ebook img

The Linewidth of Ramsey Laser with Bad Cavity PDF

0.06 MB·English
by  Yang Li
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Linewidth of Ramsey Laser with Bad Cavity

. The Linewidth ofRamseyLaserwithBad Cavity Yang Li, Wei Zhuang, Jinbiao Chen, and Hong Guo ∗ † CREAM Group, State Key Laboratory of Advanced Optical Communication Systems and Networks (Peking University) and Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, andCenterforComputationalScienceandEngineering(CCSE),PekingUniversity,Beijing100871, P.R.China (Dated:January15,2010) WeinvestigateanewlaserschemebyusingRamseyseparated-fieldtechniquewithbadcavity. Bystudying thelinewidthofthestimulated-emissionspectrumofthiskindoflaserinsidethecavity,wefinditslinewidth 0 is more than two orders of magnitude narrower than atomic natural linewidth, and it is far superior to that 1 ofconventional opticalRamseymethodandanyotheravailablesubnatural linewidthspectroscopy atpresent. 0 Sinceanycavityrelatednoiseisreducedtocavity-pullingeffectinbadcavitylaser,thisRamseylaserprovides 2 thepossibilityofprecisionsubnaturallinewidthspectroscopy,whichiscriticalforthenextgenerationofoptical clockandatominterferometers. n a PACSnumbers:42.55.Ah,42.50.Ar,42.60.Da,32.30.-r J 5 1 Introduction: Since the invention of the separated-field cus on the stimulated emission spectrum via multiple coher- technique [1], it has played an important role in the field of ent interactionsinside the cavity. We find this Ramsey laser ] h precision spectroscopy due to its linewidth narrowing effect canprovideastimulated-emissionspectrumwithalinewidth p via multiple coherent interaction. Atomic clocks based on muchnarrowerthanthatofanyconventionalopticalRamsey - thistechniquehavegreatlyextendedourabilityforfrequency seperated-field spectroscopy, which is commonly applied in t n measurement,further,almostalltheatominterferometersare opticalatomicclock. Ourresultsalsoshowthatasubnatural a basedonthistechnique[2]. linewidthspectroscopy,superiortoanyotheravailablesubnat- u q Though, the natural linewidth of quantum transition was uralspectroscopytechniqueatpresent[3–10],canbereached [ regarded as the ultimate limit to high-resolution laser spec- bythiskindoflaser,ifasuitableatomiclevelstructureischo- 1 troscopy [4], several methods of subnatural linewidth spec- sen. Thus, this method can provide an effective subnatural v troscopyhavebeenproposedtogainsubnaturallinewidth[3– spectroscopy, and the possibilities for the new optical clock 0 10]. However, in all these efforts, including optical Ramsey scheme[15]andatominterferometers[2]. 7 spectroscopy, subnatural line is realized at the expense of a Theoreticalframework:Weconsiderthecaseofatwo-level 6 quickreductionin signal-to-noise(SNR) ratiodueto the ex- atomic beam interacting with a single-mode Ramsey cavity 2 . ponentialdecayingofsignal,thusalltheseschemescanonly ofseparated-oscillating-fieldresonatorswiththecavitymode 1 getthelinewidthseveraltimesnarrowerthantheatomicnat- linewidthismuchwiderthantheatomicgainlinewidth.Thus 0 ural linewidth. In the past three decades, this situation does we call it bad-cavity Ramsey laser. All atoms are pumped 0 1 not change in the field of the precision laser spectroscopy. onto the upper lasing state a before entering the first cavity : On the other hand, the thermalnoise of the cavity mirrorsis ofseperatedfield,andthelowerlasingstateisb. Weassume v the main obstacle for further linewidth reduction of a laser alltheatomshavethesamevelocitiesυ,thatmeanswhatwe i X [11,12],anditisachallengetosubstantiallyreducethisnoise consider here is a homogeneous laser system. And for the r further[13]. Recently, a new scheme, called active optical sakeofsimplicity,weconsiderthetwo-standingwaveslinear a clock[14–18],wasproposedtosubstantiallyreducethelaser optical Ramsey configuration with a grid as spatial selector linewidth. With lattice trappedatoms, it is possible to reach [20, 21]. Our treatment can be extended to other configura- mHzlinewidthlaserbasedonthemechanismofactiveoptical tions as in [22–24]. The length of each oscillating part is l, clock[14,15,19]. Theprincipalmechanismofactiveoptical andthelengthofthefreedriftregionisL. Thecorresponding clockistodirectlyextractlightemittedfromtheultranarrow Hamiltonianis atomic transition with a cavity mode linewidth much wider thanthatoflasing.Thisbadcavityensuresthatanyfrequency H = ~ωaˆ†aˆ +~ [ωaj(t)σaj +ωbj(t)σbj] shiftduetocavitynoisereducestocavity-pullingeffect[15– Xj 17],thenthethermalnoiseisnotthemajorobstacleagainfor + ~g Γj(t)(aˆ†σˆje−i~k·~rj +σˆ+jaˆei~k·~rj), (1) reducingthelinewidth.Thismeansthebadcavitycanplayan Xj − indispensableroleinnewsubnaturallinewidthspectroscopy. In this Letter, we propose a new scheme called Ramsey whereaˆ,aˆ aretheannihilationandcreationoperatorsofthe † laserwithbadcavity. Distinctfromanypreviousapplications field mode inside the cavity, with the frequency ω, σj = a of conventional Ramsey separated oscillating fields method (a a)jandσj =(b b)jaretheprojectionoperatorsforthe | ih | b | ih | [1], which focuses on the absorption spectrum, we here fo- jth atom correspondingto the upper and lower lasing levels, 2 with frequency ωj and ωj, and σj = (b a)j is the “spin- By using the above definitions of the noise operators, we flip”operatorfortahejthatbom,with−itsad|joiihnt|σj =(a b)j. findthecorrelationfunctionsofmacroscopicnoiseforcescan + Thecouplingconstantgisgivenbyg = µ√ω/2~ǫ V|,iwhhe|re begenerallywrittenintheform 0 µisthemagnitudeoftheatomicdipolemoment,andV isthe effectivevolumeofthecavity. Fk(t)Fl(t′) In order to denote the finite-time interaction between the = (cid:10)D(0)δ(t t )(cid:11)+D(1)δ(t t τ) kl − ′ kl − ′− atomsandRamseyseparatedfield,weintroducethefunction + D(2)δ(t t +τ)+D(3)δ(t t τ T) kl − ′ kl − ′− − Γj(t)=Θ(t−tj)−Θ(t−tj−τ)+Θ(t−tj−τ−T)−Θ(t−tj−2τ−T), + D(k4l)δ(t−t′+τ+T)+D(k5l)δ(t−t′−2τ−T) (2) + D(6)δ(t t +2τ+T)+D(7)δ(t t T) whereΘ(t)istheHeavisidestepfunction[Θ(t) = 1fort > 0, kl − ′ kl − ′− Θ(t) = 1/2 fort = 0, and Θ(t) = 0 for t < 0]. T is the free + D(k8l)δ(t−t′+T), (7) drifttimeoftheatoms,andτistheinteractingtimebetween theatomandonecavity. whereD(i)(k,l = a,b,M,M ;i = 0,1,2)arethequantumdif- kl † By the standard way [25], we can get the Heisenberg- fusioncoefficients. Langevin equations of the motion for the single-atom and c-numbercorrelationfunctions: Bychoosingsomepartic- filedoperators. Byintroducingthemacroscopicatomicoper- ular orderingfor productsof atomic and field operators, one atorΓ, M(t)(σt)j=(t−),itPhejdΓyj(nta)σm−jic(te),quNaat(ito)n=sfPorjtΓhej(tfi)eσladjaa(tn)d,Nmba(ct)ro=- tchoeulqdudanertuivmetLhaencg-nevuimnbeeqrusattoiochnassdtiecriLvaendgaebvoivnee,qaunadtiaolnlsoffrothme j j bb Pscopicatomicoperatorsyield dynamic equations for c-number stochastic variables are the sameasin[26].Thedifferencesarefromthecorrelationfunc- κ a˙(t)= a(t)+gM(t)+F (t), (3) tions. Ontheotherhand,weconvertthequantumnoiseoper- κ −2 atorsintothec-numbernoisevariablesF˜ (t)(k=a,b,M,M ), k † whosecorrelationfunctionsareexpressedas N˙ (t)= R(1 A +A A ) (γ +γ )N (t) a − 0 1− 2 − a a′ a g[M (t)a(t)+a (t)M(t)]+F (t), (4) F˜ (t)F˜ (t ) † † a k k ′ − D E = D˜(0)δ(t t )+D˜(1)δ(t t τ) N˙b(t)= +− gR[(aB0(t−)MB(1t)++BM2)−(t)γab(Nt)b](t+)+Fγ(a′t)N,a(t) (5) + D˜(kk2ll)δ(t−−t′′+τ)+kl D˜(k3l)−δ(t′−−t′−τ−T) † † b + D˜(4)δ(t t +τ+T)+D˜(5)δ(t t 2τ T) kl − ′ kl − ′− − + D˜(6)δ(t t +2τ+T)+D˜(7)δ(t t T) kl − ′ kl − ′− M˙(t)= − R(C0−C1+C2)−γabM(t) + D˜(k8l)δ(t−t′+T), (8) + g[N (t) N (t)]a(t)+F (t), (6) a b M − where D˜(i) are the c-number Langevin diffusion coefficients, kl wherethemacroscopicnoiseoperatorsaredefinedas related to quantum Langevin diffusion coefficients D(i) as in kl [27]. F (t)= Γ˙ (t)σj(t) R(1 A +A A )+ Γ (t)fj(t), a j a − − 0 1− 2 j a Steady-state solutions: The steady-state solutions for the Xj Xj mean values of the field and atomic variables for laser op- eration are obtained by dropping the noise terms of the c- F (t)= Γ˙ (t)σj(t)+R(B B +B )+ Γ (t)fj(t), number Langevin equations and setting the time derivatives b j b 0− 1 2 j b Xj Xj equaltozero. Theanalyticalsolutionsareverycomplex,and onecouldnumericallysolvethesteady-stateequations.Inthis paper,weonlycareaboutthebadcavitylimitγ T 1 FM(t)= i Γ˙j(t)σ˜j(t)+R(C0 C1+C2) i Γj(t)fσj(t), τ 1 κ/2. Sincetheatomictransittimeismuchmasxh≪orter−tha≪n − Xj − − − Xj th−e d≪ampingtimes of atomic variables, one could ignore the effectof thespontaneousemissionof theatom. By the stan- with A = σj(t +τ) , A = σj(t +τ+T) , 0 a j q 1 a j q dardway[25],Wegetthefollowingsteady-statevalues: A = σj(Dt +2τ+TE) , B =D σj(t +τ)E , 2 a j q 0 b j q CB1 == DσDbijσ(tjj(+t τ++τT) )E,q,ECB2 == Dσiσbj(jt(jDt++2ττ++TT))EEq,, A˜ss2 = R(1−A0+κ A1−A2) = R(B0−κB1+B2), C0 = Di−σj(−t +j 2τ+EqT) .1 R is tDh−e m−eajn pumpiEnqg (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) 2 j rate,whicDh−isd−efinedin[26]E.qItisveryeasytocheckthatthe Rτ C C +C κ N˜ = 1+ 0− 1 2 , averagevaluesoftheaboveLangevinforcesareallzero. ass 2 " gτ rR(B B +B )# 0 1 2 − 3 N˜ = Rτ 1 C0−C1+C2 κ . where ΩR is the Rabi frequency on resonance, bss 2 " − gτ rR(B B +B )# D =g2N˜ /I γ , D = g2R/2I γ2 , and 0− 1 2 ST ass 0 ab Ram 0 ab ∆ = ω (ω ω ) presents the detuning in the free Adetailedanalysisaboutthestabilityofthesteady-statecan 2 − a2 − b2 driftregion. pisaparameter,whichcharacterizesthepump- befoundsuchasin[28]. Inthispaper,weassumethesteady- ingstatistics: aPoissonianexcitationstatisticscorrespondsto statesolutionisstable. p=0,andforaregularstatisticswehave p=1. Laserlinwidth: Supposethe quantumfluctuationis small, ThenthelinewidthofRamseylaserwithbadcavityisgiven theevolutionofthefluctuationscanbeobtainedbymakinga by linearizationof thec-numberLangevinequationsaroundthe steady-statesolution.Thenthemeasuredspectraoffieldfluc- γ2 D= ab D +D [2 psin2(Ω τ)sin2(∆ T)] . tuationswillbedirectlyrelatedtothesequantities.ByFourier (κ/2+γ )2{ ST Ram − R 2 } ab transformationsofthelinearizedequation,we getthe ampli- (11) tudeandphasequadraturecomponentsδX(ω)andδY(ω)[26]. SinceDST/DRam 1inoursituation,andinthecaseofmax- Well above threshold, one can neglect the amplitude fluctu- imal photon num≪ber, the steady state value of N˜ass is about ations, and the linewidth inside the cavity is related to the Rτ/2.Thenwegetthe phase-diffusioncoefficient[25]. Forsmallfluctuationoflaser 2g2 phase,thespectrumofphasefluctuationsissimplyrelatedto D≈ κ [2−psin2(ΩRτ)sin2(∆2T)]. (12) the spectrumof the phase quadraturecomponentof the field From the expression above, we find that the pumpingstatis- fluctuations,namely, ticcaninfluencethelinewidth. Forregularinjection(p = 1), 1 thelinewidthisthenarrowest,whileforPoissonianinjection (δϕ2) = (δY2) . ω I ω (p = 0), the linewidth is the broadest. But even for regular 0 injection, the linewidth is larger than the case of one cavity. In the region γ T 1 τ 1 κ/2, as in the recently ab ≪ − ≪ − ≪ That means the mechanism of separated-field does not play proposed active optical clock [15] with atomic beam. The theroleinreducingthelinewidthasintheconventionalopti- phase quadrature componentof the field fluctuations can be calRamseymethod,whichiscounter-intuitive. However,the expressedas separatedfieldsareindispensableforanyphasedetectionlike (δϕ2) atom interferometry. The details about the method of active ω atominterferometrywillappearelsewhere. (κ/2+γ )2 g2 ab 4γ N˜ OurmethodofRamseylaserissuitableforanyatomswith ≈ I ω2[(κ/2+γ )2+ω2]4(κ/2+γ )2{ ab ass 0 ab ab metastable energy level, as an example, we choose the tran- + 2R[(A0+B0)+(A2+B2)] sitionfromthe metastablestate 4s4p3P to thegroundstate 1 + Rp[(C0−C0∗)2+(C1−C1∗)2+(C2−C2∗)2]}. (9) 4s21S0of40Catocheckthestrikingfeatureofthislaser:sub- natural linewidth. As mentioned in [29], the corresponding SincethetimeτandT ismuchshorterthanthetimescale naturallinewidth of the metastable state 4s4p 3P is 320Hz. 1 of the atomic dampings, we can neglect the dampings when As in the recently proposedactive optical clock with atomic calculateA,B,C. Byusing i i i beam[15],thevelocityoftheatomsinthermalatomicbeamis Ω Ω about500m/s,andthelengthoftheinteractionregionisabout A0 =cos2 Rτ , A1 =cos2 Rτ , 1mm, then the time for the atom to traverse each coherent- 2 ! 2 ! interaction region is on the order of magnitude of 1 µs. If a bad cavity with κ is on the order of 107Hz, the relation A2 =1−sin2(ΩRτ)cos2 ∆22T!, B0 =sin2 Ω2Rτ!, mκ/a2gn≫ituτd−e1oifsksHatzis,fiwedh.ichThceannwbeheenasgilyisaochniethveedorfdoerrcoufrrtehnet technique[30], from the linewidth expressionof Eq.(16)the order of magnitude of linewidth is below 1 Hz. This means Ω ∆ T B1 =sin2 2Rτ!, B2 =sin2(ΩRτ)cos2 22 !, the linewidth of a Ramsey laser can be more than two or- dersofmagnitudenarrowerthantheatomicnaturallinewidth, thereforeourRamseymethodprovidesanewsubnaturalspec- (C0−C0∗)2 =0,(C1−C1∗)2 =−sin2(ΩRτ)sin2(∆2T), troscopytechnique. Andsinceitisstimulated-emissionspec- trum,itovercomesthedifficultyinothersubnaturallinewidth (C C )2 = sin2(Ω τ)sin2(∆ T), spectroscopyschemeswherethequickreductionofsignalto 2− 2∗ − R 2 noise ratio is a formidable limit. We should point out that weget thisRamseylaserdoesnotescapethe limitationofallactive opticalclock: inordertopumpatomstotheexcitedstateef- (κ/2+γ )2 γ2 (δϕ2) = ab ab D fectivelyandtobestimulatedemitphotonduringthelifetime ω ω2[(κ/2+γab)2+ω2)](κ/2+γab)2{ ST ofametastablestate,thisnewmethodwillonlybeapplicable + D [2 psin2(Ω τ)sin2(∆ T)] , (10) tosomespecialtransitions[17]. Ram R 2 − } 4 Conclusion: In summary, we propose a new subnatural Lett.48,871(1982). linewidth spectroscopy technique, which is a laser by us- [9] H.J.Carmichael,R.J.Brecha,M.G.Raizen,H.J.Kimble,and ing Ramsey seperated-field cavity to realize the output of P.R.Rice,Phys.Rev.A40,5516(1989). [10] U.W.Rathe,M.O.Scully,LettersinMathematicalPhysics34, stimulated-emission radiation via multiple coherent interac- 297(1995) tionwithatomicbeam.WefindthelinewidthofRamseylaser [11] K. Numata, A. Kemery, J. Camp, Phys Rev Lett, 93, 250602 issubnaturalifwechooseanappropriateatomiclevel,andthe (2004). bad-cavity laser mechanism will dramatically reduce cavity- [12] A.D.Ludlowetal.,Opt.Lett.32,641(2007). relatednoiseasdiscussedinactiveopticalclock[15–19].Our [13] H.J.Kimble,B.L.Lev,andJ.Ye,Phys.Rev.Lett.101,260602 results show thatthis new subnaturallinewidth spectroscopy (2008). is superior to conventional optical Ramsey seperated-field [14] J.Chen, andX.Chen, InProceedingsofthe2005 IEEEInter- nationalFrequencyControlSymposiumandExposition,(IEEE, spectroscopyandanyotheravailablesubnaturalspectroscopy 2005),p.608. technique at present [3–10]. Considering one have to ap- [15] J.Chen,e-printarXiv:0512096quant-ph;ChineseScienceBul- ply the separated-field method in any phase detection as in letin54,348(2009). Ramsey-Borde´interferometer[2],toinvestigatetheeffectsof [16] D.YuandJ.Chen,Phys.Rev.A78,013846(2008). phase differences between the two oscillating fields [31] in [17] J.Chen, InFrequencyStandardsandMetrology: Proceedings this stimulated separated-field method with such subnatural ofthe7thSymposium,editedbyMalekiLute(WorldScientific linewidthwillbeournextresearchaim. PublishingCompany,2009). [18] Y.Wang,ChineseScienceBulletin54,347(2009). We acknowledge Yiqiu Wang and Deshui Yu for fruitful [19] D.Meiser,J.Ye,D.R.Carlson,andM.J.Holland,Phys.Rev. discussions. This work is supported by MOST of China Lett.102,163601(2009) (grant2005CB724500,NationalNaturalScienceFoundation [20] F.Strumia,Metrologia8,85(1972). ofChina(grant60837004,10874009),NationalHi-TechRe- [21] G.Kramer,J.Opt.Soc.Am.68,1634(1978). searchandDevelopment(863)Program. [22] V.S.LetokhovandB.D.Pavlik,Opt.Spectrosc.USSR32,455 (1972). [23] Ye. V. Baklanov, B. Ya, Dubetsky, V. P. Chebotayev, Appl. Phys.9,171(1976). [24] J.C.Bergquist,S.A.Lee,andL.L.Hall,Phys.Rev.Lett.38, E-mail:[email protected] 159(1977). ∗ E-mail:[email protected]. [25] L.Davidovich,Rev.Mod.Phys.68,127(1996). † [1] N.F.Ramsey,Phys.Rev.76,996(1949). [26] M. I. Kolobov, L. Davidovich, E. Giacobino, and C. Fabre, [2] B.DubetskyandP.R.Berman,InAtomInterferometry,edited Phys.Rev.A47,1431(1993). byP.R.Berman(AcademicPress,Cambridge,MA,1997). [27] M. SargentIII,M.O.Scully, andW.E.Lamb, LaserPhysics [3] M.M.Salour,Rev.Mod.Phys.50,667(1978). (AdditionWesley,Reading,MA,1974). [4] J.WongandJ.C.Garrison,Phys.Rev.Lett.44,1254(1980). [28] N.A.Abraham, P.Mandel, andL.M.Narducci, DynamicIn- [5] P.L.KnightandP.E.Coleman,J.Phys.B:Atom.Molec.Phys. stabilities and Pulsations in Lasers, Progress in Optics XXV, 134345(1980). editedbyE.Wolf(Elsevier,Amsterdam,1988). [6] H.-W.Lee,P.Meystre,andM.O.Scully,Phys.Rev.A24,1914 [29] L.Pasternack,D.M.Silver,D.R.Yarkony,andP.J.Dagdigian, (1981). J.Phys.B13,2231(1980). [7] F.Shimizu,K.Shimizu,andH.Takuma,Phys.Rev.A28,2248 [30] K.AnandM.S.Feld,Phys.Rev.A56,1662(1997). (1983). [31] N.F.RamseyandH.B.Silsbee,Phys.Rev.84,506(1951). [8] W.Gawlik,J.Kowalski,F.Tra¨ger,andM.Vollmer,Phys.Rev.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.