect from withradialdistancefromthecharge,andM alsodivergesso the isotropic case as a result of the anisotropy in each re- that ∇·B is zero. Consequently the magnetic field vanishes sponse tensor. In the isotropic case (Eqns. 5) we found attheboundaryduetothezeromagnetoelectriceffectoutside that the electric field is described by an effective dielectric the sphere. As a result, all monopolar effects of the charge constant ε = ε−α2/µ. For Cr O , ε ∼10−12F/m and areconstrainedtowithinthesphere,andnomagneticfieldis eff 2 3 α2/µ ∼10−19F/m. Therefore we expect that the anisotropy detectableoutside. of the electric field will be dominated by the anisotropy in Our main finding from this section, therefore, is that, the dielectric constant. For the magnetic field, the ε−α2/µ while a charge in an isotropic magnetoelectric induces a term in the denominator is again dominated by ε. However, monopole-likemagnetizationthroughthemagnetoelectricef- thereisalsoaprefactorofα/µ,andinthecaseofCr O the fect, the magnetic field associated with this magnetization 2 3 stronglyanisotropicmagnetoelectrictensorshoulddetermine drops to zero at the boundary of a spherical sample. Thus, theanisotropyinthemagneticfield. Finally,wenotethatthe while the induced field might have a profound effect on the magneticfieldcanbecome“accidentallyisotropic”evenwhen magnetotransport3, it cannot be directly detected outside of all tensors are anisotropic, if α /(µ ε )=α /(µ ε(cid:107)). We thesample. Wepointout, however, thatanydeviationsfrom ⊥ ⊥ ⊥ (cid:107) (cid:107) willdiscussanexampleofthisbehaviorlater. ideal sphericity in the sample will allow a non-zero, non- Now we look at our explicitly calculated azimuthal de- monopolarexternalfield. pendenciesoftheelectricandmagneticpotentials,whichwe showaspolarplotsinFigs.3(a)and(b)forfourdifferentsets ofparameters: II. AUNIAXIALMAGNETOELECTRIC • The isotropic case obtained using averaged values for allthreetensors(blacklines), Wenowdiscussthecaseofananisotropicuniaxialmagne- toelectricwithamagnetoelectrictensorofthefollowingform: • TheactualmeasuredparametersforCr O (reddashed 2 3   lines), α 0 0 ⊥ α= 0 α⊥ 0. • The measured Cr2O3 ε and µ values, but with only 0 0 α thetracefreequadrupolarpartoftheα tensorincluded (cid:107) 4 (greendottedline),and a) |φe(θ)|(arb.u.) b) φm(θ)(arb.u.) 1.5 1.5 isotropic • The “accidentally isotropic” case, enforced by setting quad (ε,α)⊥= 21(ε,α)(cid:107)andµ(cid:107)=µ⊥(bluedashedline). 1.0 Cr2O3 1.0 0.5 acc.iso. 0.5 We see in Fig. 3 (a) that the electric potentials for the θ true, isotropic, andquadrupolar-onlycaseslieexactlyontop 0.0 of each other, and are almost symmetrical, confirming our 0.5 1.0 1.5 -1.0-0.5 0.5 1.0 -0.5 -0.5 reasoning above that the asymmetry in ε (which is small in Cr2O3)determinesthatintheelectricpotential. Theacciden- -1.0 -1.0 tallyisotropiccasehasanelliptical-shapedelectricpotential, sinceweartificallysetε = 1ε . -1.5 -1.5 ⊥ 2 (cid:107) In contrast there are large differences in the magnetic po- c) d) tential for the four different cases. As expected there is no 0.4 0.4 angulardependencefortheisotropicoraccidentallyisotropic cases, which overlie each other. The quadrupolar-only case 0.2 0.2 (greenline)changessignwithangle,consistentwithitstrace- m) m) less magnetoelectric tensor. The true Cr2O3 potential (red z(0.0 z(0.0 line)isthesumoftheisotropicandquadrupolarcontributions -0.2 -0.2 andshowsnosignchangeastheisotropicmonopolarcontri- butiondominates. InFigs.3(c)and(d)weshowvectorplots -0.4 -0.4 of the magnetic fields for the true Cr O parameters and the 2 3 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 purely quadrupolar case respectively. (d) shows clearly the x(m) x(m) fieldlinespointingoutwardsvertically,andinwardshorizon- e) f) tally,inthemannerofaquadrupole,whereas,becauseofthe 0 0 additional, larger, monopolar component in true Cr O , (c) showsoutwardpointingfieldlinesinalldirections. 2 3 u.) u.) Cm To quantify this division into monopolar and quadrupolar arb. -5 Cm arb. -5 C0m2 ( 0 ( contributions,weexpandthecalculatedelectricandmagnetic Cn-10 Cm2 Cn-10 potentials in linear combinations of Legendre polynomials, -2 -1 0 1 2 0 1 2 wherebysymmetryonlyeventermsarenon-zero: α(cid:107)/α⊥ ε(cid:107)/ε⊥ q ∞ φe,m(r,θ)= 4π2r ∑(4n+1)C2e,nmP2n(cos(θ)) . (8) FIG. 3: (a) Electric and (b) magnetic potentials for four example n=0 setsofparemeters(fordetailsseetext.) (c)and(d): Magneticfields H(r)inacutthroughaplanecontainingthehighsymmetryaxis,for Theneachcoefficient,C ,intheexpansionindicatesthecon- 2n Cr O (c)anditsquadrupolar-onlycontribution(d).Thearrowsindi- 2 3 tributionofthetermwiththecorrespondingazimuthaldepen- catethefieldorientation.(e)and(f)Evolutionoftheexpansioncoef- dence, withC0 representing the monopolar contribution, and ficentsCmandCmcorrespondingtothemonopolarandquadrupolar 0 2 C2 thequadrupolar. Notethatallcontributionshavethesame componentsofthemagneticpotential,asafunctionoftheratio α(cid:107) r−1 dependence,incontrasttotheusualmultipoleexpansion α⊥ and ε(cid:107). inwhichamultipoleoforderndecaysasr−(n+1),becauseof ε⊥ theinfinitesizeofthesystem. The relative contribution of eachC is determined by the 2n relative ratios of α(cid:107), ε(cid:107) and µ(cid:107). In Table I we already saw TbPO4 which has one of the largest known magnetoelectric α⊥ ε⊥ µ⊥ coefficients22 – charges in such materials do not generate that the highest anisotropy occurs in the α tensor, with the purely quadrupolar electric and magnetic fields. This is be- dielectric constant and permeability being almost isotropic. cause, while the magnetoelectric tensor can be traceless, the (Note however that the magnetic susceptibility is strongly permittivityandpermeabilitytensorscannot,sincethediag- anisotropic with χ /χ ∼15 in Cr O 19). In Fig. 3 (e) we ⊥ (cid:107) 2 3 onal components of ε and µ are required for stability to be plottheCmandCmexpansioncoefficientsasafunctionofthe 0 2 greaterthan1. ration α(cid:107), with the ε and µ tensors constrained to be purely α⊥ isotropic.Wefind,asexpected,thatfor α(cid:107) =−2theresponse α⊥ A. Afinitesphereofauniaxialmagnetoelectric ispurelyquadrupolar,whereasat α(cid:107) =1itispurelymonopo- α⊥ larwithalinearconnectionbetweenthetwolimits. Forcom- Finally,weinvestigatethecaseofasphereofuniaxialmag- parison we show in (f) the same coefficients as a function of netoelectricsurroundedbyvacuumwithapointchargeatits the corresponding asymmetry in ε and with an isotropic α. center, and solve the corresponding equations subject to the For ε(cid:107) =1apurelymonopolarstatefound. sameboundaryconditionsasinSectionIA.Thesolutionsin- ε⊥ Finally, we note that, in spite of the fact that materials side the sphere are identical to the previous solution for the with traceless magnetoelectric tensors exist – an example is infinite uniaxial case. Each coefficient Ce,m then couples to 2n 5 a) b) a corresponding outside solution, with the exception of Cm, (cid:107) (cid:107) 0 Cr O quadrupolar whichvanishesoutsideofthesphereasintheisotropiccase, 2 3 ⊥ ⊥ 0.2 0.2 ensuring that ∇·B is always zero and Maxwell’s equations arenotviolated. HigherordercoefficientsofH(r)andE(r) m)0.1 0.1 A/ T) are, however, non-zero in the outside region, and in particu- (n0.0 (f0.0 larafinitequadrupolarmagneticfieldpropagatesbeyondthe H0.1 B0.1 sphere. Thefullderivationofthesolutionispresentedinthe 0.2 0.2 appendix. 0 R/2 R 3R/2 0 R/2 R 3R/2 Asinthecasefortheinfinitesystem,wefindthattheelec- r r tricfieldforrealisticparametersisclosetoisotropictherefore c) d) we move directly to a discussion of the magnetic field. We 2R consider two sets of parameters: The genuine Cr O values, 2 3 andtakingonlythetracefreequadrupolarpartoftheαtensor. R InFig.4,(a)weshowthenormalcomponentofthemagnetic field in both cases (dotted blue line: quadrupolar only, red 0 z line: full response) along the two high symmetry directions (⊥ and (cid:107)). In contrast to the isotropic monopolar case, the -R fielddoesnotvanishattheinterfacebutextendsintothevac- uum area. Note that, since only the quadruoplar component -2R ofthemagneticfieldextendsoutofthesphere, thefieldsare -2R -R 0 R 2R -2R -R 0 R 2R identicaloutsideofthesphereinthetwocases,inspiteofthe x x factthattheydifferconsiderablywithinthespherewherethe monopolar contribution can manifest. In Fig. 4 (b), we plot FIG.4:(a)Magneticfieldand(b)magneticinductionasafunctionof thenormalcomponentofthemagneticinduction,B,whichis radialdistancefromthecenterofthespherealongthehighsymmetry identicalinthetwocases. ⊥and(cid:107)directions. Thebluelinescorrespondstothequadrupolar- onlyresponse(dashed⊥,dot-dashed(cid:107)),andtheredlineshowsthe In Figs. 4 (c) and (d) we show the magnetic field lines caseofCr O (solid⊥,long-dashed(cid:107)). (c)and(d)showthemag- in a cut through a plane containing the high symmetry axis 2 3 neticfieldsinaslicethroughaplanecontainingthehigh-symmetry forCr O andthepurelyquadrupolarcaserespectively. The 2 3 axisforCr O andthequadrupolar-onlymaterialrespectively. The 2 3 redcircleindicatesthesphereboundaryinbothcases. Inside arrowsshowtheorientationandmagnitudeofthefield,withthemag- the sphere the solutions are identical to the infinite solutions nitudeweightedbythesquareofthedistancefromthecharge. showninFig.3(c)and(d). Againweseethatintheoutside regionagainbothfieldsareidentical,asonlythequadrupolar field extends out of the sphere. This indicates that magneto- even without an internal charge. The order of magnitude of electricswiththesametracefreepartofthetheαtensorarein- thisfieldatthesurfaceis µB ,withaanatomicdistanceand distinguishablefrommeasurementsoftheirexternalmagnetic aV1/3 V thevolumeofthesample. Forthesphericalsamplewithra- field,providedthattheε andµ tensorsareclosetoisotropic. dius 1mm that we have considered here, explicit calculation ofthesurfacemagneticinductionfromthiscontributiongives B =7×10−7T.Thecontributiontotheexternalquadruopo- int B. Comparisonwithothersourcesofmagneticfieldandwith lar field from the charge-induced effect derived in this work experiment thus becomes equal to the intrinsic contribution at an elec- tronconcentrationof∼107 per1mmradiussphere,or∼1010 Finally,wecompareourcalculatedvaluesforthemagnetic cm−3. Thisconcentrationislikelyachievablewithfieldeffect fieldgeneratedbyachargeinamagnetoelectricwiththataris- doping (although this might not be convenient in the spher- ing from two other sources: the intrinsic magnetoelectric re- ical geometry). For the larger sphere used in the measure- sponse of an uncharged material, and the surface moments ments of Ref. 9 the predicted value from the intrinsic mech- from the antiferromagnetism. We then discuss the relevance anism is correspondingly smaller because of the 1 depen- V1/3 ofthesepossiblecontributionstotheearliermeasurementsof dence, and is indeed consistent with the measured value of Astrovandcoworkers9. B =1×10−9T9. The contribution from the charge effect exp First we point out that, in Fig. 4 (b) we see that an elec- becomes comparable at even smaller charging levels, and a tron inside a magnetoelectric sphere of radius 1mm gener- superposition of the two contributions might be responsible atesamagneticinductionofB ∼10−16Tatthesurfaceof forthecomplicatedmeasuredradialdependence. ME thesphereviathemagnetoelectriceffect. Wenotethatasin- Finally we point out that there is an additional contribu- gleelectronspininanon-magnetoelectricsphereofthesame tion to the magnetic field around a sphere of antiferromag- dimension and permeability would generate a much smaller netic material, resulting from truncation of the discrete spin fieldofonly10−23T,andsointhiscontext,themagnetoelec- arrangementofanantiferromagnet12. These“Andreevfields” tricresponseshouldnotberegardedassmall. areinprincipledistinguishablefromtheintrinsicandcharge- InRef.11weshowedthattheintrinsicstructureandmag- induced magnetoelectric fields as they are genuine surface neticorderinCr O giverisetoanexternalquadrupolefield fields which decay exponentially with the distance from the 2 3 6 surface. In addition, their form is sensitive to the details of ming from the isotropic or tracefree parts of the ME ten- the surface termination and is not required to be quadrupo- sor respectively. Consistent with Maxwell’s equations, how- lar. Recently it was argued that the Andreev field is funda- ever,themonopolarmagneticcontributiondoesnotpropagate mentallydifferentinamagnetoelectricmaterialthaninanon- outside of a finite sample, and so magnetoelectrics with the magnetoelectricantiferromagnet13. same tracefree part of the α tensor are indistinguishable by magnetic field measurements. Interestingly, even a sphere of purely monopolar isotropic magnetoelectric material will C. Conclusion have an external quadrupolar magnetic field because of the interactions between dielectric and magnetic permeabilities In summary, we have derived the static electric and mag- and the magnetoelectric tensor. The magnitude of the ex- netic fields induced by a free charge in a diagonal magne- ternal magnetic field induced by charges can be comparable toelectric. We found that the electric fields are analogous with the intrinsic quadrupolar field as well as that from the to those generated by a charge in a simple dielectric, with surfacemagnetizationforrealisticgeometries,andallcompo- a renormalization of the dielectric permittivity by the mag- nents should be considered in interpreting measurements of netoelectric response. A charge generates both monopolar fieldsaroundmagnetoelectrics. and quadrupolar magnetic fields inside the material, stem- 1 M.Fiebig,J.Phys.D38,R123(2005). AppendixA:Detailedderivationforapointchargeinan 2 N. A. Spaldin, M. Fechner, E. Bousquet, A. Balatsky, and isotropicmagnetoelectric L.Nordstro¨m,Phys.Rev.B88,094429(2013). 3 D.I.Khomskii,arXivp.1307.2327v1(2013). Herewepresentthedetailsofthederivationforthecaseof 4 I.Dzyaloshinskii,SovietPhys.Jetp-USSR10,628(1960). 5 N. A. Spaldin, M. Fiebig, and M. Mostovoy, J. Phys. Condens. a point charge in an isotropic magnetoelectric material. We follow Ref. 14 to calculate the scalar electric and magnetic Matter20,434203(2008). 6 C.EdererandN.A.Spaldin,Phys.Rev.B76,214404(2007). potentials,φe(r)andφm(r),usingthematerialsequations 7 F.W.Hehl,Y.N.Obukhov,J.P.Rivera,andH.Schmid,Eur.Phys. J.B71,321(2009). B = µH+αE 8 S.CohandD.Vanderbilt,Phys.Rev.B88,121106(2013). D = (cid:15)E+αH , 9 D.N.Astrov,N.B.Ermakov,A.S.BorovikRomanov,E.G.Kol- evatov,andV.I.Nizhankovskii,PismaZh.Eksp.Teor.Fiz.[JETP Lett.]63,745(1996). wherethelasttermsineachexpressionresultfromthemagne- 10 D. N. Astrov and N. B. Ermakov, Pisma Zh. Eksp. Teor. Fiz. toelectriceffect,andthepermittivityandpermeabilitytensors [JETPLett.]59,297(1994). µ and (cid:15) have the same symmetry as α. Using ∇×H =0 11 I.Dzyaloshinskii,SolidStateCommun.82,579(1992). and thus H =−∇φ (r) (as there is no free charge current), m 12 A.F.Andreev, PismaZh.Eksp.Teor.Fiz.[JETPLett.]63, 758 ∇·B=0and∇·D=ρ,weobtain (1996). 13 K.D.Belashchenko,Phys.Rev.Let.105,249902(2010). µ∇2φ (r) + α∇2φ (r)=0 14 Jackson,J.D.,ClassicalElectrodynamics3rdEdition(JohnWi- m e ley&Sons,2007). (cid:15)∇2φe(r) + α∇2φm(r)=qδ(r) . (A1) 15 T.H.O’Dell,Philos.Mag.8,411(1963). 16 W.Brown, R.M.Hornreich, andS.Shtrikman, Phys.Rev.168, SolvingEqs.A1simultaneouslyweobtaintrivially: 574(1968). 17 I.Dzyaloshinskii,Europhys.Lett.96,17001(2011). qµ 1 18 E.BousquetandN.A.Spaldin,Phys.Rev.Lett.107(2011). φ (r) = 19 S.Foner,Phys.Rev.130,183(1963). e 4π(εµ−α2)r 20 H.Wiegelmann,A.Jansen,P.Wyder,J.P.Rivera,andH.Schmid, α qα 1 Ferroelectrics162,141(1994). φm(r) = −µφe(r)=−4π(εµ−α2)r . 21 H.B.Lal,R.Srivasta,andK.G.Srivastava,Phys.Rev.154,505 (1967). 22 G. T. Rado and J. M. Ferrari, AIP Conference Proceedings Thefieldsarethenobtainedstraightforwardlyfromthegradi- 10, 1417 (1973), URL http://scitation.aip.org/ entsofthepotentials: content/aip/proceeding/aipcp/10.1063/1. 2946809. µ q E(r) = e 4π(εµ−α2)r2 r α q H(r) = − e , 4π(εµ−α2)r2 r withe theradialunitvector. r 7 AppendixB:Detailedderivationforapointchargeinasphere where n is a unit vector in the radial direction. Inserting D ofisotropicmagnetoelectricinvacuum and B explicitly in the last two equations and changing to potentialsratherthenfieldsyields For the boundary problem we proceed by expanding the potentialsφm(r)andφe(r)intermsofLegendrePolynomials, (εEi+αHi)·n = (ε Eo)·n P(cos(θ)): o l ε∇ φe(r)+α∇ φi(r) = ε ∇ φo(r) r i r m o r e φi(r,θ)=∑(2l+1)(cid:104)Alrl+Blr−(l+1)(cid:105)Pl(cos(θ)) (B1) (µHi+αEi)·n = (µoHo)·n l µ∇ φm(r)+α∇ φi(r) = µ ∇ φo(r) , (B4) r i r e o r m withexpansioncoefficientsA andB.Inthelimitr→∞both l l potentialstendtozero,andsoAl=0fortheoutsidepotentials. leadingtothesolution Forr→0thepotentialsshouldnotdivergethusB iszerofor l theinsidepotentials. Therefore,usingourresultsforthepoint (εµ)−µε chargeinaninfinitemedium,wewritetheAnsatz: A = 0 0 4π(εµ−α2)R qµ 1 q φi(r) = +∑(2l+1)ArlP(cos(θ)) B = e 4π(εµ−α2)r l l 0 4πε l 0 α φeo(r) = ∑(2l+1)Blr−(l+1)Pl(cos(θ)) C0 = 4π(εµ−α2)R l qα 1 D0 = 0 , (B5) φi(r) = − +∑(2l+1)CrlP(cos(θ)) m 4π(εµ−α2)r l l l φo(r) = ∑(2l+1)Dr−(l+1)P(cos(θ)) , (B2) whereRisthesphereradiusandallothercoefficientsarezero. m l l AppendixC:Detailedderivationforapointchargeina l diagonaluniaxialmagnetoelectric where the i and o superscripts indicate the solutions for in- side and outside of the sphere. (Since the Legendre expan- Nowweconsiderthecaseofauniaxialmaterialwithmag- sion solves only the homogenous equation, the source terms netoelectrictensoroftheform: must be added to account for the charge in the center.) The coefficients are found from the boundary conditions for the   correspondingfields: α⊥ 0 0 α= 0 α⊥ 0 φi (R) = φo (R) 0 0 α e,m e,m (cid:107) Di(R)·n = Do(R)·n Bi(R)·n = Bo(R)·n , (B3) TheninsteadofequationsA1wehave: µ ∇2φ (r)+µ ∇2φ (r)+α ∇2φ (r)+α ∇2φ (r) = 0 ⊥ ⊥ m (cid:107) (cid:107) m ⊥ ⊥ e (cid:107) (cid:107) e ε ∇2φ (r)+ε ∇2φ (r)+α ∇2φ (r)+α ∇2φ (r) = qδ(r) , (C1) ⊥ ⊥ e (cid:107) (cid:107) e ⊥ ⊥ m (cid:107) (cid:107) m Fouriertransformationoftheaboveexpressionyields µ k2φ (k)+µ k2φ (k)+α k2φ (k)+α k2φ (k) = 0 ⊥ ⊥ m (cid:107) (cid:107) m ⊥ ⊥ e (cid:107) (cid:107) e ε k2φ (k)+ε k2φ (k)+α k2φ (k)+α k2φ (k) = q . (C2) ⊥ ⊥ e (cid:107) (cid:107) e ⊥ ⊥ m (cid:107) (cid:107) m Eqns.C2canthenbesolvedtoyieldthefollowingexpressionsforthescalarpotentialsintheuniaxialcase: µ k2 +µ k2 ⊥ ⊥ (cid:107) (cid:107) φ (k) = q e (ε k2 +ε k2)(µ k2 +µ k2)−(α k2 +α k2)2 ⊥ ⊥ (cid:107) (cid:107) ⊥ ⊥ (cid:107) (cid:107) ⊥ ⊥ (cid:107) (cid:107) α k2 +α k2 ⊥ ⊥ (cid:107) (cid:107) φ (k) = −1 φ (k) . (C3) m µ k2 +µ k2 e ⊥ ⊥ (cid:107) (cid:107) 8 Transformingtosphericalcoordinatesk =ksin(θ)andk =kcos(θ)yields ⊥ (cid:107) µ⊥sin(θ)2+µ(cid:107)cos(θ)2 q q φ (k)= = f (θ) . (C4) e (ε sin(θ)2+ε cos(θ)2)(µ sin(θ)2+µ cos(θ)2)−(α sin(θ)2+α cos(θ)2)2k2 e k2 ⊥ (cid:107) ⊥ (cid:107) ⊥ (cid:107) Therealspacesolutionisthenobtainedfromtheinversetrans- Settingφ−φ(cid:48)=φ,theintegrationoverφ gives formation φ (r)=(cid:90) 2π(cid:90) π(cid:90) ∞ f (θ) q eik·rsin(θ)k2dφdθdk, 1(cid:90) 2πeiksin(θ)sin(θ(cid:48))cos(φ)dφ =2πJ (ksin(θ)sin(θ(cid:48))), e e k2 r 0 0 0 0 0 wherebysymmetry withJ (x)theBesselfunction,andthatoverkisthestandard 0 k·r=cos(θ)cos(θ(cid:48))+sin(θ)sin(θ(cid:48))cos(φ−φ(cid:48)) . tabulatedintegral (cid:40) r1(cid:90)0∞J0(ksin(θ)sin(θ(cid:48)))eikcos(θ)cos(θ(cid:48))dk=ξ(θ,θ(cid:48))= (0(cid:112)cos(θ)2cos(θ(cid:48))2−sin(θ)2sin(θ(cid:48)))−1 efolsre cos(θ)2cos(θ(cid:48))2>sin(θ)2sin(θ(cid:48))2 sowearriveatthefinalexpressionforφ : with e 2πq(cid:90) π φ (r,θ(cid:48))= f (θ)ξ(θ,θ(cid:48))sin(θ)dθ . (C5) e e r 0 Usingthesameapproachweobtain 2πq(cid:90) π φ (r,θ(cid:48))= f (θ)ξ(θ,θ(cid:48))sin(θ)dθ (C6) m m r 0 α sin(θ)2+α cos(θ)2 ⊥ (cid:107) f (θ)= . (C7) m (ε sin(θ)2+ε cos(θ)2)(µ sin(θ)2+µ cos(θ)2)−(α sin(θ)2+α cos(θ)2)2 ⊥ (cid:107) ⊥ (cid:107) ⊥ (cid:107) Wecanrewritetheintegralequationsintermsofthefunction noms: ξ(θ,θ(cid:48))as φm(r,θ(cid:48))= 2πrq(cid:90)|ππ/−2−|πθ/(cid:48)2|−θ(cid:48)| fm(θ)ξ2(θ,θ(cid:48))sin(θ)dθ , φe(r,θ) = 1rn∑=∞1C2enP2n(cos(θ)) (C8) 1 ∞ with φm(r,θ) = r ∑C2mnP2n(cos(θ)), (D1) n=1 (cid:18)(cid:113) (cid:19)−1 ξ (θ,θ(cid:48))= cos(θ)2cos(θ(cid:48))2−sin(θ)2sin(θ(cid:48)) (C9) 2 where the coefficientsCe andCm arise from the solutions of thebulkuniaxialcase. Duetosymmetryonlyeventermsap- pearinthisexpansion. Furthermoreforphysicallyreasonable AppendixD:Detailedderivationforapointchargeina diagonaluniaxialmagnetoelectricsphere parametersthecoefficientsconvergerapidlyandtermslarger than2n=8arepracticallyzerosotheseriescanbetruncated inthisorder. Fortheuniaxialspherewestartfromthepreviousconsider- ationsandexpandthetwopotentialsagaininLegendrePoly- Next we consider the boundary problem where we solve 9 againthefollowingsystemofequations: becomesinsphericalcoordinates φi (R) = φo (R)   e,m e,m α α 0 11 12 Di(R)·n = Do(R)·n αsph=α21 α22 0 , (D5) Bi(R)·n = Bo(R)·n 0 0 α33 Ei(R)·t = Eo(R)·t Hi(R)·t = Ho(R)·t , (D2) withthefourcoefficientsgivenby wheretisaunitvectorinthetangentialdirection. Hereiand 1(cid:2) (cid:3) α = (α +α )+(α −α )cos(2θ) o superscript denote the solutions inside and outside of the 11 2 ⊥ (cid:107) (cid:107) ⊥ sphere. Thepotentialsaregivenbythefollowingequations: α = α =(cid:2)(α −α )(cid:3)sin(θ)cos(θ) 12 21 ⊥ (cid:107) (cid:18)Ce (cid:19) 1(cid:2) (cid:3) φei(r) = ∑ rl +(2l+1)Alrl Pl(cos(θ)) α22 = 2 (α⊥+α(cid:107))+((α⊥−α(cid:107))cos(2θ) l α = α . (D6) 33 ⊥ B φo(r) = ∑(2l+1) l P(cos(θ)) For the radial contributions at the sphere boundary only α11 e r−(l+1) l andα enterandthenormalcomponentofDibecomes: l 12 (cid:18)Cm (cid:19) φi(r) = ∑ l +(2l+1)Crl P(cos(θ)) m l r l l Di·n=ε ∂φei +ε 1∂φei +α ∂φmi +α 1∂φmi (D7) 11 12 11 12 D ∂r r ∂θ ∂r r ∂θ φo(r) = ∑(2l+1) l P(cos(θ)). (D3) m r−(l+1) l l andDo: Again we superimposed here our solutions with those of the ∂φo homogenousLaplaceequations,takingintoaccountthelimits Do·n= e . (D8) r →0 and r →∞, for inside and outside of the sphere, re- ∂r spectively. Thefoursetsofcoefficients,A,B,C andD,are l l l l nonzeroonlyforl=2n. Asbefore,thedisplacementfieldDi Forthetangentialcomponentoftheelectricfieldwehavethe andmagneticinductionBiinsidethespherearegivenby: followingequations Di = εE+αH 1∂φi Bi = µH+αE Ei·t= r ∂θe (D9) andoutsidethespherebytheusualexpressionsforthevacuum and Do = E 1∂φo Bo = H. Eo·t= e . (D10) r ∂θ Since we are working in spherical coordinates, we have to transformourtensorstothesphericalcoordinatesystem.Thus Finally, toobtainthesystemofequationsforthecoefficients α incartesaian: wemultiplybyPn(cos(θ))(fornormalizationoftheLegendre Polynomials=andintegrateover 2n+1(cid:82)πdθ Weobtainthatall   n 0 α 0 0 odd coefficients are zero, and that the coefficients B and D ⊥ l l αcart = 0 α⊥ 0 (D4) decayasexpectedwithincreasingl. 0 0 α (cid:107)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.