ebook img

The lattice Boltzmann method: Fundamentals and acoustics PDF

233 Pages·2014·1.32 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The lattice Boltzmann method: Fundamentals and acoustics

Erlend Magnus Viggen The lattice Boltzmann method: Fundamentals and acoustics Thesis for the degree of Philosophiae Doctor Trondheim, February 2014 Norwegian University of Science and Technology Faculty of Information Technology, Mathematics and Electrical Engineering Department of Electronics and Telecommunications NTNU Norwegian University of Science and Technology Thesis for the degree of Philosophiae Doctor Faculty of Information Technology, Mathematics and Electrical Engineering Department of Electronics and Telecommunications © Erlend Magnus Viggen ISBN 978-82-326-0036-6 (printed ver.) ISBN 978-82-326-0037-3 (electronic ver.) ISSN 1503-8181 Doctoral theses at NTNU, 2014:55 Printed by NTNU-trykk Abstract The lattice Boltzmann method has been widely used as a solver for incompressibleflow,thoughitisnotrestrictedtothisapplication. More generally, it can be used as a compressible Navier-Stokes solver, albeit with a restriction that the Mach number is low. While that restriction mayseemstrict,itdoesnothindertheapplicationofthemethodtothe simulation of sound waves, for which the Mach numbers are generally verylow. Evensoundwaveswithstrongnonlineareffectscanbecaptured well. Despitethis,themethodhasnotbeenaswidelyusedforproblems whereacousticphenomenaareinvolvedasithasbeenforincompressible problems. The research presented this thesis goes into three different aspects of lattice Boltzmann acoustics. Firstly, linearisation analyses are used to derive and compare the sound propagation properties of the lattice Boltzmann equation and comparable fluid models for both free and forced waves. The propagation properties of the fully discrete lattice Boltzmannequationareshowntoconvergeatsecondordertowardsthose ofthediscrete-velocityBoltzmannequation,whichitselfpredictsthesame lowest-orderabsorptionbutdifferentdispersiontotheotherfluidmodels. Secondly, it is shown how multipole sound sources can be created mesoscopicallybyaddingaparticlesourcetermtotheBoltzmannequa- tion. ThismethodisstraightforwardlyextendedtothelatticeBoltzmann method by discretisation. The results of lattice Boltzmann simulations ofmonopole,dipole,andquadrupolepointsourcesareshowntoagree very well with the combined predictions of this multipole method and thelinearisationanalysis. Theexceptiontothisagreementistheimme- diatevicinityofthepointsource,wherethesingularityintheanalytical solutioncannotbereproducednumerically. Thirdly, an extended lattice Boltzmann model is described. This modelalterstheequilibriumdistributiontoreproducevariableequations of state while remaining simple to implement and efficient to run. To compensateforanunphysicalbulkviscosity,theextendedmodelcontains a bulk viscosity correction term. It is shown that all equilibrium distri- butions that allow variable equations of state must be identical for the one-dimensionalD1Q3velocityset. UsingsuchaD1Q3velocitysetandan isentropicequationofstate,bothmechanismsofnonlinearacousticsare capturedsuccessfullyinasimulation,improvingonpreviousisothermal simulationswhereonlyonemechanismcouldbecaptured. Inaddition, the effect of molecular relaxation on sound propagation is simulated usingamodelequationofstate. Thoughtheparticularimplementation usedisnotcompletelystable,theresultsagreewellwiththeory. iii Preface ThereareafewthingsthatIwouldliketotellyouaboutthisthesisbefore youdivein. Thisthesisissplitintotwoparts. PartIcoverstheunderlyingtheory: Fluid mechanics, acoustics, the kinetic theory of gases, and finally the latticeBoltzmannmethoditself. PartIIbuildsdirectlyonthisbackground, andcoverstheresearchthatwasdoneinthecourseofmyph.d.project. Throughout this thesis you will occasionally see small notes in the margin. Whenevernewandimportanttermsareintroduced,thesemargin notesgiveashortdefinition. Occasionally,thesenotesmayberepeated forvariousreasons: Readersmayhaveskippedpastapreviousdefinition inanearlierchapter,adifferentformulationmightmakemoresensein lightofthesurroundingtext,orImaysimplyhaveconsideredaconcept criticalenoughtorepeat. AtconferencesIhavesurprisinglyoftenmetotherstudentswhotell methattheyhaveusedmyMaster’sthesistolearnthelatticeBoltzmann method. Thishasbeentremendouslyinspiring,andhasledmetotakeex- tra care to make Part I of the thesis thorough (though hopefully not off-puttingly thorough) and readable. As introductions to the lattice Boltzmannmethodthatareeasilyreadable,thorough,andfreelyavailable arethinontheground,oneofmygoalshasbeentomakePartIjustsuch anintroduction. IhopethatIhavesucceededinthisgoal,thoughthisis ofcourseuptoyoutodecide. WhilemyMaster’sthesiswillstillofferaquickerandsimplerintro- ductiontothelatticeBoltzmannmethod,PartIofthisthesisputsmore emphasis on the physical background of the method, which is in my opinionessentialtotrulyunderstandit. ThisthesisissubmittedtotheNorwegianUniversityofScienceandTechno- logy(NTNU)inpartialfulfilmentoftherequirementsforthedegreeof Philo- sophiaeDoctor(ph.d.). Theph.d.projectranforfouryears,withoneyearspent onteachingduties. TheworkwascarriedoutattheAcousticsResearchCenter at the Departmentof Electronics and Telecommunications, with Professor Ulf Kristiansenassupervisor. Ihopeyoufinditinteresting. iv Acknowledgements Throughout these four years as a ph.d. student, there have been many peoplewhohaveaidedmeinvariousways. ForthisIamdeeplygrateful. IwouldhavehadamuchhardertimeearlyonifJorisVerschaevehad notspentmanyanhourhelpingmetounderstandthelatticeBoltzmann method. Similarly,mylaterworkwouldhavebeenmuchmoredifficultif not for the occasional comment from Paul Dellar. His deep insight has beeninvaluabletomeandmywork. TherearemanyotherresearcherswithwhomIhavehadinteresting andusefuldiscussionsonawidevarietyofscientifictopics. Iwouldespe- ciallyliketothankTimmKrüger,JonasLätt,TimReis,TorYtrehus,David Packwood, Manuel Hasert, Martin Schlaffer, and Guillaume Dutilleux. Also,IwouldliketothankalltheotherfriendlypeoplewhosecompanyI haveenjoyedatconferences. Thankstothem,thenon-scientificaspectsof theseconferenceshaveneverbeendull. I am grateful for the company and friendship of some of my fellow travellersthroughtheph.d.programatNTNU.Whiletheyaretoomany for me to start listing names, I would especially like to thank Anders Løvstad for being excellent company in the office throughout much of ourtimeasph.d.students,thoughIdonotmisstheroarofhiscomputer. Finally,IamverygratefultoUlfKristiansenforbeingasavailableand affableanadvisorasanyph.d.studentcouldhopetohave. Toallofyou: Thankyou. ErlendMagnusViggen Trondheim,September2013 v Contents I Background 1 1 Introduction 2 1.1 Microscopic,mesoscopic,andmacroscopicscales . . . . . 3 1.1.1 Connection . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Asimplemicroscopicmodel: TheFHPlatticegas . 6 1.2 Thisthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.2 Thesisstructure . . . . . . . . . . . . . . . . . . . . . 10 1.2.3 Relatedpublishedarticles . . . . . . . . . . . . . . . 12 1.2.4 Mathematicalnotationandlistofsymbols . . . . . 14 2 Fundamentaltheory 18 2.1 Indexnotation . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Fluidmechanics . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 TheEulermodel . . . . . . . . . . . . . . . . . . . . 23 2.2.2 TheNavier-Stokes-Fouriermodel . . . . . . . . . . 24 2.3 Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.1 Idealwaveequation . . . . . . . . . . . . . . . . . . 26 2.3.2 Viscousandthermoviscouswaveequation . . . . . 28 2.3.3 Molecularrelaxationprocesses . . . . . . . . . . . . 32 2.3.4 Acousticmultipolesandaeroacoustics . . . . . . . 37 2.3.5 Nonlinearacoustics . . . . . . . . . . . . . . . . . . 43 3 Thekinetictheoryofgases 46 3.1 Thedistributionfunctionanditsmoments . . . . . . . . . 47 3.2 Pressureandheat . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.1 TheMaxwell-Boltzmanndistribution . . . . . . . . 53 3.3.2 Peculiarvelocitymomentsatequilibrium . . . . . . 55 3.4 TheBoltzmannequation . . . . . . . . . . . . . . . . . . . . 56 3.5 Thecollisionoperator . . . . . . . . . . . . . . . . . . . . . 57 3.6 Macroscopicconservationequations . . . . . . . . . . . . . 59 3.6.1 Massconservation . . . . . . . . . . . . . . . . . . . 60 3.6.2 Momentumconservation . . . . . . . . . . . . . . . 60 vi Contents vii 3.6.3 Energyconservation . . . . . . . . . . . . . . . . . . 61 3.7 Equilibrium: TheEulermodel. . . . . . . . . . . . . . . . . 62 3.8 TheChapman-Enskogexpansion . . . . . . . . . . . . . . . 63 3.8.1 Findingthedistributionfunctionperturbation . . . 65 3.8.2 Findingthemomentperturbations. . . . . . . . . . 68 3.8.3 TheNavier-Stokes-Fouriermodel . . . . . . . . . . 69 3.8.4 Higher-orderBoltzmannequationapproximations 70 H 3.9 Boltzmann’s -theorem . . . . . . . . . . . . . . . . . . . . 72 4 ThelatticeBoltzmannmethod 74 4.1 Thediscrete-velocityBoltzmannequation . . . . . . . . . . 75 4.1.1 Momentsandconstraints . . . . . . . . . . . . . . . 76 4.1.2 Moment-basedChapman-Enskogexpansion . . . . 79 4.1.3 Velocitysets . . . . . . . . . . . . . . . . . . . . . . . 82 4.1.4 Digression: LinearisedDVBE . . . . . . . . . . . . . 87 4.2 ThelatticeBoltzmannequation . . . . . . . . . . . . . . . . 87 4.2.1 Firstorderdiscretisation . . . . . . . . . . . . . . . . 88 4.2.2 Secondorderdiscretisation . . . . . . . . . . . . . . 89 4.2.3 Summary: ThelatticeBoltzmannmethod . . . . . . 91 4.2.4 LatticeBoltzmannunits . . . . . . . . . . . . . . . . 93 4.3 Alternativecollisionoperators . . . . . . . . . . . . . . . . 96 4.3.1 Multiplerelaxationtime . . . . . . . . . . . . . . . . 97 4.3.2 Regularised . . . . . . . . . . . . . . . . . . . . . . . 100 4.3.3 Entropic . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.4 Simpleboundaryconditions. . . . . . . . . . . . . . . . . . 102 II Research 107 5 Acousticlinearisationanalysis 108 5.1 IsothermalNavier-Stokes-Fouriermodel . . . . . . . . . . 111 5.1.1 Absorptionanddispersion . . . . . . . . . . . . . . 112 5.1.2 Magnituderatiosandphasedifferences . . . . . . . 113 5.2 Discrete-velocityBoltzmannequation . . . . . . . . . . . . 115 5.2.1 Linearisationprocess . . . . . . . . . . . . . . . . . . 116 5.2.2 Propertiesofforcedandfreewaves . . . . . . . . . 119 5.2.3 Comparisonwithrelaxationprocesses . . . . . . . 121 5.2.4 Comparisontoothermodels . . . . . . . . . . . . . 122 5.2.5 Anisotropyintwodimensions . . . . . . . . . . . . 128 5.3 LatticeBoltzmannequation . . . . . . . . . . . . . . . . . . 137 5.3.1 Linearisationprocess . . . . . . . . . . . . . . . . . . 140 5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.3.3 Example: Exactwaveinitialisation . . . . . . . . . . 146 5.4 Summaryanddiscussion . . . . . . . . . . . . . . . . . . . 149 viii Contents 6 Mesoscopicacousticsources 151 6.1 SourcetermsfortheBoltzmannequation . . . . . . . . . . 153 6.1.1 Macroscopicconservationequations . . . . . . . . . 154 6.1.2 Linearwaveequation . . . . . . . . . . . . . . . . . 155 6.2 SourcetermsforthelatticeBoltzmannequation . . . . . . 156 6.2.1 Firstorderdiscretisation . . . . . . . . . . . . . . . . 157 6.2.2 Secondorderdiscretisation . . . . . . . . . . . . . . 158 6.2.3 Multipolebasis . . . . . . . . . . . . . . . . . . . . . 159 6.3 Numericalexperiments . . . . . . . . . . . . . . . . . . . . 163 6.3.1 Planewaves . . . . . . . . . . . . . . . . . . . . . . . 163 6.3.2 Multipolesintwodimensions . . . . . . . . . . . . 169 6.4 Summaryanddiscussion . . . . . . . . . . . . . . . . . . . 177 7 Variableequationofstate 179 7.1 Theextendedmodel . . . . . . . . . . . . . . . . . . . . . . 181 7.1.1 Momentsandconstraints . . . . . . . . . . . . . . . 182 7.1.2 Macroscopicequations . . . . . . . . . . . . . . . . . 183 7.1.3 Bulkviscositycorrection. . . . . . . . . . . . . . . . 185 7.1.4 Generalequilibriumrequirements . . . . . . . . . . 189 7.1.5 Linearisationanalysis . . . . . . . . . . . . . . . . . 190 7.2 Isentropicequationofstateandnonlinearacoustics . . . . 194 7.2.1 TheisentropiclatticeBoltzmannmodel . . . . . . . 196 7.2.2 D2Q9stability: Comparisontoanothermodel . . . 197 7.2.3 Physicalnonlinearacousticscase . . . . . . . . . . . 198 7.2.4 Nonlinearacousticssimulation . . . . . . . . . . . . 200 7.3 Molecularrelaxation . . . . . . . . . . . . . . . . . . . . . . 203 7.3.1 Verificationbysimulation . . . . . . . . . . . . . . . 204 7.4 Summaryanddiscussion . . . . . . . . . . . . . . . . . . . 205 8 Discussionandconclusion 209 Bibliography 213 Part I Background 1 1 Introduction Many scientific articles on the lattice Boltzmann method begin with a fairlydenseparagraphonthemethodanditscapabilities,whichtypically goessomethinglikethis: ThelatticeBoltzmann(LB)methodisarecentadvanceincom- putationalfluiddynamics(CFD).WhiletraditionalCFDmeth- ods directly discretise and solve the macroscopic equations of fluid mechanics, the LB method solves a discrete kinetic equationwhichreproducesthefluidmechanicsequationsin themacroscopiclimit. Itisstraightforwardtoimplementand paralleliseefficiently,whilebeingversatileenoughtosimulate multiphase flows, multicomponent flows, flows of complex fluids, flows in complex geometries such as porous media, thermalflows,andturbulentflows. A paragraph this succinct can of course not give a full picture of the method. However,itdoesmanagetopaintmuchofthispictureinbroad strokes. Letusnowpaintsomeofthefinerstrokesbyexpandingonthe threesentencesofthisparagraph. Asthefirstsentencestates,theLBmethodhasnotbeenaroundforas longasmostotherCFDmethods. Historically,itgrewoutofthefieldof Cellularautomaton cellularautomata,andspecificallylatticegases,whichwewilllookatbriefly Adiscretemodelwithvery in section 1.1.2. The first lattice gas was described in 1973 [1], though simplerulesthatcantypically resultinverycomplex it was not until 1986 that a lattice gas that could be used to correctly behaviour simulatefluidflowwasproposed[2]. Anarticlewaspublishedsoonafter Latticegas in1988onamodificationtolatticegasesinordertoavoidsomeoftheir Acellularautomatonfor simulatinggases,basedon problemswhensimulatingfluidflow[3]. Thisarticlecanbeconsidered particlesmovingaroundona thefirstarticleonthelatticeBoltzmannmethod. lattice,theircollisions conservingmassand The second sentence of the paragraph implies that the LB method momentum solvestheequationsoffluidmechanicsindirectlybysolvingsomething else, somethingsimpler. Whilethismayseemtoogoodtobetrue, there is indeed a good physical reason why it works. The lattice Boltzmann methodisadiscretisationoftheBoltzmannequation,anequationwhich describesgasesatamoredetailedlevelthantheequationsoffluidmech- anics,whilestillhavingasimplerform. Ifwesmoothawaythesedetails intherightway,weendupwiththeequationsfamiliarfromfluidmech- 2

Description:
Another is averaging the results over several time steps. These two methods will indeed reduce the statistical noise, at the cost of smoothing out the Second, to find new and develop existing methods for LB acoustics pole sources can be implemented in the lattice Boltzmann method. The effect of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.