ebook img

The Levy Laplacian PDF

160 Pages·2005·1.905 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Levy Laplacian

CAMBRIDGETRACTSINMATHEMATICS GeneralEditors b. bollobas,w. fulton,a. katok,f. kirwan, p. sarnak,b. simon,b. totaro 166TheLe´vyLaplacian TheLe´vyLaplacianisaninfinite-dimensionalgeneralizationofthewell-known classicalLaplacian. Itstheoryhasbeenincreasinglywell-developedinrecentyears andthisbookisthefirstsystematictreatmentofit. Thebookdescribestheinfinite-dimensionalanaloguesoffinite-dimensionalresults, andmoreespeciallythosefeaturesthatappearonlyinthegeneralizedcontext. It developsatheoryofoperatorsgeneratedbytheLe´vyLaplacianandthesymmetrized Le´vyLaplacian,aswellasatheoryoflinearandnonlinearequationsinvolvingit. TherearemanyproblemsleadingtoequationswithLe´vyLaplaciansandto Le´vy–Laplaceoperators,forexamplesuperconductivitytheory,thetheoryofcontrol systems,theGaussrandomfieldtheory,andtheYang–Millsequation. Thebookiscomplementedbyexhaustivebibliographicnotesandreferences. The resultisaworkthatwillbevaluedbythoseworkinginfunctionalanalysis,partial differentialequationsandprobabilitytheory. CambridgeTractsinMathematics Allthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfrom CambridgeUniversityPress. Foracompleteserieslistingvisit http://publishing.cambridge.org/stm/mathematics/ctm/ 142. HarmonicMapsbetweenRienmannianPolyhedra. ByJ.Eellsand B.Fuglede 143. AnalysisonFractals. ByJ.Kigami 144. TorsorsandRationalPoints. ByA.Skorobogatov 145. IsoperimetricInequalities. ByI.Chavel 146. RestrictedOrbitEquivalenceforActionsofDiscreteAmenableGroups. ByJ.W.KammeyerandD.J.Rudolph 147. FloerHomologyGroupsinYang–MillsTheory. ByS.K.Donaldson 148. GraphDirectedMarkovSystems. ByD.MauldinandM.Urbanski 149. CohomologyofVectorBundlesandSyzygies. ByJ.Weyman 150. HarmonicMaps,ConservationLawsandMovingFrames. ByF.He´lein 151. FrobeniusManifoldsandModuliSpacesforSingularities. ByC.Hertling 152. PermutationGroupAlgorithms. ByA.Seress 153. AbelianVarieties,ThetaFunctionsandtheFourierTransform. ByAlexanderPolishchuk 156. HarmonicMappingsinthePlane. ByPeterDuren 157. AffineHeckeAlgebrasandOrthogonalPolynomials. ByI.G.MacDonald 158. Quasi-FrobeniusRings. ByW.K.NicholsonandM.F.Yousif 159. TheGeometryofTotalCurvatureonCompleteOpenSurfaces. ByKatsuhiroShiohama,TakashiShioyaandMinoruTanaka 160. ApproximationbyAlgebraicNumbers. ByYannBugeaud 161. EquivalenceandDualityforModuleCategorieswithTiltingand CotiltingforRings. ByR.R.ColbyandK.R.Fuller 162. Le´vyProcessesinLieGroups. ByMingLiao 163. LinearandProjectiveRepresentationsofSymmetricGroups. ByA.Kleshchev The Le´vy Laplacian M. N. FELLER cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press TheEdinburghBuilding,Cambridgecb22ru,UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Informationo nthi stitle :www.cambri dge.org/9780521846226 © CM. N. Feller 2005 Thispublicationisincopyright.Subjecttostatutoryexceptionandtotheprovisionof relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. Firstpublishedinprintformat isbn-13 978-0-511-13280-3 eBook (NetLibrary) isbn-10 0-511-13280-8 eBook (NetLibrary) isbn-13 978-0-521-84622-6 hardback isbn-10 0-521-84622-6 hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofursl forexternalorthird-partyinternetwebsitesreferredtointhispublication,anddoesnot guaranteethatanycontentonsuchwebsitesis,orwillremain,accurateorappropriate. Contents Introduction page1 1 TheLe´vyLaplacian 05 1.1 Definitionoftheinfinite-dimensionalLaplacian 05 1.2 ExamplesofLaplaciansforfunctionsoninfinite- dimensionalspaces 09 1.3 Gaussianmeasures 13 2 Le´vy–Laplaceoperators 22 2.1 Infinite-dimensionalorthogonalpolynomials 23 2.2 Thesecond-orderdifferentialoperatorsgenerated bytheLe´vyLaplacian 30 2.3 Differentialoperatorsofarbitraryordergenerated bytheLe´vyLaplacian 33 3 SymmetricLe´vy–Laplaceoperator 40 3.1 ThesymmetrizedLe´vyLaplacianonfunctionsfromthedomain ofdefinitionoftheLe´vy–Laplaceoperator 40 3.2 TheLe´vyLaplacianonfunctionsfromthedomainofdefinition ofthesymmetrizedLe´vy–Laplaceoperator 44 3.3 Self-adjointnessofthenon-symmetrized Le´vy–Laplaceoperator 48 4 Harmonicfunctionsofinfinitelymanyvariables 53 4.1 Arbitrarysecond-orderderivatives 54 4.2 Orthogonalandstochasticallyindependentsecond-order derivatives 59 4.3 Translationallynon-positivecase 64 v vi Contents 5 LinearellipticandparabolicequationswithLe´vyLaplacians 68 5.1 TheDirichletproblemfortheLe´vy–Laplace andLe´vy–Poissonequations 68 5.2 TheDirichletproblemfortheLe´vy–Schro¨dinger stationaryequation 84 5.3 TheRiquierproblemfortheequationwithiterated Le´vyLaplacians 86 5.4 TheCauchyproblemfortheheatequation 88 6 Quasilinearandnonlinearellipticequations withLe´vyLaplacians 92 6.1 TheDirichletproblemfortheequation(cid:1) U(x)= f(U(x)) 92 L 6.2 TheDirichletproblemfortheequation f(U(x),(cid:1) U(x))= F(x)94 L 6.3 TheRiquierproblemfortheequation (cid:1)2U(x)= f(U(x)) 96 L 6.4 TheRiquierproblemfortheequation f(U(x),(cid:1)2U(x))=(cid:1) U(x)99 L L 6.5 TheRiquierproblemfortheequation f(U(x),(cid:1) U(x),(cid:1)2U(x))=0 103 L L 7 NonlinearparabolicequationswithLe´vyLaplacians 108 7.1 TheCauchyproblemfortheequations∂U(t,x)/∂t = f((cid:1) U(t,x))and∂U(t,x)/∂t = f(t,(cid:1) U(t,x)) 108 L L 7.2 TheCauchyproblemfortheequation∂U(t,x)/∂t = f(U(t,x),(cid:1) U(t,x)) 115 L 7.3 TheCauchyproblemfortheequationϕ(t,∂U(t,x)/∂t)= f(F(x),(cid:1) U(t,x)) 121 L 7.4 TheCauchyproblemfortheequation f(U(t,x), ∂U(t,x)/∂t,(cid:1) U(t,x))=0 126 L AAppendix.Le´vy–Dirichletformsandassociated Markovprocesses 133 A.1 TheDirichletformsassociated withtheLe´vy–Laplaceoperator 133 A.2 Thestochasticprocessesassociated withtheLe´vy–Dirichletforms 137 Bibliographicnotes 142 References 144 Index 152 Introduction The Laplacian acting on functions of finitely many variables appeared in the worksofPierreLaplace(1749–1827)in1782.Afternearlyacenturyandahalf, theinfinite-dimensionalLaplacianwasdefined.In1922PaulLe´vy(1886–1971) introducedtheLaplacianforfunctionsdefinedoninfinite-dimensionalspaces. The infinite-dimensional analysis inspired by the book of Le´vy Lec¸ons d’analyse fonctionnelle [93] attracted the attention of many mathematicians. This attention was stimulated by the very interesting properties of the Le´vy Laplacian(whichoftendonothavefinite-dimensionalanalogues)anditsvari- ousapplications. Inawork[68](publishedposthumouslyin1919)Gaˆteauxgavethedefinition ofthemeanvalueofthefunctionaloveraHilbertsphere,obtainedtheformula forcomputationofthemeanvaluefortheintegralfunctionalsandformulated andsolved(withoutexplicitdefinitionoftheLaplacian)theDirichletproblem for a sphere in a Hilbert space of functions. In this work he called harmonic thosefunctionalswhichcoincidewiththeirmeanvalues. In a note written in 1919 [92], which complements the work of Gaˆteaux, Le´vy gave the explicit definition of the Laplacian and described some of its characteristicpropertiesforthefunctionsdefinedonaHilbertfunctionspace. In 1922, in his book [93] and in another publication [94] Le´vy gave the definitionoftheLaplacianforfunctionsdefinedoninfinite-dimensionalspaces anddescribeditsspecificfeatures.Moreoverhedevelopedthetheoryofmean valuesandusingthemeanvalueovertheHilbertsphere,solvedtheDirichlet problemforLaplaceandPoissonequationsfordomainsinaspaceofsequences andinaspaceoffunctions,obtainedthegeneralsolutionofaquasilinearequa- tion.Wehavementionedhereonlyafewofagreatnumberofresultsgivenin Le´vy’sbookwhichistheclassicalworkoninfinite-dimensionalanalysis. Thesecondhalfofthetwentiethcenturyandthebeginningoftwenty-first century follows a period of development of a number of trends originated 1 2 Introduction in [93], and the infinite-dimensional Laplacian has become an object of systematic study. This was promoted by the appearance of its second edition Proble`mesconcretsd’analysefonctionnelle[95]in1951andtheappearance, largelyduetotheinitiativeofPolishchuk,ofitsRussiantranslation(editedby Shilov) in 1967. During this period, there were published, among others, the worksof:Le´vy[96],Polishchuk[111–125],Feller[36–66],Shilov[132–135], Nemirovsky and Shilov [102], Nemirovsky [100, 101], Dorfman [28–33], Sikiryavyi [137–145], Averbukh, Smolyanov and Fomin [10], Kalinin [82], Sokolovsky [146–151], Bogdansky [13–22], Bogdansky and Dalecky [23], Naroditsky [99], Hida [75–78], Hida and Saito [79], Hida, Kuo, Potthoff andStreit[80],Yadrenko[158],Hasegawa[72–74],KuboandTakenaka[85], GromovandMilman[69],Milman[97,98],Kuo[86–88],Kuo,ObataandSaito [89, 90], Saito [126–129], Saito and Tsoi [130], Obata [103–106], Accardi, GibiliscoandVolovich[4],Accardi,RoselliandSmolyanov[5],Accardiand Smolyanov[6],AccardiandBogachev[1–3],Zhang[159],Koshkin[83,84], Scarlatti[131],Arnaudon,BelopolskayaandPaycha[9],Chung,JiandSaito [26],Le´andreandVolovich[91],Albeverio,BelopolskayaandFeller[8]. ManyproblemsofmodernscienceleadtoequationswithLe´vyLaplacians andLe´vy–Laplacetypeoperators.Theyappear,forexample,insuperconduc- tivitytheory[24,71,152,155],thetheoryofcontrolsystems[121,122],Gauss randomfieldtheory[158]andthetheoryofgaugefields(theYang–Millsequa- tion)[4],[91]. Le´vy introduced the infinite-dimensional Laplacian acting on a function U(x) bytheformula (cid:1) U(x )=2lim M(x0,(cid:4))U(x)−U(x0) L 0 (cid:4)→0 (cid:4)2 (the Le´vy Laplacian), where M(x0,(cid:4))U(x) is the mean value of the function U(x) overtheHilbertsphereofradius(cid:4)withcentreatthepoint x . 0 Given a function defined on the space of a countable number of variables wehave 1 (cid:1)n ∂2U (cid:1) U(x ,...,x ,...)= lim , L 1 n n→∞n ∂x2 k=1 k whileforfunctionsdefinedonafunctionalspacewehave (cid:2)b 1 δ2U(x) (cid:1) U(x(t))= ds, L b−a δx(s)2 a whereδ2U(x)/δx(s)2isthesecond-ordervariationalderivativeof U(x(t)). Introduction 3 Butalready,in1914,Volterra[154]haduseddifferentsecond-orderdiffer- entialexpressionssuchas (cid:2)b δ2V(x) (cid:1) V(x(t))= ds 0 δx(s)δx(s) a (theVolterraLaplacian),whereδ2V(x)/δx(s)δx(τ)isthesecondmixedvaria- tionalderivativeof V(x(t)).In1966Gross[70]andDalecky[27]independently definedtheinfinite-dimensionalellipticoperatorofthesecondorderwhichin- cludestheLaplaceoperator (cid:1) V(x(t))=TrV(cid:4)(cid:4)(x), 0 whereV(cid:4)(cid:4)(x) istheHessianofthefunction V(x) atthepoint x.Forafunction V definedonafunctionalspace,(cid:1) V(x(t))istheVolterraLaplacian,andfor 0 functionsdefinedonthespaceofacountablenumberofvariables,wehave (cid:1)∞ ∂2V (cid:1) V(x ,...,x ,...) = . 0 1 n ∂x2 k=1 k Thereexistsanumberofotherexamplesofsecond-orderinfinite-dimensional differentialexpressionswhichconsiderablydifferfromthedifferentialexpres- sionsofLe´vytype.Thecorrespondingreferencescanbefoundinthebibliog- raphytothemonographsofBerezanskyandKondratiev[12]andDaleckyand Fomin[27]. The present book deals with the problems of the theory of equations with the Le´vy Laplacians and Le´vy–Laplace operators. It is based on the author’s papers[36–38,40,50–66]andthepaper[8]. InChapter1wegivethedefinitionoftheLe´vyLaplaciananddescribesome ofitsproperties. Intheforewordtohisbook[95],Le´vywrote:‘Inthetheorieswhichwemen- tioned,weessentiallyfacethelawsofgreatnumberssimilartothelawsofthe theoryofprobabilities...’.TheprobabilistictreatmentoftheLe´vyLaplacian in the second, third, and fourth chapters allows us to enlarge on a number of its interesting properties. Let us mention some of them. The Le´vy Laplacian givesrisetooperatorsofarbitraryorderdependingonthechoiceofthedomain of definition of the operator. There is a huge number of harmonic functions of infinitely many variables connected with the Le´vy Laplacian. The natural domainofdefinitionoftheLe´vyLaplacianandthatofthesymmetrizedLe´vy Laplaciandonotintersect.Startingfromthenon-symmetrizedLe´vyLaplacian, onecanconstructasymmetricandevenaself-adjointoperator.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.