ebook img

The long-wavelength thermal emission of the Pluto-Charon system from Herschel observations. Evidence for emissivity effects PDF

0.81 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The long-wavelength thermal emission of the Pluto-Charon system from Herschel observations. Evidence for emissivity effects

Astronomy&Astrophysicsmanuscriptno.27675˙final c ESO2016 (cid:13) January22,2016 The long-wavelength thermal emission of the Pluto-Charon system ⋆ from Herschel observations. Evidence for emissivity effects. E.Lellouch1,P.Santos-Sanz2,S.Fornasier1,T.Lim3,J.Stansberry4,E.Vilenius5,6,Cs.Kiss7,T.Mu¨ller6,G.Marton6, S.Protopapa8,P.Panuzzo9,andR.Moreno1 1 LESIA,ObservatoiredeParis,PSLResearchUniversity,CNRS,SorbonneUniversite´s,UPMCUniv.Paris06,Univ.ParisDiderot, SorbonneParisCite´,5placeJulesJanssen,92195Meudon,France e-mail:[email protected] 6 2 InstitutodeAstrof´ısicadeAndaluc´ıa-CSIC,GlorietadelaAstronom´ıas/n,18008-Granada,Spain. 1 3 EuropeanSpaceAstronomyCentre(ESAC),P.O.Box78,E-28691VillanuevadelaCan˜ada,Madrid,Spain 0 4 SpaceTelescopeScienceInstitute,3700SanMartinDrive,Baltimore,MD21218USA 2 5 Max-Planck-Institutfu¨rSonnensystemforschung,Justus-von-Liebig-Weg3,37077Go¨ttingen,Germany 6 Max-Planck-Institutfu¨rExtraterrestrischePhysik,Giessenbachstraße,85748Garching,Germany n 7 KonkolyObservatoryoftheHungarianAcademyofSciences,H-1121Budapest,KonkolyThegeMiklst15-17,Hungary a J 8 DepartmentofAstronomy,UniversityofMaryland,CollegePark,MD20742,USA 9 GEPI,Observatoire deParis,PSLResearchUniversity, CNRS,Univ. ParisDiderot, Sorbonne ParisCite´,5PlaceJulesJanssen, 1 92195Meudon,France 2 Received,November2,2015;Revised,December19,2015 ] P ABSTRACT E . ThermalobservationsofthePluto-CharonsystemacquiredbytheHerschelSpaceObservatoryinFebruary2012arepresented.They h consist of photometric measurements with the PACS and SPIRE instruments (nine visits to the Pluto system each), covering six p - wavelengthsfrom70to500µmaltogether.ThethermallightcurveofPluto-Charonisobservedinallfilters,albeitmoremarginally o at160andespecially500µm.PuttingthesedataintothecontextofolderISO,Spitzerandground-basedobservationsindicatesthat r the brightness temperature (T ) of the system (rescaled to a common heliocentric distance) drastically decreases with increasing t B s wavelength,from 53Kat20µmto 35Kat500µm,andperhapseverlessatlongerwavelengths.Consideringavarietyofdiurnal a and/or seasonal th∼ermophysical mode∼ls, weshow thatT values of 35Karelower thananyexpected temperature forthedayside B [ surfaceorsubsurfaceof PlutoandCharon, implyingalowsurfaceemissivity.Basedonmultiterrainmodeling, weinferaspectral emissivitythatdecreasessteadilyfrom1at20-25µmto 0.7at500µm.Thiskindofbehaviorisusuallynotobservedinasteroids 1 ∼ (whenproper allowance ismade for subsurface sounding), but isfound inseveral icysurfaces of thesolar system. Wetentatively v identifythatacombinationofastrongdielectricconstantandaconsiderablesurfacematerialtransparency(typicalpenetrationdepth 6 1cm)isresponsiblefortheeffect.OurresultshaveimplicationsfortheinterpretationofthetemperaturemeasurementsbyREX/New 0 ∼ Horizonsat4.2cmwavelength. 6 5 Key words. Kuiper belt objects: individual: Pluto, Charon. Planets and satellites: surfaces. Methods: observational. Techniques: 0 photometric. . 1 0 6 1. Introduction seasonalcycles must be at work, in which volatile N (and the 2 1 secondaryspeciesCH andCO)aresharedbetweenatmospheric 4 : The New Horizons flyby of the Pluto system on July 14, 2015 andsurfaceicereservoirsthroughsublimation/condensationex- v revealed Pluto and Charon as planetary worlds (Sternetal., i changes and volatile migration. These processes are related to X 2015). Pluto appears to display an unexpected variety of ter- the temperature distribution across Pluto’s surface, which re- rainmorphologies,suggestinga complexhistoryofsurfaceac- r flects the balance between insolation, thermal radiation, ther- a tivity. These include icy plains with evidence for glacier-like malconduction,andlatentheatexchanges,anddependsonim- flows of ice and polygonal ice patterns, mountain ridges sev- portantparameterssuchasalbedo,emissivity,andthermaliner- eralkilometershigh,anddark,cratered,ancientterrains,where tia (see,e.g.,Hansen&Paige, 1996;Young, 2012).AtCharon, irradiation of surface ices (N , CH , CO) and/or atmospheric 2 4 where no atmosphere has yet been detected, such resurfacing production of organic tholins falling to the surface may be re- processes are less obvious, although the distinctly red color of sponsiblefor the dark redcolor. While the identificationof the Charon’snorthpolarregionmayberelatedtoseasonalcoldtrap- processesshapingthisrichgeologyisjustbeginning,italready pingof volatiles in that region,followedby energeticradiation seems clear that Pluto’s surface appearanceis to a large extent (Sternetal.,2015). sculptedbyinteractionsbetweenitsmobilevolatileices,evolv- ing N -dominated atmosphere, and surface bedrock. Mars-like Temperature measurements on an icy surface are possible 2 from the temperature-dependentposition and shape of near-IR ⋆ Herschel is an ESA space observatory with science instruments absorption bands (e.g., Quirico&Schmitt, 1997; Trykaetal., providedbyEuropean-ledPrincipalInvestigatorconsortiaandwithim- 1994, 1995; Grundyetal., 1999; Grundy,Schmitt&Quirico, portantparticipationfromNASA. 2002). This diagnostic is to be used by New Horizons/Ralph 1 Lellouchetal.:HerschelobservationsofPluto (Reutersetal., 2008), for example, for the N (2-0) ice band at WeusedtheminiscanmapmodeforPACS,whichhasbeen 2 2.15µm.Theonlyothermethodfordeterminingsurfacetemper- demonstratedto bemoresensitive thanthe point-source(chop- aturesisthermalradiometry.Thermalmeasurements(ingeneral nod)mode(Mu¨lleretal.,2010)1.Foreachfiltercombination(70 spatially unresolved) of the Pluto system at a variety of wave- /160µmor100/160µm),weacquireddataconsecutivelyintwo lengths(from 20to1400µm)havebeenacquiredusingIRAS, scanningdirections(termed“A”and“B”),with70 and110 an- ◦ ◦ ∼ ISO,andSpitzer,andanumberofground-basedmm/submmfa- gleswithrespecttothedetectorarrayandindividualintegration cilities.Inparticular,theISOandSpitzermeasurementsclearly timesof286secperscan,i.e.,1144sec(4repetitions)perPACS detected the Pluto+Charon thermal light curve that is associ- visit.ObservationaldetailsaregiveninTable1,wheretheA-B atedwiththealbedocontrastsonPlutoandthediurnalvariabil- scanningsequencesareindicatedbyconsecutiveObs.IDnum- ity of insolation. These measurements have provided the first bers. determination of the thermal inertia of Pluto and Charon, and Far-infrared photometry can often be plagued by confu- some constraints on their emissivity behavior over 20-160 µm sion noise, i.e., spatial variations in the sky emission at scales (Lellouchetal.,2000a,2011). comparable to the PSF. The confusion noise is typically 5-7 ∼ The operation of Herschel (Pilbrattetal., 2010) in 2009- mJy/beamin the SPIRE bands(Nguyenetal., 2010) andlower 2013 offered an opportunity to extend the study toward longer in the PACS bands, but Pluto’s 2012 position in star-crowded wavelengths (70-500 µm), bridging the gap with the sub- regions of Sagittarius not far from Galactic center made sky mm/mm measurements. Combined with previous Spitzer data, backgroundlevelsa priorimoresevere.Estimatesofconfusion these measurements permit us to refine our estimates of levels at proposal stage indicated that even though the March Pluto’s and Charon’s thermal inertia, and determine the long- 2012epochwasmostfavorableinthisrespect(andselectedfor wavelengthbehaviorofthesystem’semission.Followinganini- that reason), it would be subject to confusion noise at the 5 ∼ tial assessment of the data (Lellouchetal., 2013a), we present and 20 mJy in the PACS 100µm and 160µm beams, respec- ∼ a detailedreportof these observationsand their modeling.The tively,i.e.,anon-negligiblefractionoftheexpectedfluxesfrom Herschel70-µmdatathataredescribedbelowhavealreadybeen Pluto ( 400 and 300 mJy, respectively). However, the proper ∼ usedtoderivelimitsontheamountofdustinthePluto–Charon motionofPlutoofferedthepossibilitytoobservethetargetsev- system(Martonetal.,2015). eral times against different sky backgrounds, permitting us to subtract the sky contribution. The efficiency of this “follow- on”(a.k.a.second-visit)approachhasbeendemonstratedbythe 2. Herschelobservations detection of numerous TNOs at the mJy level by Spitzer and We obtained thermal photometry of the Pluto system with the Herschel(e.g.,Stansberryetal.,2008;Santos-Sanzetal.,2012). two imaging photometers of Herschel, PACS (Photoconductor Forthe techniqueto work,the propermotionbetweentwo vis- Array Camera and Spectrometer; Poglitschetal. (2010)) its should be significantly larger than the PSF size, but remain and SPIRE (Spectral and Photometric Imaging Receiver; smallenoughthatatthesecondvisit,theobjectstillfallswithin Griffinetal. (2010)), covering altogether six wavelengths. The the high-coveragearea of the map from the first visit. In prac- SPIREinstrumentobservesa4’x8’fieldsimultaneouslyinthree tice,theseconditionsarebestmetforpropermotionsof30”–50” bolometerarraysat250µm,350µm,and500µm,withrespec- forPACSobservationsand72”–150”forSPIRE.Inourobserv- tive pixelsizes of 6”, 10”, and 13”. PACS can operate in three ing sequence, the propermotion of Pluto between two consec- filters, centered at 70 µm (“blue”), 100 µm (“green”),and 160 utive visits ( 17 hour separation) was of 55–35arcsec, almost ∼ µm(“red”).However,asitincludestwodetectorarrays(64x32 entirelyinthe RA direction(anddecreasingwith time asPluto pixels of 3.2”x 3.2” for blue/green and 32 x 16 pixels of 6.4” approachedstationarityonApril10,2012).Thus,forPACSob- x 6.4” for red, each of them covering a FOV of 3.5’ x 1.75’), servations, each visit to Pluto could be used as second epoch onlytwofilters outofthree(70/160µm or100/ 160µm) are measurementfortheprecedingand/orfollowingvisit(17hours observedinparallel. before or after). For SPIRE, we often used more distant visits For both instruments, the beam size (17”-35” FWHM for (i.e.,34or51hoursbeforeorafteragivenobservation)forthe SPIRE and 5”-11” FWHM for PACS, depending on filter) en- second epoch,as differencemaps betweentwo contiguousvis- compassed the entire 1”-wide Pluto system, thus including itswouldresultinthepositiveandnegativePlutoimagesinthe thermalemissionfrom∼PlutoandCharon(withanegligiblecon- differentialmaptopartiallyoverlapat500µm. tribution from the other four moons). All data were acquired overthreeweeksinlateFebruarytomid-March2012,underthe 3. Datareduction OT2_elellouc_2program(“Pluto’sseasonalevolutionandsur- facethermalproperties”).We acquirednineobservationsofthe PACS: Data reduction was initially performed within the Plutosystemwith eachinstrument.Theyweretimedtosample HerschelInteractiveProcessingEnvironment(HIPE;Ott,2010), equally-spacedsubobserverlongitudes,soastoprovideamulti- version12,usingitsdefaultFM7calibrationschemeandanop- bandthermallightcurve.Inpractice,consecutivevisitstoPluto timumscriptfor“bright”sources.EachPACSvisittoPlutopro- werescheduledwithatimeseparationof 17hours,equivalent vides two images (A and B scans) at 70 µm and 100 µm, and ∼ to 40 longitude.The SPIRE observationsoccurredoverFeb. ◦ four images at 160 µm. For the green (100 µm) and red (160 ∼ 29 – Mar. 6, 2012, while the PACS data were taken on Mar. µm)data,eachimageofagivenvisitwasanalyzedincombina- 14–19,2012.Pluto’sheliocentricdistanceatthattimewasr = h tionwiththecorrespondingimageoftheprevious(“before”)or 32.19 AU, the subsolar latitude was β = 47.0 , and the phase ◦ successive(“after”)visittoPluto.Theexceptiontothiswas,of anglewas1.6 . ◦ course,forthefirst(resp.last) visittoPlutoforwhichonlythe WeacquiredtheSPIREobservationsinthesmall-mapmode. “after”(resp.“before”)imagecouldbeused.Thispermittedus The telescope was scanned across the sky at 30”/sec, in two nearlyorthogonal(84.8◦ angle)scan paths, uniformlycovering 1 See also AOT Release Note: PACS Photometer Point/Compact anareaof5’x5’.EachSPIREvisittoPlutoamountedto1421 Source Mode 2010, PICC-ME-TN-036, Version 2.0, custodian Th. sec,correspondingtotenrepetitionsofthescanningpattern. Mu¨ller(PACSPhotometerPoint/CompactSourceMode,2010). 2 Lellouchetal.:HerschelobservationsofPluto Table1.Summaryofobservations Obs.ID Instrument/Mode Filter StartTime T ∆a Longitudeb Fluxc obs (2012-) (sec.) (mJy) 1342239786 SPIREPhoto 250/350/500 02-2920:08:23 1421 32.649 28.0 179.9 2.7/107.9 2.9/ 58.4 3.5 1342239900 SPIREPhoto 250/350/500 03-0113:04:38 1421 32.638 347.5 176.8±2.0/105.8±3.0/ 56.0±3.5 1342239979 SPIREPhoto 250/350/500 03-0206:30:10 1421 32.627 306.8 174.8±3.0/106.2±2.9/ 57.7±3.5 1342240025 SPIREPhoto 250/350/500 03-0222:44:11 1421 32.617 268.8 175.5±2.9/104.9±3.1/ 58.6±3.5 1342241087 SPIREPhoto 250/350/500 03-0316:21:25 1421 32.606 227.4 171.9±2.8/106.0±3.1/ 59.4±3.6 1342241158 SPIREPhoto 250/350/500 03-0409:17:02 1421 32.596 187.6 170.7±2.9/106.2±3.0/ 56.5±3.5 1342240277 SPIREPhoto 250/350/500 03-0502:18:31 1421 32.585 147.6 174.9±2.9/106.3±3.0/ 56.5±3.5 1342240315 SPIREPhoto 250/350/500 03-0519:12:47 1421 32.574 107.9 184.9±2.9/111.9±3.0/ 59.8±3.5 1342240318 SPIREPhoto 250/350/500 03-0611:44:14 1421 32.563 69.1 186.9±3.0/116.6±2.9/ 63.9±3.5 1342241381-2 PACSPhoto 70/160 03-1403:02:01 2x286 32.442 358.7 321.9±8.6/ ± /331.0±10.1 1342241383-4 PACSPhoto 100/160 03-1403:13:39 2x286 32.442 358.2 ± /393.3 4.0/331.0±10.1 1342241418-9 PACSPhoto 70/160 03-1419:54:46 2x286 32.431 319.1 316.5 2.7/ ± /317.3±20.9 1342241420-1 PACSPhoto 100/160 03-1420:06:24 2x286 32.431 318.6 ± /406.1 7.9/317.3±20.9 1342241471-2 PACSPhoto 70/160 03-1512:58:39 2x286 32.419 279.0 312.2 7.3/ ± /313.3±20.0 1342241473-4 PACSPhoto 100/160 03-1513:10:17 2x286 32.419 278.6 ± /380.4 13.4/313.3±20.0 1342241509-0 PACSPhoto 70/160 03-1606:33:59 2x286 32.407 237.6 295.0 7.1/ ± /314.8±13.6 1342241511-2 PACSPhoto 100/160 03-1606:45:37 2x286 32.407 237.2 ± /377.2 3.6/314.8±13.6 1342241620-1 PACSPhoto 70/160 03-1700:10:12 2x286 32.395 196.3 299.8 3.5/ ± /309.9±10.5 1342241622-3 PACSPhoto 100/160 03-1700:21:50 2x286 32.395 195.8 ± /371.1 7.1/309.9±10.5 1342241655-6 PACSPhoto 70/160 03-1717:31:54 2x286 32.384 155.5 311.5 4.5/ ± /307.5±16.6 1342241657-8 PACSPhoto 100/160 03-1717:43:32 2x286 32.384 155.1 ± /379.3 9.3/307.5±16.6 1342241699-0 PACSPhoto 70/160 03-1811:04:14 2x286 32.372 114.3 342.1 2.8/ ± /329.7±12.6 1342241701-2 PACSPhoto 100/160 03-1811:15:52 2x286 32.372 113.9 ± /418.3 2.9/329.7±12.6 1342241865-6 PACSPhoto 70/160 03-1904:42:46 2x286 32.360 72.9 347.6 12.4/ ± /338.7±25.7 1342241867-8 PACSPhoto 100/160 03-1904:54:24 2x286 32.360 72.4 ± /426.9 6.2/338.7±25.7 1342241928-9 PACSPhoto 70/160 03-1920:44:31 2x286 32.349 35.2 349.1 4.4/ ± /353.0±18.5 1342241930-1 PACSPhoto 100/160 03-1920:56:09 2x286 32.349 34.8 ± /413.9 3.9/353.0±18.5 aObserver-centricdistance ± ± bSubobservereastlongitudeatmid-point.Weadoptthesameorbitalconventionsas,e.g.,Buie,Tholen,&Wasserman(1997)and Lellouchetal.(2011).ZerolongitudeonPlutoisthesub-Charonpoint.Thesubobserverpointlongitudedecreaseswithtime. cColor-correctedfluxes.PACS160-µmfluxesaregivenfortheaverageoverfourconsecutiveObs.IDs(seetext) to generate two backgroundmaps, which were then subtracted ate(towithin 0.01)forrespectivecolortemperaturesof47K, ± from the individual image, providing a cleaner map suited for 45 K, and 43 K. The final flux values are gathered in Table 1. photometry.Standardaperturephotometryon the resultingdif- Additionalsystematiccalibrationuncertainties(5%ofthemea- ference image was performedwith our own IRAF/DAOPHOT- suredflux),whichdonotaffectthelightcurves,arenotincluded based routines via a curve-of-growth approach to determine inTable1. the optimum synthetic aperture and a Monte-Carlo method of SPIRE:SPIREdatawerefirstprocessedusingHIPE,version 200 fictitious source implantations to estimate error bars (see 10,includingde-stripingroutinesthatminimizebackgrounddif- Santos-Sanzetal.(2012)andKissetal.(2014)fordetails).The ferencesbetweendataacquiredatdifferentepochsandthatprop- method thus provided in general (i.e., except for the first and erly correctthe signaltimeline. Then,mapswere producedus- lastvisit,forwhichtwotimesfewervalueswereobtained)four ingthestandardnaivemap-making,projectingthedataofeach (in the green)or eight(in the red)individualvaluesof the flux bandonthesame WorldCoordinateSystem(WCS) andapply- (f, error bar σ) per visit. The sky subtraction did not bring i i ingcross-correlationroutinesbetweentwoepochstocorrectfor anynoticeableimprovementforblue(70-µm)data,whichhave astrometry offsets. Finally, for each Pluto visit, several differ- the least backgroundcontamination.Therefore,we simplyper- ence maps were computed at each band by subtracting, from formed aperture photometry on the original A and B images, the map under consideration,maps taken at other epochs, sep- providing two sets of values per visit. The optimum aperture arated by 17, 34 and/or 51 hours (also depending on radiiwere foundto be 5.5”,7.0”, and 10.5”in the blue, green, ∼ ± ± ± theconsideredfilter).Photometryonthesedifferencemapswas and red bands, respectively, i.e., close to the PSF FWHM at thenperformedwithatwo-dimensionalcircularGaussianaper- the corresponding wavelengths. For each filter and visit, the ture with a fixed filter-dependentFWHM (PSF fitting), follow- 2 to 8 (1 to 4 for first and last visit) individually-determined ingthemethoddescribedinFornasieretal.(2013).Thederived fluxes were (error-bar weighted) averaged. To be conservative, flux was then corrected by the instrumentpixellization factors, we took the final error on the average flux to be max (std(f), i i.e., dividingby 0.951,0.931,and 0.902for 250, 350, and 500 1/ 1 ), where std(f) is the standard deviation of the indi- µm, respectively. Finally, color corrections were estimated by σ2 i vidquPal fliuxes. Minor color corrections were finally applied, by convolvinga blackbodyemission at 35–40K, the approximate system brightness temperatureat the SPIRE wavelengths, with dividing the averaged fluxes and their error bars by factors of the instrument spectral response profiles. These multiplicative 0.983(70-µm),0.982(100-µm),and1.000(160-µm),appropri- colorcorrectionfactorswerefoundtobe0.974,0.976,and0.957 3 Lellouchetal.:HerschelobservationsofPluto at 250, 350, and 500 µm, and applied to the individual Pluto- 4. Modeling Charonfluxes.Thefinalsystemfluxforeachvisitwasthencom- 4.1.Qualitativeanalysis putedastheweightedmeanoftheindividualfluxesbasedonthe various differential maps (in a few cases after rejecting some Brightness temperatures of the Pluto-Charon system over 70- outliers).Finalfluxeswithallcorrectionsincludedaregathered 500 µm as a function of rotational phase are shown in Fig.1. in Table 1. Similar to PACS, the errors include the uncertain- Immediately apparentin the figure is that: (i) the mean bright- ties provided by the Gaussian fitting algorithm, but do not ac- nesstemperature(T )ofthesystemdecreasessteadilywithin- B countforabsolutecalibrationuncertainties,whichareestimated creasingwavelengthfrom 46.5Kat70µmto 35Kat500µm; tobe7%ofthemeasuredflux.ThefinalPACSandSPIREfluxes and (ii) the thermal light∼curve is detected at∼all wavelengths, wereconvertedintosystembrightnesstemperatures(TB)byas- albeit somewhat marginallyat 160 µm and especially 500 µm, suming a 1185 km radius for Pluto and 604 km for Charon. giventhehighererrorbarsofthesedata.At70and160µm,the TheCharonradiusisbasedonstellaroccultation(Sicardyetal., dataare ofmuchhigherqualitythanwas possiblefromSpitzer 2006).TheadoptedPlutoradiusisclosetothebestguessvalue (see Fig. 2 from Lellouchetal. (2011); hereafter Paper I). All from Lellouchetal. (2015), 1184 km. These values match ini- dataareconsistentwithmaximumfluxnearaneastlongitudeL tial reports from New Horizons (606 3 km and 1187 4 km; =60-80andminimumfluxnearL=200-220.Morequantitati- ± ± Sternetal., 2015).Results wouldbe insignificantlysensitiveto tively,sinusoidalfitstothedatayieldfluxmaximaatL=57 5, further changes of the radii by a few kilometers. The adopted 50 8,42 22,57 10,76 17,and70 60for70,100,160,2±50, valueforPluto’sradiusupdatesthevaluethatwasusedinprevi- 35±0,and5±00-µm±data.Th±us,withinm±easurementsuncertainties, ousmodelingoftheISOandSpitzerdata(1170km).Theeffect alllightcurvesappearin phase(inparticular,thereisexcellent isnegligibleat24µm(a 0.1KdecreaseintheTB)butnoten- phaseagreementbetweenthe70µm,100µmand250µmdata). ∼ tirelysoat500µm( 0.5Kdecrease). Out-of-phase light curves at the longest wavelengths had been ∼ envisagedinPaperI. In Fig. 2, the Herschel measured brightness tempera- tures are plotted as a function of wavelength and put into the broader context of most previous thermal measurements of the Pluto-Charon system. These measurements include (i) PPPPPPAAAAAACCCCCCSSSSSS 777777000000 µµµµµµmmmmmm ISOPHOT60,100,150,and200µm photometry,takenmostly 444444888888 PPPPPAAAAACCCCCSSSSS 111110000000000 µµµµµmmmmm inFeb.-March1997(fivetoeightvisitstoPluto;Lellouchetal. PPPPAAAACCCCSSSS 111166660000 µµµµmmmm SSSPPPIIIRRREEE 222555000 µµµmmm (2000a));(ii)Spitzer/MIPS23.68,71.42,and156µmphotome- SSSPPPIIIRRREEE 335550000 µµµmmm tryandSpitzer/IRSlow-resolutionspectroscopyover20-37µm 444444666666 recordedinAugust-September2004(eightvisitstoPlutoeach; Paper I); (iii) additional Spitzer/MIPS data at 23.68 and 71.42 µm taken in April 2007(12 visits; see Fig. 13 of Paper I), and unpublished156µmdatafromOctober2008(12visits);and(iv) 444444444444 anumberofground-basedmeasurementsatmm/sub-mmwave- K)K)K)K)K)K) lengths from IRAM, JCMT, and SMA (Altenhoffetal., 1988; e (e (e (e (e (e ( Stern,Weintraub&Festou, 1993; Jewitt, 1994; Lellouchetal., urururururur atatatatatat 2000b; Gurwell,Butler&Moullet, 2011). We emphasize that perperperperperper 444444222222 the SMA data separate Pluto from Charon, and we report the mmmmmm ss tess tess tess tess tess te aPnludtoIR-oSnldyatTaBfrformom20200405ataenigdh2t0lo1n0g.iItnudFeisgaurreep2l,oSttpeditzienrd/iMviIdPuS- eeeeee htnhtnhtnhtnhtnhtn ally.Wereinterpolate,tothesameeightlongitudes,theHerschel gggggg 444444000000 bribribribribribri (70, 100, 160, 250, 350, and 500 µm), Spitzer 71.42 µm from n n n n n n 2007, and ISO 60 and 100 µm data, all of which clearly show oooooo harharharharharhar light curves. For data in which we did not discern (or attempt CCCCCC ++++++ to detect) a light curve, i.e., ISO 150 and 250 µm, Spitzer 156 oooooo 333333888888 utututututut µm from October 2008, and all of the ground-based data, we PlPlPlPlPlPl simply plotted the mean T averaged over the available mea- B surements. All of the ISO, Spitzer, and Herschel T in Fig. 2 B 333333666666 makeconsistentuseoftheabovePlutoandCharonradii.Incon- trast, mm/sub-mm T simply use published values, because of B thedifficultyintrackingdowntheoriginallyusedradii.Allthese thermalmeasurementsspan25years(1986-2012),aperiodover 333333444444 whichPluto’sheliocentricdistance(r )andsubsolarlatitude(β) h variedfrom29.7AU to32.2AU andfrom-4 to+47 , respec- ◦ ◦ tively.Whiletheeffectofachangeinthesubsolarlatitudecannot beaccountedforwithoutadetailedmodel,theeffectofvarying 000000 555555000000 111111000000000000 111111555555000000 222222000000000000 222222555555000000 333333000000000000 333333555555000000 r ishandledbyrescalingthemeasuredT by1/√r totheepoch EEEEEEaaaaaasssssstttttt lllllloooooonnnnnnggggggiiiiiittttttuuuuuuddddddeeeeee h B h oftheSpitzer2004data(r =30.847AU). h Fig.1. Pluto-Charon thermal light curves in the six filters ob- Fig. 2 illustrates a number of important features. (i) The servedwithPACSandSPIRE. difficult-to-explainPluto“fading”witnessedbySpitzer,i.e.,the decrease by 2 K of the 71 µm T (and by 0.5 K at 24 µm) B ∼ ∼ over2004-2007(PaperI)isnotconfirmedintheHerscheldata, which indicates 70-µm T in good agreement with the Spitzer B 4 Lellouchetal.:HerschelobservationsofPluto U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 6666666666666666666666666666666666666666666666666666666666666666666666666666666666600000000000000000000000000000000000000000000000000000000000000000000000000000000000 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooollllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss =============================================================================== SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSpppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr///////////////////////////////////////////////////////////////////////////////IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 44444444444444444444444444444444444444444444444444444444444444444444444444444444444 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiilllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllleeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeedddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiirrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccclllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllleeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss==================================================================== SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiittttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr////////////////////////////////////////////////////////////////////MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 22222222222222222222222222222222222222222222222222222222222222222222000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000044444444444444444444444444444444444444444444444444444444444444444444 88888888888888888888888888888888888888888888888888888888888888888888888888888888888 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqquuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaarrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesssssssssssssssssssssssssssssssssssssssss ========================================= IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIISSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. 33333333333333333333333333333333333333333333333333333333333333333333333333333333333 TTTTTTTTTTTTTTTTTTTTTTTrrrrrrrrrrrrrrrrrrrrrrriiiiiiiiiiiiiiiiiiiiiiiaaaaaaaaaaaaaaaaaaaaaaannnnnnnnnnnnnnnnnnnnnnngggggggggggggggggggggggllllllllllllllllllllllleeeeeeeeeeeeeeeeeeeeeeesssssssssssssssssssssss ======================= HHHHHHHHHHHHHHHHHHHHHHHeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrrrrrrrsssssssssssssssssssssssccccccccccccccccccccccchhhhhhhhhhhhhhhhhhhhhhheeeeeeeeeeeeeeeeeeeeeeelllllllllllllllllllllll = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiittttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr//////////////////////////////////////////////////////////////////////////////////IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS SSSSSSSSSSSSSSSSSSSSSSMMMMMMMMMMMMMMMMMMMMMMAAAAAAAAAAAAAAAAAAAAAA ((((((((((((((((((((((PPPPPPPPPPPPPPPPPPPPPPlllllllllllllllllllllluuuuuuuuuuuuuuuuuuuuuuttttttttttttttttttttttoooooooooooooooooooooo oooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnnllllllllllllllllllllllyyyyyyyyyyyyyyyyyyyyyy,,,,,,,,,,,,,,,,,,,,,, 2222222222222222222222000000000000000000000000000000000000000000005555555555555555555555)))))))))))))))))))))) hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555 SSSSSSSSSSSSSSSSSSSSSMMMMMMMMMMMMMMMMMMMMMAAAAAAAAAAAAAAAAAAAAA (((((((((((((((((((((PPPPPPPPPPPPPPPPPPPPPllllllllllllllllllllluuuuuuuuuuuuuuuuuuuuutttttttttttttttttttttooooooooooooooooooooo ooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnlllllllllllllllllllllyyyyyyyyyyyyyyyyyyyyy,,,,,,,,,,,,,,,,,,,,, 222222222222222222222000000000000000000000111111111111111111111000000000000000000000))))))))))))))))))))) rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e IIIIIIIIIIIIIIIIIIIIRRRRRRRRRRRRRRRRRRRRAAAAAAAAAAAAAAAAAAAAMMMMMMMMMMMMMMMMMMMM ((((((((((((((((((((LLLLLLLLLLLLLLLLLLLLeeeeeeeeeeeeeeeeeeeelllllllllllllllllllllllllllllllllllllllloooooooooooooooooooouuuuuuuuuuuuuuuuuuuucccccccccccccccccccchhhhhhhhhhhhhhhhhhhh eeeeeeeeeeeeeeeeeeeetttttttttttttttttttt aaaaaaaaaaaaaaaaaaaallllllllllllllllllll.................... 22222222222222222222000000000000000000000000000000000000000000000000000000000000bbbbbbbbbbbbbbbbbbbb)))))))))))))))))))) ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn JJJJJJJJJJJJJJJJJJJCCCCCCCCCCCCCCCCCCCMMMMMMMMMMMMMMMMMMMTTTTTTTTTTTTTTTTTTT (((((((((((((((((((JJJJJJJJJJJJJJJJJJJeeeeeeeeeeeeeeeeeeewwwwwwwwwwwwwwwwwwwiiiiiiiiiiiiiiiiiiitttttttttttttttttttttttttttttttttttttt 1111111111111111111999999999999999999999999999999999999994444444444444444444))))))))))))))))))) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIISSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIISSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ststststststststststststststststststststststststststststststststststststststststststststststststststststststststststststststststststststststststststststststststststst IIIIIIIIIIIIIIIIIIRRRRRRRRRRRRRRRRRRAAAAAAAAAAAAAAAAAAMMMMMMMMMMMMMMMMMM ((((((((((((((((((AAAAAAAAAAAAAAAAAAlllllllllllllllllltttttttttttttttttteeeeeeeeeeeeeeeeeennnnnnnnnnnnnnnnnnhhhhhhhhhhhhhhhhhhooooooooooooooooooffffffffffffffffffffffffffffffffffff eeeeeeeeeeeeeeeeeetttttttttttttttttt aaaaaaaaaaaaaaaaaallllllllllllllllll.................. 111111111111111111999999999999999999888888888888888888888888888888888888)))))))))))))))))) dididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididi 5555555555555555555555555555555555555555555555555555555555555555555555555555555555500000000000000000000000000000000000000000000000000000000000000000000000000000000000 JJJJJJJJJJJJJJJJJCCCCCCCCCCCCCCCCCMMMMMMMMMMMMMMMMMTTTTTTTTTTTTTTTTT/////////////////IIIIIIIIIIIIIIIIIRRRRRRRRRRRRRRRRRAAAAAAAAAAAAAAAAAMMMMMMMMMMMMMMMMM (((((((((((((((((SSSSSSSSSSSSSSSSSttttttttttttttttteeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrnnnnnnnnnnnnnnnnn eeeeeeeeeeeeeeeeettttttttttttttttt aaaaaaaaaaaaaaaaalllllllllllllllll................. 11111111111111111999999999999999999999999999999999933333333333333333))))))))))))))))) c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c OOOOOpppppeeeeennnnn ccccciiiiirrrrrcccccllllleeeeesssss ===== MMMMMIIIIIPPPPPSSSSS 22222000000000077777/////22222000000000088888 ririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririri ntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntntnt eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ocococococococococococococococococococococococococococococococococococococococococococococococococococococococococococococococococococococococococococococococococococ MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn ελ = 1 elielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielielieli 4444444444444444444444444444444444444444444444444444444444444444444444444444444444455555555555555555555555555555555555555555555555555555555555555555555555555555555555 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnngggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg..................................................................................==================================================================================77777777777777777777777777777777777777777777777777777777777777777777777777777777778888888888888888888888888888888888888888888888888888888888888888888888888888888888----------------------------------------------------------------------------------88888888888888888888888888888888888888888888888888888888888888888888888888888888880000000000000000000000000000000000000000000000000000000000000000000000000000000000 2222222222222222222222222222222222222222222222222222222222222222222222222222222222000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000008888888888888888888888888888888888888888888888888888888888888888888888888888888888 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIISSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o d td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td td t LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnngggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg..................................................................................==================================================================================33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333----------------------------------------------------------------------------------33333333333333333333333333333333333333333333333333333333333333333333333333333333337777777777777777777777777777777777777777777777777777777777777777777777777777777777 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnngggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg..................................................................................==================================================================================111111111111111111111111111111111111111111111111111111111111111111111111111111111122222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222----------------------------------------------------------------------------------111111111111111111111111111111111111111111111111111111111111111111111111111111111122222222222222222222222222222222222222222222222222222222222222222222222222222222227777777777777777777777777777777777777777777777777777777777777777777777777777777777 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIISSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO scalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscalscal 4444444444444444444444444444444444444444444444444444444444444444444444444444444444400000000000000000000000000000000000000000000000000000000000000000000000000000000000 LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnngggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg..................................................................................==================================================================================333333333333333333333333333333333333333333333333333333333333333333333333333333333344444444444444444444444444444444444444444444444444444444444444444444444444444444448888888888888888888888888888888888888888888888888888888888888888888888888888888888----------------------------------------------------------------------------------333333333333333333333333333333333333333333333333333333333333333333333333333333333355555555555555555555555555555555555555555555555555555555555555555555555555555555551111111111111111111111111111111111111111111111111111111111111111111111111111111111 2222222222222222222222222222222222222222222222222222222222222222222222222222222222MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII4444444444444444444444444444444444444444444444444444444444444444444444444444444444PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), ), LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnngggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg..................................................................................==================================================================================333333333333333333333333333333333333333333333333333333333333333333333333333333333300000000000000000000000000000000000000000000000000000000000000000000000000000000003333333333333333333333333333333333333333333333333333333333333333333333333333333333----------------------------------------------------------------------------------333333333333333333333333333333333333333333333333333333333333333333333333333333333300000000000000000000000000000000000000000000000000000000000000000000000000000000007777777777777777777777777777777777777777777777777777777777777777777777777777777777 2222222222222222222222222222222222222222222222222222222222222222222222222222222222000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007777777777777777777777777777777777777777777777777777777777777777777777777777777777 KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e (e ( LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnngggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg..................................................................................==================================================================================222222222222222222222222222222222222222222222222222222222222222222222222222222222255555555555555555555555555555555555555555555555555555555555555555555555555555555557777777777777777777777777777777777777777777777777777777777777777777777777777777777----------------------------------------------------------------------------------222222222222222222222222222222222222222222222222222222222222222222222222222222222266666666666666666666666666666666666666666666666666666666666666666666666666666666664444444444444444444444444444444444444444444444444444444444444444444444444444444444 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu 3333333333333333333333333333333333333333333333333333333333333333333333333333333333355555555555555555555555555555555555555555555555555555555555555555555555555555555555 LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnngggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg..................................................................................==================================================================================111111111111111111111111111111111111111111111111111111111111111111111111111111111166666666666666666666666666666666666666666666666666666666666666666666666666666666668888888888888888888888888888888888888888888888888888888888888888888888888888888888----------------------------------------------------------------------------------111111111111111111111111111111111111111111111111111111111111111111111111111111111177777777777777777777777777777777777777777777777777777777777777777777777777777777772222222222222222222222222222222222222222222222222222222222222222222222222222222222 ε atatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatatat λ ererererererererererererererererererererererererererererererererererererererererererererererererererererererererererererererererererererererererererererererererererer LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnngggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg..................................................................................==================================================================================222222222222222222222222222222222222222222222222222222222222222222222222222222222211111111111111111111111111111111111111111111111111111111111111111111111111111111113333333333333333333333333333333333333333333333333333333333333333333333333333333333----------------------------------------------------------------------------------222222222222222222222222222222222222222222222222222222222222222222222222222222222211111111111111111111111111111111111111111111111111111111111111111111111111111111118888888888888888888888888888888888888888888888888888888888888888888888888888888888 ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 2222222222222222222222222222222222222222222222222222222222222222222222222222222222000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004444444444444444444444444444444444444444444444444444444444444444444444444444444444 s ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts t 3333333333333333333333333333333333333333333333333333333333333333333333333333333333300000000000000000000000000000000000000000000000000000000000000000000000000000000000 sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn hththththththththththththththththththththththththththththththththththththththththththththththththththththththththththththththththththththththththththththththththththt ggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg ririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririririri BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB 3333333333333333333333333333333333333333333333333333333333333333333333333333333333300000000000000000000000000000000000000000000000000000000000000000000000000000000000 4444444444444444444444444444444444444444444444444444444444444444444444444444444444400000000000000000000000000000000000000000000000000000000000000000000000000000000000 6666666666666666666666666666666666666666666666666666666666666666666666666666666666600000000000000000000000000000000000000000000000000000000000000000000000000000000000 7777777777777777777777777777777777777777777777777777777777777777777777777777777777700000000000000000000000000000000000000000000000000000000000000000000000000000000000 111111111111111111111111111111111111111111111111111111111111111111111111111111111110000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 111111111111111111111111111111111111111111111111111111111111111111111111111111111113333333333333333333333333333333333333333333333333333333333333333333333333333333333300000000000000000000000000000000000000000000000000000000000000000000000000000000000 111111111111111111111111111111111111111111111111111111111111111111111111111111111116666666666666666666666666666666666666666666666666666666666666666666666666666666666600000000000000000000000000000000000000000000000000000000000000000000000000000000000 222222222222222222222222222222222222222222222222222222222222222222222222222222222220000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 333333333333333333333333333333333333333333333333333333333333333333333333333333333335555555555555555555555555555555555555555555555555555555555555555555555555555555555500000000000000000000000000000000000000000000000000000000000000000000000000000000000 555555555555555555555555555555555555555555555555555555555555555555555555555555555550000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 999999999999999999999999999999999999999999999999999999999999999999999999999999999990000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 11111111111111111111111111111111111111111111111111111111111111111111111111111111111444444444444444444444444444444444444444444444444444444444444444444444444444444444440000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaavvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeellllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllleeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnngggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttthhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh (((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((µµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Fig.2.Brightnesstemperature(T )ofthePlutosystem.MostthermalobservationsfromISO,Spitzer,Herschel,andground-based B telescopesaregathered.Asdatawereacquiredatdifferentepochsspanning 25years,theT arerescaledby1/√r toacommon B h ∼ epoch(September2004,r = 30.847AU). Solidlines:eightSpitzer/IRSspectraover21-37µm, takenin Aug.-Sept.2004ateast h longitudesof33(yellow),78(gray),122(lightblue),168(darkblue),213(red),257(green),302(pink),and348(black).Filled circles:Spitzer/MIPSphotometricmeasurements,takenatsimilarlongitudes(37,80,127,172,218,264,307,and351,samecolor codes)inSeptember2004.TheSpitzerdataaretakenfromLellouchetal.(2011)(PaperI).Opencircles:additionalSpitzer/MIPS data at 71.42 µm from April 2007 (see Fig. 13 from Paper I). Triangles: Herschel data at 70, 100, 160, 250, 250, and 500 µm fromthiswork.Filledsquares:datafromISOat60and100µmtakenin1997(Lellouchetal.,2000a).TheHerschel,Spitzer2007 andISOdataarereinterpolatedtotheeightlongitudesobservedbySpitzerin2004.TheISO100µm(resp.Spitzer2007)dataare shiftedby3µm(resp.2µm)foreasierlegibility.Thecomparisonbetweentheopenandfilledcirclesat71µmillustratesthe“Pluto fading” witnessed by Spitzer from 2004 to 2007. Additional data (averaged over longitudes, no error bar) from ISO at 150 and 200 µm, and from unpublishedSpitzer 156µm observationstaken in October 2008,are shown as filled squaresand open circles respectively,underthelabels“MeanISO”and“MeanMIPS2008”.Forground-baseddatasetssamplingmorethanonelongitude, onlytheaverageT isplotted.TheSMA-measuredT referstoPlutoonly.Thedottedlinesshowthermophysicalmodelfits(see B B text),calculatedfortheconditionsofSeptember2004.Graydottedline:parametersarefromCase 4inTable2.Bluedottedline: same, but with spectral emissivities = 1. This latter case still producesbrightnesstemperaturesthat decrease with wavelength, a consequenceofthespatialmixingofdifferentsurfacetemperatures. 2004data.(ii)The150-160µmT showlargedispersion.While temperature with wavelength over the entire thermal range (λ B theoriginalISO-150µm data(Lellouchetal.,2000a)indicated > 20 µm). Althoughdata in the sub-mm/mmrange show large anomalouslyhighfluxes(T 50Kinaverage),theSpitzer/MIPS dispersion,the mostaccurateof them(i.e., the SMA data from ≥ 156µmdatafromApril2004insteadpointedtoT <40K.The 2010 (Gurwell,Butler&Moullet, 2011) and the IRAM Feb.- B additionalSpitzer/MIPS156µmunpublisheddatafromOctober Mar. 2000 data from Lellouchetal. (2000b)) point to a 32 K ∼ 2008(12visits)indicateamean(rescaled)valueof45.3Kwith brightnesstemperatureat1100-1300µm, i.e., a consistent“ex- aformalerrorof1K,buta5.2Kdispersionoverthe12visits, trapolation”ofthetrendindicatedbytheHerscheldataintothe whichisamorelikelyrepresentationofactualuncertainty.This mm range. Thusit appearsthat the Pluto-CharonT decreases B mean value is generally in line, albeit somewhat on the higher bymorethan30%ofitsvaluefrom20µm( 53K)to500µm ∼ side,withthe160µmT indicatedbyHerschel.(iii)Theensem- ( 35K)andbeyond. B ∼ bleofdataclearlyoutlinesthedecreaseofthesystembrightness 5 Lellouchetal.:HerschelobservationsofPluto 4.2.Emissivity flectionatthesurface,whichcanbe characterizedbya Fresnel coefficientwithmoderate( 2.3)dielectricconstant,characteris- Qualitatively,adecreasingT withincreasingwavelengthcanbe ∼ B tic oflow-densitymaterial.Asdiscussedbelow,however,there producedinseveralways:(i)aspatiallyconstantsurfacetemper- areotherplanetarysurfaceswherethermalscatteringeffectsare atureTandalow(butspectrallyconstant)surfaceemissivity;(ii) demonstratedtooccur. themixingofdifferentsurfacetemperatures.Suchamixingcan In our previous works (Lellouchetal., 2000a, 2011), the occur both on regionalscales (e.g., different Pluto and Charon emissivityrequiredtomatchtheobservedISOorSpitzerfluxes regionshavedifferenttemperaturesbecauseofdifferentalbedos was defined in reference to a thermophysical model that only or because they see different instantaneous insolations) and on considered the surface temperatures. A complication was re- smallscales(slopesatanyscales,i.e.,surfaceroughness,cause latedtothemultiplicityofsurfaceterrains.Threeunits(N ice, adjacent surface facets to see large variations of temperatures 2 CH ice,tholin/H Oice)wereconsideredforPlutoandonefor due to shadows and/orre-radiation);and (iii) a decrease of the 4 2 Charon, and the approach was to (i) fix the spectral and bolo- spectral emissivity with wavelength. Scenario (i) is technically metric emissivity of all units except CH and (ii) adjust them possible,butfittingtheHerschel-measuredbrightnesstempera- 4 for the CH unit, using for initial guidance expectations based tures over70-500µm would requirea constantT 52.5K and 4 ∼ onspectralpropertiesofices(Stansberry,Pisano&Yelle,1996). animprobablylow( 0.57)spectrallyconstantsurfaceemissiv- ∼ Results(PaperI)suggestedalargedecreaseofthespectralemis- ity. Rather,giventhe observedalbedovariegationonPluto and sivityofCH ice,from 1at24µmto 0.4at200µm.However, Charon,scenario (ii) must occur,at least on geographicscales. 4 ∼ ∼ possiblesubsurfacesoundingeffectswerenotconsidered,except Based on multiterrain modeling of the Spitzer data, however, inLellouchetal.(2000b),wherethenondetectionofthe1.2mm Paper I found that a decrease of the spectral emissivity with lightcurvewasinterpretedintermsofthemm-emissivityofthe wavelength, i.e. scenario (iii), of some of the Pluto areas (the tholin/H O ice unit. Furthermore, all of our previous thermo- CH iceregions)wasalsorequired. 2 4 physical models were “diurnal-only”, i.e., they assumed equi- Spectral “emissivity” is often loosely defined in the lit- libriumof the diurnallyaveragedtemperatureswith the instan- erature, and sometimes treated as a fudge factor in models. taneousseasonalinsolation.Thermalinertiaeffectsonseasonal In essence, it represents the ratio of the observed fluxes to timescalesarethoughttobeimportantincontrollingthesurface- model fluxes, but how much physics is put into the mod- atmosphere exchanges (Young, 2012, 2013; Olkinetal., 2015; els leads to different estimates of the “emissivity”. In early Hansen,Paige&Young, 2015) and the atmospheric pressure. works, surface temperatures were described in simplistic end- Theymaybeimportanttoincludeforourpurposesbecausethey member cases, such as the “nonrotating”or the “rapid rotator” arelikelytoimpactthenear-surfacetemperatures. cases. The adventof more elaborate models, such as the aster- Alongwith the decreasingbrightnesstemperatureswith in- oid STM (Lebofskyetal., 1986) and NEATM (Harris, 1998), creasingwavelength,a strikingresultofthe Herschelmeasure- and of physically-based, thermophysical models (TPM; e.g., mentisthelowT value( 35K)at500µm.Belowwedemon- Spenceretal.,1989;Lagerros,1996;Mu¨ller&Lagerros,1998), B ∼ strate that such a T is lower than any expected value for the provided a more realistic description of the surface tempera- B dayside surface or subsurface of these bodies;thus, subsurface ture distribution across airless bodies, and thereby a definition sounding toward the longest wavelengthsis not the only cause of spectral emissivity in reference to fluxes emitted from the ofthedecreasingT ,sothat“true”emissivityeffects(asdefined surface. However, a further complication is that, particularly B perEquation(1))mustoccur. atlongwavelengths,the surfacematerials’partialtransparency may cause the emitted radiation not to originate at the surface itself, but from some characteristic depth that depends on the 4.3.Thermalmodeling materialabsorptioncoefficient.Therefore,theemittedfluxdoes not just depend on the surface temperature,but on the thermal Onecomplicationassociatedwithmodelingoflong-wavelength profilesT(z)withinthesubsurface.Considerationofthisaspect thermaldataisrelatedtotheunknownlevelprobedbytheemis- leads to another definition of the emissivity, as the ratio of the sionwithinthesurface,comparedtothedepthoverwhichtem- observedtothemodeledfluxes.Themodeledflux,Φ ,atsome perature changes occur (the thermal skin depth). Unlike in the ν frequencyν,isexpressedlocallyas,e.g.,(Keihmetal.,2013) thermalIR(e.g.,10-50µm),whereradiationisemittedfromthe surfaceitself(withinafractionofamm),materialscanbetrans- z dz Φ = B (T(z))exp( ) (1) parentenoughinthesub-mmthatthermalradiationmightorig- ν Z ν −L cosµ L cosµ inatefromlayers 10toseveralthousandtimesthewavelength e e ∼ (i.e.,5 mmto 1mormoreat500µm).Thethermalskindepth and spatially integrated over the object. Here B is the Planck ν function, Le is the electrical skin depth (inverse of the absorp- isrelatedtothethermalinertiaΓthroughds = ρΓcqPπ,whereρ tioncoefficient),andµistheviewinggeometrydependentangle isdensity,cisheatcapacity,andPisthe(diurnalororbital)pe- betweentheoutgoingradiationandthesurfacenormal. riod.Theparameterd isthereforenotcompletelydefinedbyΓ s Manyasteroidstudies(e.g.,Redman,Feldman&Matthews, sinceρandcmaynotbewellknown2.Still,usingtypicalnum- 1998; Mu¨ller&Lagerros, 1998), making use of surface tem- bersforρ(900kgm 3)andc(400Jkg 1K 1),athermalinertia − − − perature for reference, reported evidence for very low spectral Γ = 25 J m 2s 0.5K 1 (hereafter MKS) for Pluto leads to a di- − − − emissivities(0.6-0.7)inthemm/sub-mmranges,whichwereat- urnalskindepthof3cm,meaningthatsub-mmradiationcould tributedtograinsizedependentsubsurfacescatteringprocesses. eitherprobewithinorbelowthediurnalskindepthandconceiv- However,therecentcomprehensivestudybyKeihmetal.(2013) ablycouldevenencompassasubstantialfractionoftheseasonal demonstrated that when allowance is made for subsurface sounding(andfortheenhancementoftheinfraredfluxesbysur- 2 Itcanbeshown(see,e.g.,LeGalletal.(2014)andSchloerbetal. faceroughness),theobservedmm/sub-mmfluxesaregenerally (2015)forrecentapplications)thattheoutgoingthermalradiationde- consistentwithspectralemissivitiescloseto1(e.g.,0.95).This pendsontheratiooftheelectricskindepthL totherelevantthermal e suggeststhatno scatteringlosses occur,exceptforspecularre- skindepth,ratherthanontheirabsolutevalues. 6 Lellouchetal.:HerschelobservationsofPluto skindepth(3.5mforΓ=25MKS).Amuchlargerthermaliner- tia(Γ=1000-3000MKS)couldbemoreappropriateonseasonal timescales(Olkinetal., 2015),however;thenthe seasonalskin depthwouldextendseveralhundredsofmetersdeep. Giventheseuncertainties,ourinitialapproachistoconsider a number of situations of relative electrical, diurnal, and sea- sonal skin depths. For that we first modelhorizontaland verti- cal temperatures of a “mean” Pluto using a standard spherical thermophysicalmodel(Spenceretal.,1989)3.By“meanPluto”, we mean that we use a Bond albedo of 0.46 derived from a meangeometricalbedo p =0.58andaplausiblephaseintegral V q = 0.8 (Lellouchetal., 2000a; Bruckeretal., 2009). A bolo- metric emissivity of 1.0 is assumed and no surface roughness effectsareincluded.Asdiscussedbelow,themodelisnotrele- vant to the N -ice covered areas whose heat budget is affected 2 bysublimation/condensationterms. 4.3.1. Diurnal-onlymodels Asafirststep,weconsidera“diurnal-only”model.Inthiscase, the localinsolation is calculatedusing “fixed”heliocentricdis- tanceandsubsolarlatituderelevanttoearlyMarch2012,which leadsinparticulartozerotemperaturesinthepolarnightsouth- wardof43 S4.Athermalinertiaof25MKSisassumed,follow- ◦ ing results from Paper I. Fig. 3 shows the resulting (i) surface temperatures and (ii) “subdiurnal” temperatures, i.e., tempera- turesatdepthsmuchbelowthediurnalskindepth,inbothcases as seen from the observer (neglecting the small 1.6 phase an- ◦ gle).Surfacetemperatures(relevanttodayside)peaknear 56K ∼ at high northern latitudes and fall below 35 K at latitudes be- low20 Sonly.Subdiurnaltemperatures,whichfollowlinesof ◦ equallatitude, areslightly colderthanthe surface temperatures Fig.3. Apparent Pluto temperatures, as viewed by a near-Sun by0-5K(exceptinthe6-10ammorninghourswheretheycan observerin 2012,foradiurnal-onlymodelwiththermalinertia be warmer than surface temperatures by up to 4 K). Planck- Γ = 25 MKS, Bond albedo = 0.46 and bolometric emissivity averaged disk surface (resp. subdiurnal) temperatures over 70- ǫ = 1. Top: Surface temperatures.Bottom: Temperaturesat the 500µmare51.4–49.0K(resp.49.8–47.0K).Allthesetemper- b bottomofthediurnallayer. aturesarecomfortablyhigherthanthemeanT 35Kmeasured B ∼ byHerschel-SPIREat500µm,indicatingthatsubsurfacesound- ing within the diurnallayer is not the main culpritfor this low perature;(ii)the“deep”temperature(i.e.,thetemperaturemuch T .Considerationofapossiblepositivethermalinertiagradient B belowthe seasonalskin depth);and(iii) the minimumvaluein withdepthinthediurnallayerwouldnotchangethisconclusion theseasonaltemperatureverticalprofileateachlatitude.Forthe becausethesubdiurnaltemperatureisanincreasingfunctionof lowthermalinertia(Γ= 25MKS)case,seasonaleffectsonthe thermalinertia(e.g.,Fig.2ofSpenceretal.,1989). diurnallyaveragedsurfacetemperaturearesmall.Thetempera- tureprofileshowninthetoprightpanelofFig.4closelymatches 4.3.2. Seasonalmodels thesubdiurnaltemperaturemapofFig.3,exceptnearandwithin thepolarnightwherethezerotemperaturesofthediurnal-only Theaboveapproachdoesnotconsidertheimpactofthermalin- modelarereplacedbymorephysical 20K-30Kvalues.Incon- ertiaonseasonaltimescales.ContinuingwithaBondalbedoof ∼ trast,thismodelleadstorathercoldtemperaturesof30-36Kin 0.46andbolometricemissivityǫ =1,weshowinFig.4thesea- b the “deep” (i.e., subseasonal) subsurface, with minimum tem- sonaltemperaturefields for two differentvalues of the thermal peraturesintheseasonallayeroccasionnallyfallingbelow30K inertia,Γ=25MKSand3162MKS.Thefirstvalue,equaltothat athighnorthernlatitudes. consideredabovefordiurnal-onlymodels,representsthe situa- Thehigh(Γ=3162MKS)thermalinertiacase5 hasamuch tionofnothermalinertiagradientwithdepth.Thesecondvalue moredramaticeffectonthediurnallyaveragedsurfacetempera- representsoneofthehighthermalinertiacasesfavoredbysome tures,whichnowshowstronglysubduedlatitudinalcontrastsof of the recent climate models (Young, 2012, 2013; Olkinetal., 3KforsouthpoletonorthpoleattheHerschelepoch.Inthis 2015).InFig.4,theleftpanelsshowthe2-D(time,season)di- ∼ situation,thedeeptemperaturesreflectthemeaninsolationover urnallyaveraged(i.e.,subdiurnal)surfacetemperatures;theright the entire orbitand are almosthemisphericallysymmetricwith panels,whichpertaintotheepochoftheHerschelobservations, maximaatthepoles,minimanear 30 latitude,andasecondary ◦ show the latitudinal profile of: (i) this diurnally averaged tem- ± 5 Thechoiceof3162MKSinYoung(2013)andOlkinetal.(2015) 3 https://www.boulder.swri.edu/˜spencer/thermprojrs/ isjustaneffectoftheirthermalinertiagrid,withtwovaluesperdecade, 4 This ignores internal heating. A typical radiogenic heating of 2.4 forparametersearches.Nophysicalinferenceshouldbedrawnfromthe erg cm 2s 1 (Robuchon&Nimmo, 2011) would yield a 14 K polar factthat3162MKSishigherthanthethermalinertiaforsolidH Oat − − ∼ 2 nighttemperatureforunitbolometricemissivity. 40K(2200MKS,Spencer&Moore,1992). 7 Lellouchetal.:HerschelobservationsofPluto Fig.4.PlutotemperaturesfromaseasonalmodelwiththermalinertiasΓ=25MKS(top)and3162MKS(bottom).ABondalbedo of0.46andbolometricemissivity ǫ = 1 are used.Left: “Surface”temperaturefieldsovera Plutoorbit.The dashedline indicates b theepochoftheHerschelobservations.Right:TemperaturesasafunctionoflatitudeforearlyMarch2012.“Surface”and“deep” indicatetemperaturesatthetopandbottomoftheseasonallayer.“Minimum”referstotheminimumtemperaturewithintheseasonal layerforeachlatitude. maximumneartheequator.Thesedeeptemperaturesarein the the relative seasonal thermal inertias of Pluto and Charon are range38K-39.5K,andtheminimumverticaltemperaturenever unknown. fallsbelow37K. Yet, the temperatures shown in Fig. 3 and 4 are only rel- 4.3.3. Commentsandimplicationsfortheoriginoflow evant to the Pluto units not covered by N2 ice. The heat bud- brightnesstemperatures get of the latter is dominated by sublimation-condensationex- changes, which, at a given point in time, maintain N to an 2 The temperaturesshown in Fig. 3 and 4 are likely to be lower isothermal state over the globe and the surface pressure to an limitstothetemperaturesrelevanttotheHerschelobservations essentiallyconstantvalue(exceptfortopographiceffects)thatis fora numberof reasons.First, theywere calculatedfora bolo- bufferedbytheN icetemperature(Young,2012).Themostre- 2 metricemissivityof1.0,which,ifanything,minimizesthecalcu- centvolatiletransportmodels(Young,2012,2013;Olkinetal., latedtemperatures.Second,the geometricalbedothathasbeen 2015; Hansen,Paige&Young, 2015) indicate N ice tempera- 2 used is the Pluto-average value. Because the brightest regions turesconstantlyabove34KthroughoutaPlutoyearaccordingto aretypicallyassociatedwithN ice,thenon-N iceregionsare Hansen,Paige&Young(2015),andintherange37.5-39.5Kac- 2 2 darker and thus warmer than the calculation indicates. Third, cordingtoOlkinetal.(2015),withT(N ) 38.5Kin2012.The 2 ∼ theabovecalculationsdonotincludeanyincreaseoftheeffec- surfacepressuredeterminationfromNewHorizonsis 10µbar ∼ tive emitting temperature due to roughness (those effects were in July 2015 (Sternetal., 2015), corresponding to equilibrium incorporated in the form of a “thermophysical model beam- at 37.0 K (Fray&Schmitt, 2009). Because N is horizontally 2 ing factor” in Lellouchetal., 2000a, 2011). Finally, while the isothermal (i.e., does not show any diurnal temperature varia- Herschel beam encompasses Pluto and Charon, the above cal- tion),itmustalsobeverticallyisothermal,atleastoverthediur- culationspertaintoPlutoonly.Charon,whichisslightlydarker nalskindepth.AfirmlowerlimitoftheN temperatureispro- 2 than Pluto, and based on the Spitzer 24 µm data likely to have videdbythe shapeof the(2-0)bandat 2.15µm, whichclearly a slightly smaller thermalinertia in the diurnallayer (Paper I), indicatesthatN isintheβphase(Trykaetal.,1994),i.e.,above 2 should therefore be warmer than Pluto on its dayside. This ar- the transition to cubicα phase at 35.6 K (Scott, 1976; Trafton, gument cannot be applied to the seasonal models however, as 2015).AllofthissuggeststhatregionscoveredwithN iceare 2 8 Lellouchetal.:HerschelobservationsofPluto alsowarmer,albeitnotnecessarilybymuch,thanthemean500- face6. Absorption coefficients for pure water ice (k ) at sub- H2O µmT thatwemeasure(35K,Fig.1). mm-to-cm wavelengths are discussed extensively by Ma¨tzler B (1998),whoalsoprovidesseveralanalyticformulationstoesti- Theaboveconsiderationsshowthatinmostsituationsphysi- matethemasafunctionoffrequencyandtemperaturealongwith caltemperaturesatthesurfaceandinthesubsurfaceofPlutoand illustrative plots. We use the Mishima,Klug&Whalley (1983) Charonareconsiderablyhigherthantheobservedsystembright- formulation(seeAppendixofMa¨tzler,1998).Itsapplicabilityis ness temperaturesat 500 µm and beyond.The exceptionis the normally restricted to temperatures above 100 K, but Fig. 2 of caseofthesubseasonaltemperaturesforthecaseoflowseasonal Ma¨tzler(1998)indicatesthetrendwithtemperature.Absorption thermalinertia(25MKS,i.e.,comparabletothediurnalseasonal coefficients extrapolated to 50 K (estimated as half the values thermal inertia), which can be as low as 27-36 K (Fig. 4). We at 100K) are shown in Fig. 5. At 500µm, our bestestimate is conclude that the low observedT do not result from the tem- B k =0.25cm 1,comparabletotheabovevaluesforCH and peraturegradient(colderatdepthonthedayside)inthediurnal H2O − 4 N ices.Thecorrespondingpenetrationlengthisthereforecom- layer,butcouldconceivablybeduetolong-wavelengthradiation 2 parable to the diurnal skin depth but remains negligible com- probingasignificantportionoftheseasonallayer.Thissituation paredtotheseasonalskindepth,evenforseasonalΓ=25MKS. wouldrequirethat(i)the seasonalthermalinertia issmall, i.e., According to these calculations, the seasonal layer would be thereisnosignificantverticalgradientofthethermalinertia,and probedonlyatawavelengthof 4mmandbeyond.Wealsore- (ii)thesurfacematerialistransparentenoughthatthermalradi- ∼ markthattheexpressionfromMishima,Klug&Whalley(1983) ationprobesseveralmetersbelowthesurface. would give a penetrationdepth of 56 m at 2.2 cm, which is an Estimates of Pluto’s seasonal inertia have been obtained orderofmagnitudelargerthanindicatedbythelaboratorymea- from climate models (Hansen&Paige, 1996; Young, 2013; surementsofPaillouetal.(2008).Inaddition,smallconcentra- Hansen,Paige&Young, 2015; Olkinetal., 2015) designed to tionsofimpuritiescandramaticallyreducethemicrowavetrans- matchtheatmosphericpressureevolutionwitnessedsince1988 parencyofwaterice(e.g.,Chyba,Ostro,&Edwards(1998)and and constraints on Pluto’s albedo distribution based on HST referencestherein).Therefore,the abovecalculationslikely in- measurements. In addition to thermal inertia, these models in- dicateupperlimitstotheactualpenetrationdepthofradiationin cludefreeparameters,suchasthealbedosandbolometricemis- aH2Oicelayer,fromwhichweconcludethattheseasonallayer sivitiesoftheN frostandtheinvolatilesubstrate,andtheamout isnotreachedattheHerschelwavelengths. 2 ofvolatileinventory.Oncetunedtothepressuremeasurements, thesemodelscanalsopredicttheorbit-longevolutionofPluto’s 10000 atmosphere.The latest two models,publishedprior to the New Horizons encounter,which give different priorities on the con- 1000 straintstofit,differratherradicallyintheirconclusionswithcon- trastingbest-fitsolutionsfortheseasonalthermalinertia(10-42 1) 100 -m MKSinHansen,Paige&Young(2015)vs1000-3162MKSfor c Olkinetal. (2015)) and diverging conclusionsas to the fate of nt ( 10 e the atmosphere in the upcoming decades. The analysis of New effici 1 Horizonsdata,particularlypolarnighttemperatureswith REX, co n should ultimately sort out this issue, but for now, we regard ptio 0.1 the seasonal thermal inertia of Pluto as significantly undercon- or s strained. Ab 0.01 However, even if the seasonal thermalinertia is small (i.e., 0.001 comparable to the thermal inertia in the diurnal layer), we be- lievethatthesub-mmradiationdoesnotprobealargefractionof 0.0001 100 1000 10000 theseasonalskindepth(estimatedabovetobe3.5mforΓ=25 Wavelength (µm) MKS). This stems from our estimate of the absorption coeffi- Fig.5. Absorptioncoefficientof H O ice, extrapolatedto 50 K 2 cientsof ices presenton Pluto surface,on which we nowelab- (seetextfordetails). orate.ForN iceandCH ice,Lellouchetal.(2000a)presented 2 4 absorptioncoefficientsover30-300µmbasedbothonearlylab- oratorydatacompiledbyStansberry,Pisano&Yelle(1996)and We concludethatthelowbrightnesstemperaturesobserved on new optical constants measurements. These measurements atthelongestHerschelwavelengthscannotbeexplainedbysub- (seeFig.8ofLellouchetal.(2000a))indicatetypicalabsorption surfacesounding,andimplyemissivityeffects.Inwhatfollows, coefficientsof 0.5 cm 1 for N ice and 1 cm 1 for CH ice, we presentmodelsaimedatfitting the Herschellightcurvesto − 2 − 4 i.e.,penetration∼depthsof2cmand1cm,∼respectively,whichis evaluate the mean spectral emissivity of the Pluto-Charon sys- muchshallowerthantheabovevalueoftheseasonalskindepth. tem. Thesignificanceofthesepenetrationdepthsisactuallyuncertain becausethevolatileicesmightactuallyberestrictedtoaneven 4.4.FitofHerscheldata thinnersurfaceveneer. Using the above thermophysical models, we expand upon the H O ice on Pluto has long escaped spectroscopic detec- 2 modelsdevelopedpreviouslyforfittingtheISOandSpitzerdata tion, and based on initial New Horizons data appears to be ex- (Lellouchetal., 2000a, 2011). Briefly, these models described posedonlyinanumberofspecificlocations,usuallyassociated thePluto-Charonsystemascomposedoffourunits(N ice,CH withredcolor,suggestiveofwaterice/tholinmix(Grundyetal., 2 4 2015; Cooketal., 2015). Nonetheless, water ice is likely to be 6 Evidenceforwatericebedrocks isalsostronglysuggestedbythe ubiquitous in Pluto’s near subsurface, given its cosmogonical NewHorizonsdiscoveryofseveralkilometerhightopographicfeatures abundance, Pluto’s density, and its presence on Charon’s sur- onbothPluto’sandCharon’ssurfaces(Sternetal.,2015). 9 Lellouchetal.:HerschelobservationsofPluto ice,H O/tholinmix,andCharon),withspecificdistributionsand 2 geometric and bolometric albedos constrained by Pluto’s opti- cal light curve, permitting one to calculate the thermal radia- tion (assumed Lambertian) of the entire system. The distribu- tionofsurfaceunitswasbasedonvisibleimagingandphotom- etry (HST, mutual events) and near-infrared Earth-based spec- troscopy.Tocalculatethelocalsurfacetemperatures,adiurnal- only thermophysical model was used for all four units except N ice, which was maintained at a fixed N frost temperature. 2 2 Another special condition was that the CH temperature was 4 allowed to vary in accordance to thermophysical model pre- dictions, but was capped at a maximum 54 K temperature to account, in a simplified manner, for sublimation cooling ef- fectsfor CH , which becomeimportantabovethis temperature 4 (Stansberryetal.,1996b). This “end-member” description is obviously outdated by the high-resolution New Horizons/LORRI imaging results (Sternetal., 2015), but until high-resolution maps of compo- sition and albedo from LORRI and Ralph are available, it re- mains the only practical approach for our purpose. For now, we only considered the distribution favored in Paper I (“g ”, 2 their Fig. 4), remarking its rather nice consistency with the early LORRI/images (Fig. 6). Furthermore, this distribution is also roughly consistent with early compositional results from Fig.6.Top:AdoptedPlutounitsformodeling(white=N ,gray NewHorizons/Ralph,whichshowbothN andCH inSputnik 2 2 4 = CH , black = H O/tholin). Bottom: Map of Pluto created Planum, neither N nor CH in Cthulhu Regio, CH north of 4 2 2 4 4 from images taken from June 27 to July 3 by the Long Range Cthulhu and in the north polar region, and N at mid-northern 2 Reconnaissance Imager (LORRI) on New Horizons, combined latitudes (Grundyetal. (2015), L. Young, priv. comm). The with lower resolution color data from the spacecraft’s Ralph model free parameters are the thermal inertias of Pluto and Charon(expressedintermsofthethermalparameterΘ7),plus instrument. See http://pluto.jhuapl.edu/Multimedia/Science- Photos/pics/nh-pluto-map.jpg.CthulhuRegioisthedarkregion the bolometric and/or spectral emissivity of some of the units, covering 30 E-160 Elongitudes.SputnikPlanumisthesouth- especially CH ice. Fitting the Spitzer 2004 light curve makes ◦ ◦ 4 ∼ ern part of the bright region immediately to the east (informal it possibleto estimate the thermalinertiasof Plutoand Charon namesaretakenfromSternetal.,2015). separatelybecausetheformerprimarilydictatesthe24µmlight- curveamplitude,while thelatterdeterminesthelargecontribu- tionofCharontotheobservedmean24-µmT (seePaperIfor B details). This implies that the other units besides CH ice are also sub- 4 We startbytestingthebest-fitmodelofPaperIdetermined jecttowavelength-dependentemissivities.Relaxingthehypoth- fromtheSpitzer2004data.Inthisdiurnal-onlymodel,thespec- esisthatthespectralemissivityofCharonandoftheH O/tholin 2 tralandbolometricemissivityofCharonandoftheH O/tholin unitsareequaltounity,wesearchedforthespectralemissivity 2 unitofPlutowerefixedto1.Inferredparameterswerethether- (nowassumedforsimplicitytobethesameforCharonandthe mal parameters of Pluto and Charon, Θ = 6 (i.e., Γ = 22 threePlutounits)thatpermitsafittoalllightcurves(case 3in PL PL MKS) and Θ = 4.5 (Γ = 22 MKS); bolometric emissiv- Table2).Thiscasepermitsagoodfit(notshowninFig.7)tothe CH CH ityofmethane,ǫ =0.7;andspectralemissivityofmethane, data,butwedonotregarditassatisfactorybecausetheassoci- b,CH4 ǫ = 0.7, 0.6, and 0.45at 70, 100,and 160 µm, respectively. atedPlanck-averagedbolometricemissivityis0.82-0.85,which CH4 AsindicatedbythethindottedlinesinFig.7, thismodel(case is inconsistent with the bolometric emissivities prescribed for 1inTable2),whichprovidesanexcellentfitoftheSpitzer2004 thetholin/H O,CH andCharonunits(1.0,0.7,and1.0,respec- 2 4 data,isinconsistentwiththeHerschelmeasurementsasityields tively). brightnesstemperaturesthatare toolowat100and160µm,as The above results point to the need to revise the Spitzer- wellastoomuchlight-curvecontrastatthesewavelengths.The derived models, and we here updated the fitting approach. For firstdeficiencylargelyresultsfromthepoorqualityoftheSpitzer thesakeofsimplicity,weadoptedfiducialbolometricemissivi- 2004 156 µm measurements. These measurements, which are tiesof0.90forCharonandallPlutounits(forN ice,thebolo- 2 now shown to be inconsistent with other data (Fig.2), unduly metric emissivity is notexplicitlyused;insteada uniformtem- skewed the model toward brightness temperatures that are too peratureisspecified).Wealsodonotincludea“beamingfactor” low. This deficiencycan be correctedfor by adjustingthe CH4 in the thermophysicalmodel (as was done in Paper I), i.e., we icespectralemissivities(to0.67,0.80,0.84,0.58,0.53,and0.43 ignoresurfaceroughnesseffects;thesearediscussedseparately at 70, 100, 160, 250, 350, and 500 µm, respectively; case 2 later.With thesechangestothe model,theSpitzer-200424µm in Table 2). However the synthetic light curves (long dashed- lightcurvewasrefitintermsofseparatethermalparametersfor lines in Fig. 7) still have too much contrast, except at 70 µm. PlutoandCharonattheSpitzerepoch,adoptinga24µmemissiv- ityof1.0forallunits.Best-fitΘ =7andΓ =3values(i.e., PL CH 7 Θ is related to the thermal inertia Γ by Θ = Γ√ω , where ω = Γ =26MKSandΓ =14MKS)wereobtained.Thethermo- 2π/(6.3872 days) is the body rotation rate, ǫ is theǫbσbToS3lSometric emis- phPLysicalmodelwastChHenre-runforthe2012conditions,search- b sivityofthesurface,σisStefan-Boltzmann’sconstant,andT isthe ing for the spectral emissivities (againassumed to be the same SS instantaneousequilibriumtemperatureatthesubsolarpoint, for all units) that are permitted to fit the ensemble of Herschel 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.