Astronomy&Astrophysicsmanuscriptno.LGuaita˙ArXiv (cid:13)c ESO2015 January13,2015 The Lyman alpha reference sample: IV. Morphology at low and high redshift (cid:63) L.Guaita1,J.Melinder1,M.Hayes1,G.O¨stlin1,J.Gonzalez1,G.Micheva1,2,A.Adamo1,J.M.Mas-Hesse4,A. Sandberg1,H.Ot´ı-Floranes5,14,D.Schaerer3,6,A.Verhamme6,E.Freeland1,I.Orlitova´7,P.Laursen8,J.M.Cannon9, F.Duval1,T.Rivera-Thorsen1,E.C.Herenz10,D.Kunth11,H.Atek12,J.Puschnig1,P.Gruyters13,andS.A.Pardy14 1 DepartmentofAstronomy,OskarKleinCentreforcosmoparticlephysics,StockholmUniversity,AlbaNova,StockholmSE-10691, Sweden 2 SubaruObservatory,Hilo,Hawai,USA 3 CNRS,IRAP,14,avenueEdouardBelin,F-31400Toulouse,France 5 4 CentrodeAstrobiolog´ıa(CSIC–INTA),DepartamentodeAstrof´ısica,POB78,VillanuevadelaCan˜ada,Spain 1 5 InstitutodeAstronom´ıa,UniversidadNacionalAuto´nomadeMe´xico,Apdo.Postal106,EnsenadaB.C.22800,Mexico 0 6 GenevaObservatory,UniversityofGeneva,51ChemindesMaillettes,CH-1290Versoix,Switzerland 2 7 AstronomicalInstituteoftheAcademyofSciencesoftheCzechRepublic,Bocˇn´ıII1401/1a,CZ-14100Praha4,CzechRepublic n 8 DarkCosmologyCentre,NielsBohrInstitute,UniversityofCopenhagen,JulianeMariesVej30,DK-2100Copenhagen,Denmark a 9 DepartmentofPhysicsandAstronomy,MacalesterCollege,1600GrandAvenue,SaintPaul,MN55105,USA J 10 Leibniz-InstitutfurAstrophysik(AIP),AnderSternwarte16,D-14482Potsdam,Germany 11 Institutd’AstrophysiquedeParis,UMR7095CNRS&UPMC,98bisBdArago,F-75014Paris,France 0 1 12 Laboratoired’Astrophysique,E´colePolytechniqueFe´de´raledeLausanne(EPFL),Observatoire,CH-1290Sauverny,Switzerland 13 DepartmentofPhysicsandAstronomy,UppsalaUniversity,Box515,75120,Uppsala,Sweden ] 14 CentrodeRadioastronom´ıayAstrof´ısica,UNAM,CampusMorelia,Mexico A 15 AstronomyDepartment,UniversityofWisconsin-Madison,475N.CharterStreet,Madison,Wisconsin,53706,USA G Accepteddate:Dec19th,2014 . h ABSTRACT p - o Aims.Withtheaimofidentifyingrest-frameUVandopticalproperties,typicalofLyαemitters(LAEs,galaxieswithEW(Lyα)>20 r Å)atbothlowandhighredshift,weinvestigatedthemorphologicalpropertiesoftheLARSgalaxies,inparticulartheonesthatexhibit t intenseLyαradiation. s a Methods.Wemeasuredsizesandmorphologicalparametersinthecontinuum,Lyα,andHαimages.Westudiedmorphologybyusing [ theGinicoefficientvsM20andasymmetryvsconcentrationdiagrams.WethensimulatedLARSgalaxiesatz∼2and5.7,performing thesamemorphologicalmeasurements.WealsoinvestigatedthedetectabilityofLARSgalaxiesincurrentdeepfieldobservations. 1 The subsample of LAEs within LARS (LARS-LAEs) was stacked to provide a comparison to stacking studies performed at high v redshift. 7 Results.LARSgalaxieshavecontinuumsize,stellarmass,andrest-frameabsolutemagnitudetypicalofLymanbreakanaloguesin 8 thelocalUniverseandalsosimilarto2 < z < 3star-forminggalaxiesandmassiveLAEs.LARSopticalmorphologyisconsistent 3 withtheoneofmergingsystems,andirregularorstarburstgalaxies.ForthefirsttimewequantifythemorphologyinLyαimages: 2 evenifavarietyofintrinsicconditionsoftheinterstellarmediumcanfavourtheescapeofLyαphotons,LARS-LAEsappearsmall 0 inthecontinuum,andtheirLyαiscompact.LARSgalaxiestendtobemoreextendedinLyαthanintherest-frameUV.Itmeansthat 1. LyαphotonsescapebyforminghaloesaroundHIIregionsofLARSgalaxies. 0 Conclusions.ThestackofLARS-LAELyαimagesispeakedinthecentre,indicatingthattheconditions,whichmakeagalaxyan 5 LAE,tendtoproduceaconcentratedsurfacebrightnessprofile.Ontheotherhand,thestackofallLARSgalaxiesisshallowerand 1 moreextended.ThiscanbecausedbythevarietyofdustandHIamountanddistribution,whichproducesamorecomplex,patchy, : andextendedprofile,liketheoneobservedforLymanbreakgalaxiesthatcancontributetothestack.Wecannotidentifyasingle v morphological property that controls whether a galaxy emits a net positive Lyα flux. However, the LARS-LAEs have continuum i propertiesconsistentwithmergingsystems. X r Keywords.techniques:imaging–galaxies:starformation–galaxies:starburst a 1. Introduction Hayes et al. (2005, 2009) and O¨stlin et al. (2009) devel- opedamethodtoseparatetherest-frameUVandLyαemission Originating mainly in recombining gas being ionized by hot O in Hubble Space Telescope (HST) data. In these papers it was andBstars,Lymanalpha(Lyα)radiationhasprovedanexcellent demonstratedobservationallythat,innearbygalaxies(z < 0.1), probe of star-forming galaxies at both low (e.g., Cowie et al. Lyαemissionextendsawayfromthestar-formingregionswhere 2011)andhigh(e.g.,Ouchietal.2010)redshift. the Lyα photons were originally generated, forming the so- calledLyαhaloes. Sendoffprintrequeststo:LuciaGuaita,e-mail:[email protected] (cid:63) Based on observations made with the NASA/ESA Hubble Space Young starburst galaxies are expected to be very bright in Telescope.Theseobservationsareassociatedwithprogramme12310. Lyα (Partridge & Peebles 1967). For the past 15 years, star- 1 L.Guaita:LARSatlowandhighz forming galaxies have been successfully detected at z > 2 by ACS/WFC F502N/F505N/F551N, F656N/F716N/F782N) identifyingtheirstrongLyαemissionline.Theprincipalmethod filters. Lyα maps were generated by estimating the continuum used is the narrow-band technique (e.g., Cowie & Hu 1998; at rest-frame λ(Lyα) = 1216 Å, through modelling the galaxy Rhoads et al. 2000; Ouchi et al. 2008; Gronwall et al. 2007; spectrum as a composite population of young stars, old stars, Nilssonetal.2009):Lyαemitters(LAEs)presentanexcessina and nebular gas. LARS images were published in Hayes et al. narrowband(coveringtheredshiftedLyαwavelength)withre- (2013) (hereafter Paper 0) and further analysed in Hayes et al. specttoabroad-bandfilter(coveringtherest-frameUVcontin- (2014)(hereafterPaperII).WefoundthattheLyαemissionpro- uum). Because Lyα photons are easily absorbed by dust grains file appeared different from the rest-frame UV and it flattened andarescatteredbyneutralhydrogen(HI),LAEswerethought onscaleslargerthantherest-frameUV.Themajorityofthe14 tobea specialpopulationofgalaxieswith specialdustandHI galaxies showed a negative Lyα equivalent width at small radii amountsanddistribution.Althoughextensivestudieshavebeen and then an increase farther out. We concluded that this was carried out to characterize LAE physical properties and their due to scattering on neutral hydrogen, which is able to shape special conditions (Nilsson et al. 2011; Acquaviva et al. 2012; the Lyα emission into the form of haloes. Also, by comparing McLinden et al. 2014; Vargas et al. 2014; Hagen et al. 2014, LARSLyαwithglobalphysicalproperties,itappearedthatthe amongthemostrecentones),theresultshavebeeninconclusive. Lyαphotonescapewasfavouredinthesystemwithweakerdust The mechanisms (e.g., interstellar medium geometry and kine- reddeningandsmallstellarmass. matics)controllingtheescapeofLyαphotonarestilldebated. The neutral hydrogen content of LARS galaxies was pre- The morphology ofthe rest-frame UV and optical continua sented in Pardy et al. (2014) (hereafter Paper III). The spec- providesinformationaboutgalaxyformationandevolution(e.g., tral lines of HI were detected in 11 of the 14 observed LARS star-formingregiondistribution,mergerevents,Conselice2003; galaxiesanditwasalsofoundthattheLyαescapewasfavoured Lotz et al. 2004). From the ground LAEs were observed to be inlowHI-masssystems.LARSinterstellarmediumkinematics compact in the rest-frame UV, but multiple components were will be presented in Rivera-Thorsen & Hayes (2015) (submit- identified in deep HST-resolution images (Bond et al. 2009, ted),inDuvaletal.(inprep),andinOrlitova´ etal.(inprep). 2012).Therehavealsobeenafewattemptstoquantifythemor- Inthispaper,numberIVoftheseries,weaddresstheques- phologyoftheLyαemissionitself.Bondetal.(2010)explored tionwhetherspecificgalaxymorphologicalpropertiescouldbe a sample of seven LAEs placed at z (cid:39) 3.1 (observed-frame relatedtotheescapeofLyαphotonsandescapeinhaloes.Note λ(Lyα)∼5000Å)byusingHSTWFPC2(WideFieldCamera2) thatinPaperIthepresentpaperwastermedpaper7,duetoapre- F502N narrow-band imaging. They found that, for one source, viousnumbering.InSec.2,webrieflyexplainhowwemeasured Lyα emission extended till 1.5 kpc (≤ 1 kpc for the other six), morphologicalparameters(detailsaregiveinAppendixA)and a just-slightly-larger scale than the UV continuum. Also, this theprocessadoptedtosimulatehowsomelocal(z<0.2)galax- sourcewascomposedoftwomainclumpsbothintherest-frame ieswouldappearathighredshift(z > 2).InSec.3,wedescribe UVandinLyα.Finkelsteinetal.(2011a)spatiallyresolvedthree themorphologicalpropertiesofthesampleoflocalgalaxiesand spectroscopicallyconfirmedLAEsplacedatz (cid:39) 4.5(observed- compare them with local-Universe and high-z galaxy popula- frame λ(Lyα) ∼ 6570 Å) by using the HST ACS (Advanced tions. In Sec. 4, we study the morphological properties of the CameraforSurveys)F658Nnarrowband.Twooutofthethree high-z-simulatedgalaxies.InSec.5,wepresentthestackingof systemsshowedLyαemissionsignificantlymoreextendedthan the high-z-simulated sampleand comparewith high-z stacks in theUVcontinuum. the literature. In Sec. 6 and 7, we discuss and summarize the mainresultsofthepaper. Recently, evidence of extended Lyα emission was found in ThroughoutweadoptABmagnitudesandassumeaΛCDM the stack of a large sample of Lyman break galaxies, (Steidel et al. 2011), generally more massive and dustier than LAEs, cosmologyof(H0,Ωm,ΩΛ)=(70kms−1 Mpc−1,0.3,0.7)asin Hayesetal.2013,2014. andofgalaxieslocatedinoverdenseandnot-overdenseregions (Matsudaetal.2012).Bystackinghundredsofz(cid:39)2.2,z(cid:39)3.1, z (cid:39) 3.7, and z (cid:39) 5.7 LAEs from deep ground-based imaging, 2. Method Momose et al. (2014) discovered extended Lyα emission, with scalelengthsof5−10kpc.However,bystackingtheirsampleof Wepresentthemorphologyofthelocal(0.03 < z < 0.2)LARS LAEsFeldmeieretal.(2013)justfoundamarginaldetectionat galaxiesandinvestigatehowitwouldchangeifthesamegalax- z ∼ 3.1andanon-detection(z (cid:39) 2.07).Itisclearthatdepthand ieswereobservedathighredshift.Asexplainedabove,inPaper imageresolutionwerethemainfactorsaffectingtheirresults. II we isolated the contributions of the rest-frame UV (∼ 1220 Instead, giant Lyα nebulae, powered by active galactic nu- Å),optical(∼6570Å),Lyα(1216Å),andHα(6563Å).Inthis clei, have been studied by a few authors to assess the role of work, we measure the morphological parameters of these con- HIscatteringandLyαradiativetransfereffects(e.g.,Humphrey tributions. The LARS galaxies are hereafter referred to as Ln, etal.2013a;Prescottetal.2014) wherenrangesfrom01to14(seePaper0). Local starbursts (Overzier et al. 2008, 2009, 2010; Hayes etal.2013,2014;Pettyetal.2014;O¨stlinetal.2014)areunique 2.1. Morphologicalparameterestimation laboratoriestostudytherest-frameUVindetailandopticallight distribution, morphology, and to investigate the mechanisms, WiththeaimofquantifyingthemorphologyofLARSgalaxies, which allow Lyα photons to escape. In O¨stlin et al. (2014) we calculated their sizes and performed non-parametric mea- (hereafter Paper I) we presented the Lyman alpha reference surements of morphological parameters (see Appendix A and sample(LARS),whichiscomposedof14star-forminggalaxies Fig.A.1fordetails). at z < 0.2. These galaxies were observed during HST cycle 18 We calculated sizes, in terms of Petrosian semi-major axis (P.I. G. O¨stlin) in a set of rest-frame UV (ACS/SBC F125LP, (rP20,e.g.,Lotzetal.2004;Lisker2008),circularPetrosianra- F140LP, F150LP) and optical (WFC3/UVIS F336W/F390W, dius (Petrosian 1976), and radii containing 20%, 50%, 80% of F438W/F475W, F775W/F850LP, F502N, F656N, and theflux(r ,r ,r ).Acomparisonbetweentheseradiigivesan 20 50 80 2 L.Guaita:LARSatlowandhighz idea of the distribution of the light in the galaxy. We also esti- – Asymmetryvsconcentration,asymmetryvsclumpiness,to- mated asymmetry (A), concentration (C), clumpiness (S), Gini gether with clumpiness vs concentration, as presented by coefficient (G), and second-order moment of the brightest 20% Conselice(2003) of the galaxy’s flux (M20, see e.g., Conselice 2003; Lotz et al. – GinicoefficientvsM20bright-pixelmoment,aspresentedin 2004;Scarlataetal.2007;Michevaetal.2013). Lotzetal.(2004). Theasymmetryquantifiesthesymmetryofagalaxywithre- specttoa180-degreerotation;theconcentrationdescribeshow Theconcentrationdependsonthegalaxystar-formationhis- much the light is concentrated in the centre of a galaxy; the toryinthesensethatarapidgravitationalcollapsecanproduce clumpinessmeasurestheamountofsmall-scalestructureswithin high concentration. The presence of disk and intergalactic gas a galaxy; the Gini coefficient provides the information on how whichcoolsontothedisktendstoproducealowerconcentration uniformisthelightdistribution;M20tracesthespatialdistribu- value.Diskgalaxiesarecharacterizedby3 <C< 4,ellipticals tionofanybrightknots,andalsooff-centreclumps,itsdefinition by C > 4 (Bershady et al. 2000). The asymmetry is sensitive isverysimilartothatofC,butM20ismoresensitivetomerger toanyfeaturethatproducesasymmetriclightdistributions(e.g., structures,suchasoff-centrecomponents. star-formationknots,interactions,andmergers).Itiscommonly We first ran the Source Extractor (SExtractor) software assumedalsoathighzthatlargeasymmetry(A>0.38)indicates (Bertin & Arnouts 1996). It provided the galaxy centroid and a major merger (Aguirre et al. 2013; Conselice 2003). Spiral the elliptical aperture, containing the entire galaxy and charac- galaxies and systems composed of more than one component terizedbysemi-majoraxis(sma)equaltorP20.Thephotometry arecharacterizedbyA> 0.1.Theclumpinessissensitivetothe wasperformedwithinthisSExtractordetectionaperture. presence of star-forming clumps as well, but background noise We adopted configuration parameters like in Bond et al. canmakeitdifficulttodetectlowsurfacebrightnessregionsand (2009) (DETECT THRESH =1.65, DETECT MINAREA=30, increase the appearance of the galaxy as a mix of clumps. The DEBLEND MINCONT=1). They were optimized to provide GinicoefficientcanbestronglycorrelatedwithC.Bydefinition, morphological measurements in deep HST rest-frame UV ob- G=1meansthatthelightisallconcentratedinonepixel,G=0 servationsatz > 2.TopreventSExtractorfrombreakingupthe that the light is equally distributed across the galactic body. In clumpy, resolved z ∼ 0 LARS galaxies into smaller fragments, thecaseofashallowlightprofile,bothGandCarelow.When weassumedalargervalueofDETECT MINAREA.Thisparam- more than one clump contains a significant fraction of light, G etersetsthenumberofcontiguouspixelsrequiredforadetection can be much larger than zero, but C still low. M20 traces the tobeacceptedbySExtractor.WemeasuredfluxesatSExtractor spatialdistributionofoff-centrebrightregions. centroid within elliptical apertures, by using the ELLIPSE task In general, starburst and irregular galaxies are expected to in iraf.stsdas.isophote and within circular apertures, by using havelargeA,largeS,andintermediateC,mergingsystemsand the PHOT task in iraf.digiphot.apphot. ELLIPSE and PHOT perturbeddisksshowlargeM20andintermediateG. outputs served to infer sizes, A, and C at minimum asymmetry (CminA),as explainedin AppendixA andpreviously adoptedin 2.3. High-redshiftsimulation Bershadyetal.(2000);Conselice(2003);Michevaetal.(2013). The non-parametric measurements and signal-to-noise es- WesimulatedtheobservationsofLARSgalaxies(allatz<0.2) timations were performed counting the flux of pixels belong- at higher redshift by transforming their original science- and ing to a segmentation map. We defined the segmentation map weight-map images (Paper I) according to the following steps in two ways, one is an ellipse with semi-major axis equal to (seealsoOverzieretal.2008;Adamoetal.2013). rP20(Scarlataetal.2007)andorientationgivenbySExtractor; one contains the pixels with surface brightness larger than the 1. Theimageswereresampledpreservingtheflux(IDLfrebin valueatthePetrosianradius(Lotzetal.2004)measuredinthe function).Thesizeoftheoutputimagewasdefinedbyfixing smoothed image (smoothed by a kernel of width rP20/5). We the physical size of the galaxies. We chose mainly a z ∼ 2 calculated M20, S and Gini coefficient by considering the pix- sampling to be able to compare with the interesting results elswithinthesesegmentationmaps.TheGinicoefficientsmea- obtained by surveys of Lyman alpha emitters in the last re- suredinthesetwosegmentationmapsaredenotedbyGrP20 and cent5years(Nilssonetal.2009;Guaitaetal.2010;Hayes GSB−rp20S respectively. As described in Scarlata et al. (2007), etal.2010;Nakajimaetal.2012,Sandberginprep.).Also, GrP20wasdefinedtobeconsistentforredshiftcomparisons,thus thesizechangesalittlewithredshift. wepreferitoverGSB−rP20S throughoutthepaperwhenwecom- 2. Continuum subtraction (Hayes et al. 2009) was applied to parewithhighredshift. theresampledimagestogeneraterest-frameUVcontinuum To test our code, we applied it to template galaxies with andLyαline,rest-frameopticalcontinuumandHαlineim- known profiles and compared the output to the results by ages. The line images are in units of flux (erg sec−1cm−2), Bershadyetal.(2000)andLotzetal.(2006).Werecoveredthe whilethecontinuumimagesareinunitsoffluxdensities(erg expectedvaluesasdescribedinAppendixA. sec−1cm−2Å−1). 3. The image pixel values were scaled based on luminosity distance and surface brightness dimming (i.e., Hubble & 2.2. Combinationofmorphologicalparameters Tolman1935;Bouwensetal.2004). AsshowninConselice(2003)andLotzetal.(2004),combina- 4. Gaussiannoise,correspondingtoacertainsimulatedsurvey tions of morphological parameters can give information about depth, was added to the resampled and rescaled images by galaxyhistory(e.g.,star-formationandmergingepisodes).First runningtheMKNOISEtaskiniraf.artdata.Tocalculateun- of all the rest-frame UV morphology is sensitive to the current certainty on galaxy sizes and morphological parameters we star formation; the rest-frame optical traces the structure of the performed Monte Carlo simulations by repeating 100 real- entire galaxy stellar population (Lee et al. 2013; Bond et al. izationsofanoisyimage.Thenoiseappliedwasdefinedas 2014). The combinations of parameters (see previous section) the10σdetectionwithina∼50pixel(equivalenttoasquare weadoptedare, apertureof∼0.2”onasideforHSTACSopticalfilters)area, 3 L.Guaita:LARSatlowandhighz similartothelimitsgivenfortheHUDF(HubbleUltraDeep – Star-forminggalaxiesselectedbasedontheirB−zandz−K Field,Beckwithetal.2006).Wedonotshowsimulationsin colour(sBzK,Yumaetal.2012;Leeetal.2013);passiveand whichweonlyresampledthepixelscaletothatofaground- star-forminggalaxiesselectedbasedontheirB−zandz−K based telescope and instrument, because the main effect on colour(pBzKandsBzKLeeetal.2013) continuum and line images was produced by survey depth – Star-forming galaxies at z ∼ 2 − 3 by Law et al. (2012). andground-basedpointspreadfunction(PSF,seeSec.5). These authors found a typical value of the Gini coefficient (GSB−rP20S = 0.4) for the sources with the strongest Lyα Tochoosereasonablerangesofdetectionlimits(Table1)to emission,characterizedbyM ∼1.5×1010M(cid:12) ∗ apply, we referred to the MUSYC (MUlti-wavelength Survey – GOODS (Great Observatories Origins Deep Survey) and byYale-Chile)NB3727narrowband(Guaitaetal.2010;Bond UDF(UltraDeepSurvey)z∼4andGOODSz∼1.5sources etal.2012),tothetriplenarrowbandbyNakajimaetal.(2012), fromthestudyofLotzetal.(2006) CANDELS/HUDF(McLureetal.2013)broadband,andtothe – Sub-millimetergalaxies(SMGs,Aguirreetal.2013) dualnarrow-bandsurveybyLeeetal.(2012). – Narrow-bandselectedLymanalphaemittersatz (cid:39) 2.07and z (cid:39) 3.1 (Bond et al. 2009, 2012) belonging to the MUSYC 3. LARSgalaxiesatz ∼ 0 survey.Weconsideredthestackofthez∼2.07entiresample andofsubsamplesseparatedbyphotometricproperties,UV- To be able to compare the Lyα, Hα, and continuum properties faint(UV-bright)withR > 25.5(< 25.5),IRAC-faint(IRAC- ofLARSgalaxieswiththoseofhigh-zLyαemitters(LAEs),we bright) with f < 0.57(> 0.57) µJ, low-(high-)EW with 3.6µm focused on the twelve LARS galaxies with EW(Lyα) > 1 Å EW(Lyα)<66(>66)Å,red-(blue-)LAEwithB−R>0.5(< as measured in Paper II. Thus, we excluded from this analysis 0.5)(Guaitaetal.2011). the two galaxies of the sample (L04 and L06) characterized by – Narrow-bandselectedLymanalphaemittersatz ∼ 5.7,6.5, null Lyα maps. LARS galaxies with integrated EW(Lyα) > 20 and7.0(Jiangetal.2013),thefirstvery-high-redshiftsample Å composed the subsample of LARS-LAEs (consisting of six where non-parametric morphological measurements were galaxies).VariousphysicalcharacteristicsoftheLARSgalaxies performed. (includingtheircoordinates)arediscussedinPaperII. In Fig. 11 we present the RGB images of the twelve LARS The local-Universe studies, we adopted for comparison, in- galaxies. Most of the galaxies show localized knots of star for- clude, mationsuperposedonextendedrest-frameopticalemission;the Lyα emission is extended on larger angular scales (the Lyα – SloanDigitalSkySurvey(SDSS)early-andlate-typegalaxy haloes). relationsobtainedfromtheanalysisofimagesinthezband WeinvestigatedthepropertiesofLARSgalaxiesinthecon- (Shenetal.2003) text of other galaxy populations, to assess the fairness of our – Lyman break analogues (LBAs) at z (cid:39) 0.2. These are comparison. In Figs. 2 and 3 we show the location of the local starbursts that share typical characteristics of high-z LARS galaxies in the half-light radius vs stellar mass (r vs LBGs,suchasstellarmass,metallicity,dustextinction,star- 50 log(M /M )) and the half-light radius vs UV absolute magni- formation rate, and physical size. We considered a sample ∗ (cid:12) tude (r vs M ) diagrams, to understand if the LARS galax- of 30 LBAs from Overzier et al. (2009, 2010). They were 50 UV ies harbour stellar masses and UV magnitudes comparable to characterizedbyamedianabsoluteUVmagnitudeof-20.3, valuesintheliterature.Thesediagramshavebeendesignedfor almostonemagnitudefainterthantypicalLBGs. local galaxies, for which sizes could be easily measured in the rest-frameopticalbands(Shenetal.2003).However,measure- WefoundthattheLARSgalaxiesoccupyaquitewiderange mentsintherest-frameUVcouldalsobeperformedathighred- of r . Their rest-frame UV and optical sizes (Table 2) are 50 shift. Following the method described in Sec. 2, we estimated broadly consistent with LBAs, LBGs, and SMGs. Their stellar the half-light radius as r in the rest-frame optical and also in mass tend to be larger than LAEs, consistent with LBAs and 50 therest-frameUVimages. LBGs. However, there is an overlap in stellar mass between Thehigh-zstudiesweadoptedforcomparisonallperformed LARS-LAEs (M∗ < 1010 M(cid:12)) and the most massive LAEs in size and morphological measurements by using HST images. thesampleofBondetal.(2012).Also,LARSgalaxiesareless Theseinclude, massivethancSFGs.Thelargesthalf-lightradiicharacterizethe LARS galaxies with the most distorted morphology (see also – Continuum-selectedLymanbreakgalaxies(LBGs)atz ∼ 3, Fig. B.2). LARS M magnitudes (and so star-formation rate, UV withandwithoutLyαinemission(Pentericcietal.2010);at SFR )arecomparablewiththoseofz (cid:39) 2.07LAEsandz ≥ 7 UV z ∼ 1,2,and3(Moslehetal.2011),at1.5 < z < 3.6(Law LBGs.Thereisanoverlapwithz>5LAEs.However,themea- etal.2012);atz∼1.8(Lotzetal.2004);z-dropoutsatz∼7 surements of LARS sizes in the rest-frame UV are larger than (Grazianetal.2012);highsignal-to-noisez-andY-dropouts thoseofz≥7LBGs. detectedintheHubbleUltraDeepField,UDF12(Onoetal. Therefore, LARS galaxies could be considered as LBAs, 2013) with size, stellar mass, and star-formation rate similar to 2 < – Compactstar-forminggalaxies(cSFGs)at2 < z < 3(Barro z<3star-forminggalaxies. et al. 2013). These authors have pointed out that, based on their number densities, masses, sizes, and star formation rates, z ∼ 2−3 compact, star-forming galaxies were likely 3.1. ContinuummorphologyofLARSgalaxiesatz∼0 progenitorsofcompact,quiescent,massivegalaxiesatz<2 FollowingthemethoddescribedinSec.2,weestimatedthenon- 1 We took advantage of this codification of the Lupton parametricmeasurementsfortheLARSgalaxies(Table3). et al. (2004) prescription to produce RGB images: Combinations of morphological parameters (see Sec. 2.2) http://dept.astro.lsa.umich.edu/∼msshin/science/code/ can give information about a galaxy’s star-formation history. Python fits image/ Lotz et al. (2004) proposed a criterion for separating perturbed 4 L.Guaita:LARSatlowandhighz Table1:10σdetectionlimitsappliedtohigh-zsimulatedLARSimages F(Lyα) m(rest-frameUV) F(Hα) m(rest-frameoptical) ergsec−1cm−2 AB ergsec−1cm−2 AB 5E-19 30 2E-19 29 3E-18 29 6E-19 28 8E-18 28 1E-18 27 2E-17 27 3E-18 26 5E-17 26 1E-17 25 Notes. Noise corresponding to the detection limits given in the table was added to LARS continuum and line images. As LARS Lyα and Hα(rest-UVandopticalcontinua)imagesareinunitsofflux(fluxdensity),theimagedepthsaregiveninunitsofergsec−1cm−2(ABmagnitudes). The MUSYC (Guaita et al. 2010; Bond et al. 2012) NB3727 survey implied a 10σ detection limit of F(Lyα)=5E-17 erg sec−1cm−2. MUSYC U,B(HUDFV606)10σdetectionlimitswereabout26(29.5).AssumingaNB3727filterwidthandtransmissionprofile,asourcewithm (rest- AB frame UV)=30 and EW(Lyα) = 20 Å is characterized by F(Lyα)=5E-19 erg sec−1cm−2. m (rest-frame UV) = 30,29,28 are consistent with AB HUDF09,GOODS,andGEMSsurveydepths(Bondetal.2009).Leeetal.(2012)surveywascharacterizedbya10σdetectionlimitof22.9 in NB210 and 23.7 in K. CANDELS wide(deep) F160W 10σ detection limit was 25.8(26.5). Assuming a NB210 filter width, a source with m (rest-frameoptical)=27andEW(Hα)=20ÅischaracterizedbyF(Hα)=2E-19ergsec−1cm−2. AB Fig.1:False-colourimagesoftheLARSgalaxiesanalysedinthispaper.Redencodesrest-frameopticalcontinuum,greenrest-frameUVcontin- uum,andblueshowscontinuum-subtractedLyα.Scalesinkpcaregivenontheside.Intensitycutlevelsaresettoshowdetails. disks or merging systems from normal galaxies, by studying identify merging systems, GSB−rP20S > −0.14 × M20 + 0.33. local ultra luminous infrared galaxies (ULIRGs). The crite- Also,Conselice(2003)distinguishedtheregionwhereirregular rion identifies a region in the G vs M20 diagram, which is orstarburstgalaxieswerelocatedintheA-CminAandA-Splanes. GSB−rP20S > −0.115 × M20 + 0.384. For z < 1.2 galaxies AsseeninFig.4andTable3,LARSgalaxies,inparticular observed in a rest-frame optical band (4000 Å) at HST resolu- the LARS-LAEs, tend to avoid the location of normal galax- tion, Lotz et al. (2008) proposed a slightly different relation to iesandtooccupytheregionofperturbeddisksormergingsys- temsandofirregularorstarburstgalaxies.ThevaluesofG,M20, 5 L.Guaita:LARSatlowandhighz Table2:SizeoftheoriginalLARSgalaxiesatz∼0 (1) (2) (3) (4) (5) (6) (7) LARS rP20ell rP20circ rP20minA r r r 20 50 80 kpc kpc kpc kpc kpc kpc rest-UV L01 2.63 1.34 0.81 0.86 1.20 2.11 L02 2.42 2.28 1.49 0.69 1.28 2.17 L03 1.40 0.97 0.77 0.33 0.63 1.17 L05 1.71 1.46 0.84 0.35 0.69 1.45 L07 1.13 0.90 0.81 0.33 0.60 0.95 L08 5.98 3.35 2.08 1.67 3.01 4.96 L09 18.72 1.11 0.59 2.73 8.52 13.81 L10 4.73 3.71 3.09 0.77 2.08 3.93 L11 23.77 18.56 18.56 6.12 12.21 19.41 L12 1.84 1.20 1.05 0.41 0.75 1.76 L13 4.42 3.70 1.23 1.95 2.47 3.75 L14 1.83 1.71 0.98 0.67 0.98 1.52 rest-optical L01 4.87 2.15 2.44 1.28 2.11 4.01 L02 7.12 2.23 2.51 1.08 2.63 5.62 L03 5.73 1.98 1.83 0.72 2.00 4.59 L05 2.32 1.79 1.84 0.41 0.98 1.79 L07 3.95 2.89 1.96 0.62 1.51 3.18 L08 5.28 3.17 3.29 1.48 2.63 4.22 L09 20.54 3.06 2.07 5.98 10.27 14.74 L10 7.14 3.93 3.93 1.08 2.83 5.57 L11 19.13 14.52 14.52 4.83 9.82 15.43 L12 3.68 3.15 1.20 0.64 1.46 2.97 L13 11.41 5.04 5.35 2.31 5.30 9.15 L14 3.72 3.78 1.22 0.73 1.28 2.80 Notes.SizemeasurementsfromellipticalandcircularaperturephotometryoftheoriginalLARSimages.(1)LARSid,(2)Petrosiansemi-major axis,(3)circularPetrosianradius,(4)Petrosianradiusatminimumofasymmetry,(5)radiuscontaining20%,(6)50%,and(7)80%ofthetotal flux.Themeasurementswereperformedinthebandscorrespondingtotherest-frameUV(eitherF140orF150)andtotherest-frameoptical(either F775,F814,orF850).Thestepinsemi-majoraxisis1pixel(∼0.02kpcatz∼0.03)andincircularradiusis2pixels(∼0.05kpcatz∼0.03). Table3:MorphologicalparametersoftheoriginalLARSgalaxiesatz∼0 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) LARS GrP20 GSB−rP20S M20 ell Ccirc Cell CminA SN A S pixel rest-UV L01 0.70 0.68 -0.87 0.61 1.34 1.94 1.73 251.40 0.42 0.16 L02 0.73 0.72 -0.79 0.53 3.14 2.50 3.49 52.26 0.50 0.26 L03 0.63 0.64 -1.17 0.30 2.20 2.71 2.76 83.18 0.21 0.11 L05 0.72 0.68 -1.26 0.34 3.11 3.07 3.27 408.69 0.33 0.15 L07 0.62 0.62 -1.02 0.40 1.99 2.28 1.24 696.00 0.26 0.09 L08 0.62 0.65 -0.89 0.33 1.95 2.36 1.43 21.98 0.37 0.29 L09 0.71 0.75 -2.33 0.80 1.76 3.52 3.35 23.86 0.21 0.24 L10 0.67 0.68 -1.52 0.52 3.53 3.53 2.76 32.83 0.33 0.24 L11 0.58 0.79 -1.22 0.87 3.40 2.51 3.40 44.05 0.30 0.31 L12 0.67 0.68 -1.50 0.34 2.56 3.15 2.82 583.81 0.28 0.04 L13 0.72 0.67 -0.77 0.21 1.23 1.42 2.61 89.17 0.33 0.23 L14 0.74 0.68 -0.71 0.27 1.51 1.78 2.72 622.68 0.21 0.02 rest-optical L01 0.59 0.61 -1.09 0.64 1.72 2.48 2.53 21.91 0.29 0.09 L02 0.59 0.64 -1.36 0.69 2.96 3.58 2.89 4.25 0.14 0.31 L03 0.61 0.62 -2.16 0.45 3.32 4.02 3.42 50.72 0.09 0.05 L05 0.64 0.67 -1.57 0.73 3.27 3.22 4.77 64.96 0.33 0.15 L07 0.60 0.61 -1.68 0.60 3.28 3.56 2.97 14.60 0.24 0.10 L08 0.54 0.55 -1.05 0.23 2.10 2.28 1.78 36.82 0.31 0.16 L09 0.62 0.74 -1.13 0.83 2.03 1.96 4.35 11.38 0.45 0.34 L10 0.57 0.58 -1.87 0.54 3.08 3.56 3.31 9.95 0.13 0.15 L11 0.50 0.60 -1.25 0.85 3.46 2.52 3.46 18.70 0.20 0.23 L12 0.64 0.63 -1.90 0.46 3.70 3.34 3.35 54.74 0.33 0.13 L13 0.58 0.62 -1.52 0.55 2.43 2.99 3.67 3.98 0.18 0.30 L14 0.76 0.72 -1.32 0.10 2.92 2.92 3.01 35.24 0.32 0.13 Notes. Morphological parameters estimated for the original LARS galaxies, following the equations in Appendix A. (1) LARS id, (2) Gini coefficientestimatedwithinthefixed-sizesegmentationmap,(3)Ginicoefficientestimatedwithinthesegmentationmapbuiltfromthepixelswith surfacebrightnesslargerthanthevaluecorrespondingtothatatthePetrosianradius,(4)M20,(5)SExtractorellipticity1-B/A,(6)concentration fromcircularapertures,(7)concentrationfromellipticalapertures,(8)concentrationcorrespondingtotheminimumofasymmetry,(9)signal-to- noiseperpixel,(10)asymmetry,(11)clumpiness.AsdiscussedinAppendixA,wecouldexpectanuncertaintyof∼10%inG,of<5%inM20, andof∼20%inC.WecouldexpectanevenlargeruncertaintyinS.ThedifferenceinGrP20andGSB−rP20S isgenerallymarginal. 6 L.Guaita:LARSatlowandhighz Fig.2:Half-lightradiusmeasuredusingellipticalaperturesintherest-frameUV(upperpanel)andoptical(lowerpanel)asafunctionofstellar mass. LARS values at z ∼ 0 from this work (red diamonds) are shown together with previous rest-frame UV measurements: Overzier et al. (2009) individual LBA values estimated in the HST ACS/SBC F150LP and ACS/HRC F330W filter (open blue squares), Yuma et al. (2012) medianestimationsintheF850WfilterforsBzK(greenstar),Bondetal.(2012)LAEsamplestackandsubsamples(magentasquare,blueand magentastars,smallblackcircle),Aguirreetal.(2013)individualSMGvaluesmeasuredintheHSTF110Wfilter(bigblackdots),andPentericci etal.(2010)averagevaluesofLBGswithandwithoutLyαinemission(greendots);andrest-frameopticalmeasurements:Overzieretal.(2009) individual LBA values estimated in the HST (Wide Field and Planetary Camera2) WFPC2/F606W and ACS/WFC F850LP filter (open blue squares), Yuma et al. (2012) median estimations in the F160W filter for sBzK (green star), Mosleh et al. (2011) median values of UV-bright sources(GALEX-LBGsatz ∼ 0.6−1.5,LBGatz ∼ 2.5−3.5,andcontinuum-selectedstar-forminggalaxiesatz ∼ 1.5−2.5,bluediamonds), Aguirreetal.(2013)individualSMGvaluesmeasuredinF160Wfilter,Lawetal.(2012)meanvalueofallthesampleofstar-forminggalaxiesat 1.5<z<3.6estimatedintheF160Wfilter(yellowtriangles),andBarroetal.(2013)valuesforcompactstar-forminggalaxiesat2<z<3also calculatedintheF160Wfilter(greentriangles).WealsoshowthecurvederivedbyShenetal.(2003)forlocalSDSSearly-andlate-typegalaxies. Asthesecurveswereobtainedinz-bandsforlocalgalaxies,itismoremeaningfultocomparethemtotheradiiintherest-frameoptical.However, forreference,weshowthemintheupperpanelaswell.ThestellarmassesareallcorrectedtoSalpeter-IMFvaluesandthesizemeasurementsare allscaledtobecomparabletohalf-lightradii.LARSstellarmasseswerecalculatedinPaperII.L09andL11areoutsidethegraph,duetotheir half-lightradiuslargerthan6kpc. C,andA,wecalculatedforLARSgalaxies,areconsistentwith ter, characterized by one of the smallest stellar masses and the the ones measured by Overzier et al. (2010) for LBAs. Even if largestGSB−rP20S amongtheLARS-LAEs. our sample is just composed of twelve sources, we do not see any significant dependency between G and EW(Lyα). L08 is themostmassiveoftheLARS-LAEs,butequallyconcentrated withinthesegmentationmap.L02isthelargest-EW(Lyα)emit- 7 L.Guaita:LARSatlowandhighz Fig.3:Half-lightradiusmeasuredusingellipticalaperturesintherest-frameUVimageasafunctionoftheabsoluterest-frameUVmagnitude. LARSmeasurementsfromthiswork(reddiamonds)areshowntogetherwiththeliteratureestimationsbyOverzieretal.(2010)correspondingto themedianvalueoftheirz < 0.3LBAs,observedinthenear-infraredbands,byJiangetal.(2013)forasampleofz ∼ 5.7,6.5,7.0LAEs(cyan dots),byBondetal.(2012)forthestackandsubsamplesofLAEsatz (cid:39) 2−3(blackcircles,magentasquares),byGrazianetal.(2012)which measuredSExtractorhalf-lightradiiforasampleofz-dropouts(greentriangles),andbyOnoetal.(2013)forasampleofhighsignal-to-noisez- andY-dropoutsdetectedinHubbleUltraDeepField,UDF12(blackstars). 3.2. LyαmorphologyofLARSgalaxiesatz∼0 survey,thefaintconnectingstructurestendtobelostinthenoise andagalaxyappearstobecomposedofseparatedclumps.Inthat One of the goals of our work was to quantify and compare the caseSExtractoridentifiesmorethanonesourceandphotometry morphologies of LARS galaxies in Lyα and in the continuum. is performed by locating the photometric aperture around the Wepresentmorphologicalparametersmeasuredinthecontinua brightestclump.InFigs.B.1,B.2,andB.3,weshowhowLARS and in Lyα of LARS images in Figs. 5 and 6. GrP20, M20, galaxieswouldappearifdetectedinthedeepestcontinuumand concentration,andellipticityaresmaller;whileclumpinessand linesurveyssimulatedhere,whileFigs.B.4,B.5,andB.6show asymmetry are generally larger in Lyα than in the rest-frame theresultsforshallowersurveys.InAppendixC,wepresentthe UV continuum. The LARS-LAEs tend to be characterized by correspondingsurfacebrightnessprofiles. thehighestconcentration,lowestasymmetry,andlowestclumpi- nessinLyα.GrP20 andM20measuredintherest-frameoptical In the following sub-sections, we describe the detection of LARSgalaxiesinthesimulatedsurveyswith10σdetectionlim- areconsistentwiththevaluesmeasuredinLyα. itspresentedinTable1.Inthefirstsub-section,wegivedetails onthedetectionofL01asanexample.Weproceedtodescribe 4. LARSgalaxiesasseenatz ∼ 2 thecasesoftheLARS-LAEsandofthegalaxieswiththefaintest Lyα emission. Then, we explain the variations in size and el- We applied the procedure described in Sec. 2.3 to simulate lipticity versus clumpiness owing pixel resampling and survey LARSgalaxiesatz ∼ 2.Wenamedthehigh-zsimulatedgalax- depth.InSec.4.6,wequantifythemorphologyofz2LARSand iesasz2LARSandthesubsampleofLyαemittersasz2LARS- comparewithhigh-zobservationsfromtheliterature. LAEs.Weestimatedsizesandcalculatedmorphologicalparam- eters (Tables 5 - 8 and 9-12) in the same way we did for the originalimagesinSec.2.1. 4.1. DetectionofL01inhigh-redshiftsurveys Thepurposeofthistestwastounderstandwhetherwecould expecttodetectLARS-typegalaxiesandLARS-typeLyαhaloes InFig.7,weshowtherest-frameUV,Lyα,optical,andHαim- incurrenthigh-zsurveys.Inparticular,wewantedtounderstand ages of L01 simulated to be at z ∼ 2 (z2L01) as they would how galaxy size and morphological parameters changed when beobservedinthedeepestsurveysprobedhere;SExtractorde- varying the survey depth (Table 1). The results show that, in a tectionaperturesareover-plotted.Thedetectionparameterswe sufficientlydeepsurvey,faintgalaxystructuresinbetweenbright adoptedaresensitiveenoughthat(atthedeepestsimulatedsur- knotsremainconnectedtogetherandSExtractorisabletodetect veys)thisgalaxyisdetectedasasinglesource.Asdescribedin just one source (the entire galaxy) in the image. In a shallower detailinPaperIandII,L01consistsofabrightUVstar-forming 8 L.Guaita:LARSatlowandhighz Fig.4:Combinationsofrest-frameopticalmorphologicalmeasurements,usedintheliteratureasdiagnosticsofgalaxypastandcurrenthistory. GSB−rP20S vsM20(upperleft),AvsCminA (upperright),andAvsS(lowerright).Thelowerleftpanelshowsstellarmassvstherest-frame UVGSB−rP20S.ThetypicalvalueofGSB−rP20S = 0.4forthestrongestLyαemittersofthesamplebyLawetal.(2012)isreportedasaredstar. ThetwelveLARSgalaxiesanalysedherearepresentedassquares,LARS-LAEsareroundedbyopencircles.Thecolourscalecorrespondsto EW(Lyα).Forcomparison,greenstarscorrespondtotheFreietal.(1996)sampleofnormalgalaxiesandlightbluetrianglescorrespondtothe ULIRGsampleofBorneetal.(2000)asprocessedbyLotzetal.(2004).Blacktrianglescorrespondtoasampleofstarburstgalaxiespresentedin Conselice(2003).DashedandsolidlinescorrespondtotheseparationbetweenULIRGsandnormalgalaxies,proposedbyLotzetal.(2004)and Lotzetal.(2008)respectively(seetext). centre with an extended tail, also seen in Hα and in the rest- mlim =28andF(Lyα)lim =8E-18ergsec−1 cm−2.However, rest−UV frame optical. The Lyα emission is coincident with the bright on scales larger than 4 kpc, the profiles are indistinguishable UV knot and extends in a fan-like structure possibly indicating from the background noise. In shallower surveys, the profiles thepresenceofanexpandingbubble.Themainfeaturesofemis- start to be affected by the simulated-survey noise on smaller sion (dark red pixels in Fig. 7) and absorption (white pixels), scalesandz2L01couldnotbedetectedbyadoptingaSExtractor observed in Lyα thanks to the HST resolution and the careful detectionthreshold,DETECT THRESH=1.65.Therefore,size continuum subtraction presented in Paper II, are clearly visible and morphological parameter measurements could not be per- inthez∼2simulationaswell.However,theextremelydetailed formed either. We define mlim and F(Lyα)lim as the limits rest−UV Lyαstructuresclosetothecentreofthegalaxy(seePaperIFig. fordetectionandmorphologicalparametermeasurement.These 1)arenotvisible.ThelastpanelofFig.7showsL01Lyαimage, limitsaremlim =26andF(Hα)lim =3E-18ergsec−1cm−2 rest−optical convolved with a ground-based seeing. From the ground L01 forL01rest-frameopticalandHα. Lyαmorphologywouldappearsmoothed. Weshowthesurfacebrightnessprofilesofz2L01inFig.8. ThelowerleftpanelofFig.8showsthattherest-frameUV Therest-frameUVandLyαprofiles(leftcolumnpanels)arepre- continuumprofileissteeperthantheLyαprofile.Thelowerright served when observed in a survey with sensitivity deeper than panel shows that the rest-frame optical continuum tends to be 9 L.Guaita:LARSatlowandhighz Fig.5: Non-parametric measurements performed in the Lyα images versus the ones performed in the rest-frame UV. From the upper left to the lower right: GrP20, M20, CminA, A, S, and SExtractor ellipticity (1-B/A, where A and B are the semi-major and semi-minor axes of the detectionellipse).Thedashedlineindicatesthe1:1relation.ThenumbersreportedineachpanelcorrespondtotheSpearmantestcoefficient,r, andprobability,p,ofuncorrelateddatasets.r=0indicatesnocorrelation,r=1(-1)indicatesdirect(indirect)proportionality. shallowerthantherest-frameUVandtheHα,andmoresimilar outskirts. The Lyα emission is accompanied by regions of ab- totheLyαprofiles. sorption. As a typical trend, in increasingly shallower surveys the filaments, seen in the continua, show lower surface bright- ness,whiletheirLyαemissionbecomeincreasinglylocalizedin 4.2. DetectionoftheLARS-LAEsinhigh-redshiftsurveys thegalaxycentre.OnlyL14,thegalaxybrightestinLyα,could bedetectedintheshallowestLyαsurveyprobedhere.Themag- TheLARS-LAEgalaxiesshowmorethanonebrightknot,con- nitudeandfluxlimitsforz2LARS-LAEdetectionareshownin nectedbyfilaments,inthecontinua.Theyalsoshowanintense Table4. Lyα emission close to their centres and Lyα structures in their 10