. The Linewidth ofRamseyLaserwithBad Cavity Yang Li, Wei Zhuang, Jinbiao Chen, and Hong Guo ∗ † CREAM Group, State Key Laboratory of Advanced Optical Communication Systems and Networks (Peking University) and Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, andCenterforComputationalScienceandEngineering(CCSE),PekingUniversity,Beijing100871, P.R.China (Dated:January15,2010) WeinvestigateanewlaserschemebyusingRamseyseparated-fieldtechniquewithbadcavity. Bystudying thelinewidthofthestimulated-emissionspectrumofthiskindoflaserinsidethecavity,wefinditslinewidth 0 is more than two orders of magnitude narrower than atomic natural linewidth, and it is far superior to that 1 ofconventional opticalRamseymethodandanyotheravailablesubnatural linewidthspectroscopy atpresent. 0 Sinceanycavityrelatednoiseisreducedtocavity-pullingeffectinbadcavitylaser,thisRamseylaserprovides 2 thepossibilityofprecisionsubnaturallinewidthspectroscopy,whichiscriticalforthenextgenerationofoptical clockandatominterferometers. n a PACSnumbers:42.55.Ah,42.50.Ar,42.60.Da,32.30.-r J 5 1 Introduction: Since the invention of the separated-field cus on the stimulated emission spectrum via multiple coher- technique [1], it has played an important role in the field of ent interactionsinside the cavity. We find this Ramsey laser ] h precision spectroscopy due to its linewidth narrowing effect canprovideastimulated-emissionspectrumwithalinewidth p via multiple coherent interaction. Atomic clocks based on muchnarrowerthanthatofanyconventionalopticalRamsey - thistechniquehavegreatlyextendedourabilityforfrequency seperated-field spectroscopy, which is commonly applied in t n measurement,further,almostalltheatominterferometersare opticalatomicclock. Ourresultsalsoshowthatasubnatural a basedonthistechnique[2]. linewidthspectroscopy,superiortoanyotheravailablesubnat- u q Though, the natural linewidth of quantum transition was uralspectroscopytechniqueatpresent[3–10],canbereached [ regarded as the ultimate limit to high-resolution laser spec- bythiskindoflaser,ifasuitableatomiclevelstructureischo- 1 troscopy [4], several methods of subnatural linewidth spec- sen. Thus, this method can provide an effective subnatural v troscopyhavebeenproposedtogainsubnaturallinewidth[3– spectroscopy, and the possibilities for the new optical clock 0 10]. However, in all these efforts, including optical Ramsey scheme[15]andatominterferometers[2]. 7 spectroscopy, subnatural line is realized at the expense of a Theoreticalframework:Weconsiderthecaseofatwo-level 6 quickreductionin signal-to-noise(SNR) ratiodueto the ex- atomic beam interacting with a single-mode Ramsey cavity 2 . ponentialdecayingofsignal,thusalltheseschemescanonly ofseparated-oscillating-fieldresonatorswiththecavitymode 1 getthelinewidthseveraltimesnarrowerthantheatomicnat- linewidthismuchwiderthantheatomicgainlinewidth.Thus 0 ural linewidth. In the past three decades, this situation does we call it bad-cavity Ramsey laser. All atoms are pumped 0 1 not change in the field of the precision laser spectroscopy. onto the upper lasing state a before entering the first cavity : On the other hand, the thermalnoise of the cavity mirrorsis ofseperatedfield,andthelowerlasingstateisb. Weassume v the main obstacle for further linewidth reduction of a laser alltheatomshavethesamevelocitiesυ,thatmeanswhatwe i X [11,12],anditisachallengetosubstantiallyreducethisnoise consider here is a homogeneous laser system. And for the r further[13]. Recently, a new scheme, called active optical sakeofsimplicity,weconsiderthetwo-standingwaveslinear a clock[14–18],wasproposedtosubstantiallyreducethelaser optical Ramsey configuration with a grid as spatial selector linewidth. With lattice trappedatoms, it is possible to reach [20, 21]. Our treatment can be extended to other configura- mHzlinewidthlaserbasedonthemechanismofactiveoptical tions as in [22–24]. The length of each oscillating part is l, clock[14,15,19]. Theprincipalmechanismofactiveoptical andthelengthofthefreedriftregionisL. Thecorresponding clockistodirectlyextractlightemittedfromtheultranarrow Hamiltonianis atomic transition with a cavity mode linewidth much wider thanthatoflasing.Thisbadcavityensuresthatanyfrequency H = ~ωaˆ†aˆ +~ [ωaj(t)σaj +ωbj(t)σbj] shiftduetocavitynoisereducestocavity-pullingeffect[15– Xj 17],thenthethermalnoiseisnotthemajorobstacleagainfor + ~g Γj(t)(aˆ†σˆje−i~k·~rj +σˆ+jaˆei~k·~rj), (1) reducingthelinewidth.Thismeansthebadcavitycanplayan Xj − indispensableroleinnewsubnaturallinewidthspectroscopy. In this Letter, we propose a new scheme called Ramsey whereaˆ,aˆ aretheannihilationandcreationoperatorsofthe † laserwithbadcavity. Distinctfromanypreviousapplications field mode inside the cavity, with the frequency ω, σj = a of conventional Ramsey separated oscillating fields method (a a)jandσj =(b b)jaretheprojectionoperatorsforthe | ih | b | ih | [1], which focuses on the absorption spectrum, we here fo- jth atom correspondingto the upper and lower lasing levels, 2 with frequency ωj and ωj, and σj = (b a)j is the “spin- By using the above definitions of the noise operators, we flip”operatorfortahejthatbom,with−itsad|joiihnt|σj =(a b)j. findthecorrelationfunctionsofmacroscopicnoiseforcescan + Thecouplingconstantgisgivenbyg = µ√ω/2~ǫ V|,iwhhe|re begenerallywrittenintheform 0 µisthemagnitudeoftheatomicdipolemoment,andV isthe effectivevolumeofthecavity. Fk(t)Fl(t′) In order to denote the finite-time interaction between the = (cid:10)D(0)δ(t t )(cid:11)+D(1)δ(t t τ) kl − ′ kl − ′− atomsandRamseyseparatedfield,weintroducethefunction + D(2)δ(t t +τ)+D(3)δ(t t τ T) kl − ′ kl − ′− − Γj(t)=Θ(t−tj)−Θ(t−tj−τ)+Θ(t−tj−τ−T)−Θ(t−tj−2τ−T), + D(k4l)δ(t−t′+τ+T)+D(k5l)δ(t−t′−2τ−T) (2) + D(6)δ(t t +2τ+T)+D(7)δ(t t T) whereΘ(t)istheHeavisidestepfunction[Θ(t) = 1fort > 0, kl − ′ kl − ′− Θ(t) = 1/2 fort = 0, and Θ(t) = 0 for t < 0]. T is the free + D(k8l)δ(t−t′+T), (7) drifttimeoftheatoms,andτistheinteractingtimebetween theatomandonecavity. whereD(i)(k,l = a,b,M,M ;i = 0,1,2)arethequantumdif- kl † By the standard way [25], we can get the Heisenberg- fusioncoefficients. Langevin equations of the motion for the single-atom and c-numbercorrelationfunctions: Bychoosingsomepartic- filedoperators. Byintroducingthemacroscopicatomicoper- ular orderingfor productsof atomic and field operators, one atorΓ, M(t)(σt)j=(t−),itPhejdΓyj(nta)σm−jic(te),quNaat(ito)n=sfPorjtΓhej(tfi)eσladjaa(tn)d,Nmba(ct)ro=- tchoeulqdudanertuivmetLhaencg-nevuimnbeeqrusattoiochnassdtiecriLvaendgaebvoivnee,qaunadtiaolnlsoffrothme j j bb Pscopicatomicoperatorsyield dynamic equations for c-number stochastic variables are the sameasin[26].Thedifferencesarefromthecorrelationfunc- κ a˙(t)= a(t)+gM(t)+F (t), (3) tions. Ontheotherhand,weconvertthequantumnoiseoper- κ −2 atorsintothec-numbernoisevariablesF˜ (t)(k=a,b,M,M ), k † whosecorrelationfunctionsareexpressedas N˙ (t)= R(1 A +A A ) (γ +γ )N (t) a − 0 1− 2 − a a′ a g[M (t)a(t)+a (t)M(t)]+F (t), (4) F˜ (t)F˜ (t ) † † a k k ′ − D E = D˜(0)δ(t t )+D˜(1)δ(t t τ) N˙b(t)= +− gR[(aB0(t−)MB(1t)++BM2)−(t)γab(Nt)b](t+)+Fγ(a′t)N,a(t) (5) + D˜(kk2ll)δ(t−−t′′+τ)+kl D˜(k3l)−δ(t′−−t′−τ−T) † † b + D˜(4)δ(t t +τ+T)+D˜(5)δ(t t 2τ T) kl − ′ kl − ′− − + D˜(6)δ(t t +2τ+T)+D˜(7)δ(t t T) kl − ′ kl − ′− M˙(t)= − R(C0−C1+C2)−γabM(t) + D˜(k8l)δ(t−t′+T), (8) + g[N (t) N (t)]a(t)+F (t), (6) a b M − where D˜(i) are the c-number Langevin diffusion coefficients, kl wherethemacroscopicnoiseoperatorsaredefinedas related to quantum Langevin diffusion coefficients D(i) as in kl [27]. F (t)= Γ˙ (t)σj(t) R(1 A +A A )+ Γ (t)fj(t), a j a − − 0 1− 2 j a Steady-state solutions: The steady-state solutions for the Xj Xj mean values of the field and atomic variables for laser op- eration are obtained by dropping the noise terms of the c- F (t)= Γ˙ (t)σj(t)+R(B B +B )+ Γ (t)fj(t), number Langevin equations and setting the time derivatives b j b 0− 1 2 j b Xj Xj equaltozero. Theanalyticalsolutionsareverycomplex,and onecouldnumericallysolvethesteady-stateequations.Inthis paper,weonlycareaboutthebadcavitylimitγ T 1 FM(t)= i Γ˙j(t)σ˜j(t)+R(C0 C1+C2) i Γj(t)fσj(t), τ 1 κ/2. Sincetheatomictransittimeismuchmasxh≪orter−tha≪n − Xj − − − Xj th−e d≪ampingtimes of atomic variables, one could ignore the effectof thespontaneousemissionof theatom. By the stan- with A = σj(t +τ) , A = σj(t +τ+T) , 0 a j q 1 a j q dardway[25],Wegetthefollowingsteady-statevalues: A = σj(Dt +2τ+TE) , B =D σj(t +τ)E , 2 a j q 0 b j q CB1 == DσDbijσ(tjj(+t τ++τT) )E,q,ECB2 == Dσiσbj(jt(jDt++2ττ++TT))EEq,, A˜ss2 = R(1−A0+κ A1−A2) = R(B0−κB1+B2), C0 = Di−σj(−t +j 2τ+EqT) .1 R is tDh−e m−eajn pumpiEnqg (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) 2 j rate,whicDh−isd−efinedin[26]E.qItisveryeasytocheckthatthe Rτ C C +C κ N˜ = 1+ 0− 1 2 , averagevaluesoftheaboveLangevinforcesareallzero. ass 2 " gτ rR(B B +B )# 0 1 2 − 3 N˜ = Rτ 1 C0−C1+C2 κ . where ΩR is the Rabi frequency on resonance, bss 2 " − gτ rR(B B +B )# D =g2N˜ /I γ , D = g2R/2I γ2 , and 0− 1 2 ST ass 0 ab Ram 0 ab ∆ = ω (ω ω ) presents the detuning in the free Adetailedanalysisaboutthestabilityofthesteady-statecan 2 − a2 − b2 driftregion. pisaparameter,whichcharacterizesthepump- befoundsuchasin[28]. Inthispaper,weassumethesteady- ingstatistics: aPoissonianexcitationstatisticscorrespondsto statesolutionisstable. p=0,andforaregularstatisticswehave p=1. Laserlinwidth: Supposethe quantumfluctuationis small, ThenthelinewidthofRamseylaserwithbadcavityisgiven theevolutionofthefluctuationscanbeobtainedbymakinga by linearizationof thec-numberLangevinequationsaroundthe steady-statesolution.Thenthemeasuredspectraoffieldfluc- γ2 D= ab D +D [2 psin2(Ω τ)sin2(∆ T)] . tuationswillbedirectlyrelatedtothesequantities.ByFourier (κ/2+γ )2{ ST Ram − R 2 } ab transformationsofthelinearizedequation,we getthe ampli- (11) tudeandphasequadraturecomponentsδX(ω)andδY(ω)[26]. SinceDST/DRam 1inoursituation,andinthecaseofmax- Well above threshold, one can neglect the amplitude fluctu- imal photon num≪ber, the steady state value of N˜ass is about ations, and the linewidth inside the cavity is related to the Rτ/2.Thenwegetthe phase-diffusioncoefficient[25]. Forsmallfluctuationoflaser 2g2 phase,thespectrumofphasefluctuationsissimplyrelatedto D≈ κ [2−psin2(ΩRτ)sin2(∆2T)]. (12) the spectrumof the phase quadraturecomponentof the field From the expression above, we find that the pumpingstatis- fluctuations,namely, ticcaninfluencethelinewidth. Forregularinjection(p = 1), 1 thelinewidthisthenarrowest,whileforPoissonianinjection (δϕ2) = (δY2) . ω I ω (p = 0), the linewidth is the broadest. But even for regular 0 injection, the linewidth is larger than the case of one cavity. In the region γ T 1 τ 1 κ/2, as in the recently ab ≪ − ≪ − ≪ That means the mechanism of separated-field does not play proposed active optical clock [15] with atomic beam. The theroleinreducingthelinewidthasintheconventionalopti- phase quadrature componentof the field fluctuations can be calRamseymethod,whichiscounter-intuitive. However,the expressedas separatedfieldsareindispensableforanyphasedetectionlike (δϕ2) atom interferometry. The details about the method of active ω atominterferometrywillappearelsewhere. (κ/2+γ )2 g2 ab 4γ N˜ OurmethodofRamseylaserissuitableforanyatomswith ≈ I ω2[(κ/2+γ )2+ω2]4(κ/2+γ )2{ ab ass 0 ab ab metastable energy level, as an example, we choose the tran- + 2R[(A0+B0)+(A2+B2)] sitionfromthe metastablestate 4s4p3P to thegroundstate 1 + Rp[(C0−C0∗)2+(C1−C1∗)2+(C2−C2∗)2]}. (9) 4s21S0of40Catocheckthestrikingfeatureofthislaser:sub- natural linewidth. As mentioned in [29], the corresponding SincethetimeτandT ismuchshorterthanthetimescale naturallinewidth of the metastable state 4s4p 3P is 320Hz. 1 of the atomic dampings, we can neglect the dampings when As in the recently proposedactive optical clock with atomic calculateA,B,C. Byusing i i i beam[15],thevelocityoftheatomsinthermalatomicbeamis Ω Ω about500m/s,andthelengthoftheinteractionregionisabout A0 =cos2 Rτ , A1 =cos2 Rτ , 1mm, then the time for the atom to traverse each coherent- 2 ! 2 ! interaction region is on the order of magnitude of 1 µs. If a bad cavity with κ is on the order of 107Hz, the relation A2 =1−sin2(ΩRτ)cos2 ∆22T!, B0 =sin2 Ω2Rτ!, mκ/a2gn≫ituτd−e1oifsksHatzis,fiwedh.ichThceannwbeheenasgilyisaochniethveedorfdoerrcoufrrtehnet technique[30], from the linewidth expressionof Eq.(16)the order of magnitude of linewidth is below 1 Hz. This means Ω ∆ T B1 =sin2 2Rτ!, B2 =sin2(ΩRτ)cos2 22 !, the linewidth of a Ramsey laser can be more than two or- dersofmagnitudenarrowerthantheatomicnaturallinewidth, thereforeourRamseymethodprovidesanewsubnaturalspec- (C0−C0∗)2 =0,(C1−C1∗)2 =−sin2(ΩRτ)sin2(∆2T), troscopytechnique. Andsinceitisstimulated-emissionspec- trum,itovercomesthedifficultyinothersubnaturallinewidth (C C )2 = sin2(Ω τ)sin2(∆ T), spectroscopyschemeswherethequickreductionofsignalto 2− 2∗ − R 2 noise ratio is a formidable limit. We should point out that weget thisRamseylaserdoesnotescapethe limitationofallactive opticalclock: inordertopumpatomstotheexcitedstateef- (κ/2+γ )2 γ2 (δϕ2) = ab ab D fectivelyandtobestimulatedemitphotonduringthelifetime ω ω2[(κ/2+γab)2+ω2)](κ/2+γab)2{ ST ofametastablestate,thisnewmethodwillonlybeapplicable + D [2 psin2(Ω τ)sin2(∆ T)] , (10) tosomespecialtransitions[17]. Ram R 2 − } 4 Conclusion: In summary, we propose a new subnatural Lett.48,871(1982). linewidth spectroscopy technique, which is a laser by us- [9] H.J.Carmichael,R.J.Brecha,M.G.Raizen,H.J.Kimble,and ing Ramsey seperated-field cavity to realize the output of P.R.Rice,Phys.Rev.A40,5516(1989). [10] U.W.Rathe,M.O.Scully,LettersinMathematicalPhysics34, stimulated-emission radiation via multiple coherent interac- 297(1995) tionwithatomicbeam.WefindthelinewidthofRamseylaser [11] K. Numata, A. Kemery, J. Camp, Phys Rev Lett, 93, 250602 issubnaturalifwechooseanappropriateatomiclevel,andthe (2004). bad-cavity laser mechanism will dramatically reduce cavity- [12] A.D.Ludlowetal.,Opt.Lett.32,641(2007). relatednoiseasdiscussedinactiveopticalclock[15–19].Our [13] H.J.Kimble,B.L.Lev,andJ.Ye,Phys.Rev.Lett.101,260602 results show thatthis new subnaturallinewidth spectroscopy (2008). is superior to conventional optical Ramsey seperated-field [14] J.Chen, andX.Chen, InProceedingsofthe2005 IEEEInter- nationalFrequencyControlSymposiumandExposition,(IEEE, spectroscopyandanyotheravailablesubnaturalspectroscopy 2005),p.608. technique at present [3–10]. Considering one have to ap- [15] J.Chen,e-printarXiv:0512096quant-ph;ChineseScienceBul- ply the separated-field method in any phase detection as in letin54,348(2009). Ramsey-Borde´interferometer[2],toinvestigatetheeffectsof [16] D.YuandJ.Chen,Phys.Rev.A78,013846(2008). phase differences between the two oscillating fields [31] in [17] J.Chen, InFrequencyStandardsandMetrology: Proceedings this stimulated separated-field method with such subnatural ofthe7thSymposium,editedbyMalekiLute(WorldScientific linewidthwillbeournextresearchaim. PublishingCompany,2009). [18] Y.Wang,ChineseScienceBulletin54,347(2009). We acknowledge Yiqiu Wang and Deshui Yu for fruitful [19] D.Meiser,J.Ye,D.R.Carlson,andM.J.Holland,Phys.Rev. discussions. This work is supported by MOST of China Lett.102,163601(2009) (grant2005CB724500,NationalNaturalScienceFoundation [20] F.Strumia,Metrologia8,85(1972). ofChina(grant60837004,10874009),NationalHi-TechRe- [21] G.Kramer,J.Opt.Soc.Am.68,1634(1978). searchandDevelopment(863)Program. [22] V.S.LetokhovandB.D.Pavlik,Opt.Spectrosc.USSR32,455 (1972). [23] Ye. V. Baklanov, B. Ya, Dubetsky, V. P. Chebotayev, Appl. Phys.9,171(1976). [24] J.C.Bergquist,S.A.Lee,andL.L.Hall,Phys.Rev.Lett.38, E-mail:[email protected] 159(1977). ∗ E-mail:[email protected]. [25] L.Davidovich,Rev.Mod.Phys.68,127(1996). † [1] N.F.Ramsey,Phys.Rev.76,996(1949). [26] M. I. Kolobov, L. Davidovich, E. Giacobino, and C. Fabre, [2] B.DubetskyandP.R.Berman,InAtomInterferometry,edited Phys.Rev.A47,1431(1993). byP.R.Berman(AcademicPress,Cambridge,MA,1997). [27] M. SargentIII,M.O.Scully, andW.E.Lamb, LaserPhysics [3] M.M.Salour,Rev.Mod.Phys.50,667(1978). (AdditionWesley,Reading,MA,1974). [4] J.WongandJ.C.Garrison,Phys.Rev.Lett.44,1254(1980). [28] N.A.Abraham, P.Mandel, andL.M.Narducci, DynamicIn- [5] P.L.KnightandP.E.Coleman,J.Phys.B:Atom.Molec.Phys. stabilities and Pulsations in Lasers, Progress in Optics XXV, 134345(1980). editedbyE.Wolf(Elsevier,Amsterdam,1988). [6] H.-W.Lee,P.Meystre,andM.O.Scully,Phys.Rev.A24,1914 [29] L.Pasternack,D.M.Silver,D.R.Yarkony,andP.J.Dagdigian, (1981). J.Phys.B13,2231(1980). [7] F.Shimizu,K.Shimizu,andH.Takuma,Phys.Rev.A28,2248 [30] K.AnandM.S.Feld,Phys.Rev.A56,1662(1997). (1983). [31] N.F.RamseyandH.B.Silsbee,Phys.Rev.84,506(1951). [8] W.Gawlik,J.Kowalski,F.Tra¨ger,andM.Vollmer,Phys.Rev.