Nobuyuki Imanishi · Alan C. Luntz Peter Bruce E ditors The Lithium Air Battery: Fundamentals The Lithium Air Battery: Fundamentals Nobuyuki Imanishi (cid:129) Alan C. Luntz (cid:129) Peter Bruce Editors The Lithium Air Battery: Fundamentals Editors NobuyukiImanishi AlanC.Luntz FacultyofEngineering IBMResearch,AlmadenResearchCenter DepartmentofChemistry SanJose,CA,USA MieUniversity Tsu,Japan SUNCAT,SLACNationalAccelerator Laboratory PeterBruce MenloPark,CA,USA SchoolofChemistry UniversityofSt.Andrews St.Andrews,UK ISBN978-1-4899-8061-8 ISBN978-1-4899-8062-5(eBook) DOI10.1007/978-1-4899-8062-5 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2014933798 ©SpringerScience+BusinessMediaNewYork2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerpts inconnectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeing enteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplication ofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthe Publisher’s location, in its current version, and permission for use must always be obtained from Springer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter. ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Energy storage has emerged as one of the greatest challenges facing society in thetwenty-firstcentury.Withtheworldpopulationincreasingandmanypartsofthe worldbecomingmoreindustrialized,thedemandforusableenergyispredictedto riseinexorably(by56%fromnowto2040).Asaresult,coal,oil,andgaswillbe joined increasingly by nuclear and renewable fuels for electricity generation. Deploying renewable energy will certainly become necessary to mitigate CO 2 emissions and their effects on climate change as energy demand grows. The use ofrenewablestransformsthedemandforenergystorage.Asthiscomponentgrows relative to traditional sources, it will ultimately be necessary to store the unpredictable supply of electricity from renewable generation and provide it to consumers when required. While the time scale for employing electrochemical energy storage on the grid is not immediate, the electrification of transport is driven by the same imperatives and is beginning now. The lack of cost-effective, safe,long-lastingelectricalenergystorage withsufficientenergydensitiesisright now the only significant bottleneck preventing mass market conversion to electricvehicles. Meetingtheneedsforenergystoragewillrequirearangeofsolutions,including lithium-ion batteries. Due to its relatively high energy density, the lithium-ion battery—whichSonyintroducedin1991—ledtotheportableelectronicsrevolution of the last two decades. The Lithium-ion battery will continue to evolve slowly providing increasing energy density; it is currently the technology of choice for electricvehiclesandwillbecriticalformanyyearstocome.However,thegeneral consensus today is that for true mass market acceptance of electric vehicles, a batterychemistrybeyondLi-ionwithahigherenergydensity(andhencerange-cost tradeoff)mustultimatelybeemployed.Therefore,itisimportanttolookbeyondthe horizon of lithium-ion and explore alternative rechargeable batteries that might exceedwhatlithium-ionbatteriescoulddeliver.Theoptionsarelimitedandinclude zincairandlithiumsulfur;howeverthebatterywiththehighesttheoreticalspecific energy is obtained by combining a lithium anode with an O cathode, i.e., the 2 lithiumairbattery. v vi Preface UsingO asafuelatthecathodeofabatteryisnotnew.Forexample,primary 2 zincairbatterieshavebeenusedformanydecades.Thelithiumairbatteryhasbeen exploredsincethe1970s;especiallynoteworthyisthepioneeringworkbyAbraham in 1996. Today, the need for better energy is driving intense interest in the rechargeable lithium air battery. As with any technology that has the potential to betransformational,significantbarriersneedtobeovercome.Priortotheintroduc- tionofthelithium-ionbattery,manybelievedrechargeablelithiumbatterieswould neverbecomeacommercialreality.Workontheearlyincarnationsoftherecharge- able lithium air battery revealed that the reactions taking place in such cells were notthoseexpectedordesired.Theclearlessonfromthisworkwasthatfundamental understandingofthechemistryandelectrochemistryunderpinningtheoperationof the rechargeable lithium air battery was essential and that only by acquiring such knowledge would it be possible to address the barriers preventing commercial realization of lithium air. The contributors to this book are actively engaged in researchatthecuttingedgeoflithiumairbatteriesandfocusonunderstandingthe processes taking place in the cell and overcoming the hurdles found therein. The roleofelectrolyteandelectrodestabilityisdiscussed,asarethemechanismsofthe electrodereactionsandthemorphologiesoftheproducts.Theuseofsolidelectro- lytes,protectedlithiumanodes,andtheissuesofairhandlingatthecathodeareall examined. The state of development in the field encouraged us that this was an appropriate time for this book. Although progress has been significant, much still remains to be done to explore the science behind the lithium air battery so that informed and evidence-based decisions can be made concerning the ultimate viabilityofthistechnology. Tsu,Japan NobuyukiImanishi CA,USA AlanC.Luntz St.Andrews,UK PeterBruce November2013 Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 OsamuYamamoto 2 NonaqueousElectrolytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 StefanA.Freunberger,YuhuiChen,FannyBarde´, KensukeTakechi,FuminoriMizuno,andPeterG.Bruce 3 CathodeElectrochemistryinNonaqueous LithiumAirBatteries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 A.C.Luntz,B.D.McCloskey,S.Gowda, H.Horn,andV.Viswanathan 4 TheKineticsandProductCharacteristicsofOxygen ReductionandEvolutioninLiO Batteries. . . . . . . . . . . . . . . . . . . 121 2 BetarM.Gallant,Yi-ChunLu,RobertR.Mitchell, DavidG.Kwabi,ThomasJ.Carney,CarlV.Thompson, andYangShao-Horn 5 AtomisticandFirstPrinciples:Computational StudiesofLiO Batteries. . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. . 159 2 KahChunLau,LarryA.Curtiss,MariaK.Y.Chan, andJeffreyP.Greeley 6 LithiumAirBatteriesBasedonProtected LithiumElectrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 StevenJ.Visco,VitaliyNimon,AlexeiPetrov,KirillPridatko, NikolayGoncharenko,EugeneNimon,LutgardDeJonghe, MaryHendrickson,andEdwardPlichta 7 AirElectrodesforAqueousLithiumAirBatteries. . . . . . . . . . . . . 201 PhilippeStevensandGwenae¨lleToussaint 8 SolidElectrolytesforAqueousLithiumAirBatteries. . . . . . . . . . . 215 NobuyukiImanishi vii viii Contents 9 ASolid-State,RechargeableLithiumOxygenBattery. . . . . . . . . . 235 B.KumarandJ.Kumar 10 PrimaryLithiumAirBatteries. . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 Ji-GuangZhang,JieXiao,andWuXu 11 OverviewofLiO BatterySystems,withaFocus 2 onOxygenHandlingRequirementsandTechnologies. . . . . . . . . . 291 PaulAlbertus,TimmLohmann,andJakeChristensen Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Contributors PaulAlbertus BoschResearchandTechnologyCenter,PaloAlto,CA,USA FannyBarde´ AdvancedTechnology1,ToyotaMotorEuropeNV/SA,Zaventem, Belgium Peter G. Bruce School of Chemistry, University of St. Andrews, St. Andrews, Fife,UK Thomas J. Carney Department of Materials Science and Engineering, MassachusettsInstituteofTechnology,Cambridge,MA,USA MariaK.Y.Chan CenterforNanoscaleMaterials,ArgonneNationalLaboratory, Lemont,IL,USA Yuhui Chen School of Chemistry, University of St. Andrews, St. Andrews, Fife,UK JakeChristensen BoschResearchandTechnologyCenter,PaloAlto,CA,USA Larry A. Curtiss Material Science Division, Argonne National Laboratory, Lemont,IL,USA CenterforNanoscaleMaterials,ArgonneNationalLaboratory,Lemont,IL,USA Stefan A. Freunberger Christian Doppler Laboratory for Lithium Batteries, Institute for Chemistry and Technology of Materials, Graz University of Technology,Graz,Austria Betar M. Gallant Department of Mechanical Engineering, Massachusetts InstituteofTechnology,Cambridge,MA,USA NikolayGoncharenko PolyPlusBatteryCompany,Berkeley,CA,USA S.Gowda IBMResearch,AlmadenResearchCenter,SanJose,CA,USA Jeffrey P. Greeley School of Chemical Engineering, Purdue University, WestLafayette,IN,USA ix