ebook img

The laser guidebook PDF

485 Pages·1999·3.454 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The laser guidebook

Source: The Laser Guidebook Chapter 1 Introduction The word laser is an acronym for “light amplification by the stimulated emission of radiation,” a phrase which covers most, though not all, of the key physical processes inside a laser. Unfortunately, that concise definition may not be very enlightening to the nonspecialist who wants to use a laser, and cares less about its internal physics than its external characteristics. The laser user is in a position analogous to the electronic circuit designer. A general knowledge of laser physics is as helpful to the laser user as a general understanding of semiconductor physics is to the circuit designer. However, their jobs require them to understand the operating characteristics of complete devices, not to assemble lasers or fabricate integrated circuits. This book is written and organized with the needs of the laser user in mind. The first few chapters describe the basic ideas behind lasers, how they work, and the characteristics that are most important from a user’s standpoint. They give an overview of the field, but cannot replace a good textbook or tutorial introduction to lasers. The following chapters focus on individual laser types, first outlining operating principles, then describing specific characteristics such as output power, wavelength, and input power requirements. The Appendix tabulates the most important characteristics of major lasers. The chapters on individual types of lasers follow the same basic outline and are structured both to be read as chapters and to be used for looking up specific data. Inevitably, such a structure brings with it some redundancy; wavelength and power range, for example, may be mentioned a few times in the same chapter. However, what may seem repetitive when reading the chapter also makes the information easier to find when searching out specific data in the book. As a guide to practical laser technology, this book concentrates on lasers which are available commercially or are otherwise important to 1 Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. Introduction 2 Chapter One current and potential laser users. Details on performance are given for lasers where the technology is reasonably well established, such as helium-neon; newer types such as free-electron lasers are described in more general terms. Development of high-energy laser weapons is covered only briefly because the technology is classified and of limited interest. In a few cases—notably chemical, free-electron, and x-ray lasers—far more effort has gone into military weapons programs than into development of lower-power lasers for civilian use. An annotated bibliography and reference list follows each chapter. The listing includes selected review articles as well as references cited in the text so that readers can search out more details if they desire. Some references may appear dated, but some fields of laser technology are not as fast-moving as they may appear from a distance. For example, the fundamentals of rare gas ion lasers have changed little in the past few years, although commercial models have pushed further into the ultraviolet. In addition, few good review articles on more mature lasers—in particular, many gas types—have come to my attention in recent years. No book can hope to keep up with the continual changes in the product lines of laser manufacturers. Specific models are mentioned in a few places, but only as examples of the characteristics to expect in commercial products. Companies also come and go in the field. The best way to follow the laser industry is by reading one or more of its monthly trade magazines: Lasers & Optronics, Laser Focus World, and Photonics Spectra. (To make my biases perfectly clear, I will identify myself as a cofounder and contributing editor of Lasers & Optronics. The other magazines provide the sort of competition that keeps all three publications working hard to serve their readers.) Many other magazines and scholarly journals publish useful material on lasers and related technology. All three major trade magazines publish industry directories, and those listings are the best way to locate manufacturers of specific lasers. They also tabulate specifications for selected lasers and advertisements from manufacturers. I find the Lasers & Optronics Buying Guide the easiest to use, but that may be because I helped organize it. The bibliography gives information on all three directories. Definition and Description of a Laser From a practical standpoint, a laser can be considered as a source of a narrow beam of monochromatic, coherent light in the visible, infrared, or ultraviolet parts of the spectrum. The power in a continuous beam can range from a fraction of a milliwatt to around 25 kilowatts (kW) in commercial lasers, and up to more than a megawatt in special military lasers. Pulsed lasers can deliver much higher peak powers during a Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. Introduction Introduction 3 pulse, although the power averaged over intervals while the laser is off and on is comparable to that of continuous lasers. The range of laser devices is broad. The laser medium, or material emitting the laser beam, can be a gas, liquid, glass, crystalline solid, or semiconductor crystal and can range in size from a grain of salt to filling the inside of a moderate-sized building. Not every laser produces a narrow beam of monochromatic, coherent light. Semiconductor diode lasers, for example, produce beams that spread out over an angle of 20 to 40°, hardly a pencil-thin beam. Liquid dye lasers emit at a broad or narrow range of wavelengths, depending on the optics used with them. Other types emit at a number of spectral lines, producing light that is neither truly monochromatic nor coherent. Practically speaking, lasers contain three key elements. One is the laser medium itself, which generates the laser light. A second is the power supply, which delivers energy to the laser medium in the form needed to excite it to emit light. The third is the optical cavity or resonator, which concentrates the light to stimulate the emission of laser radiation. All three elements can take various forms, and although they are not always immediately evident in all types of lasers, their functions are essential. Figure 1.1 shows these elements in a ruby and a helium-neon laser; the internal workings of lasers are described in more detail in Chap. 3. There are several general characteristics which are common to most lasers which new users may not expect. Like most other light sources, lasers are inefficient in converting input energy into light. Efficiencies range from under 0.01 to over 30 percent, but few types are much above 1 percent efficient. These low efficiencies can lead to special cooling requirements and duty-cycle limitations, particularly for highpower lasers. In some cases, special equipment may be needed to produce the right conditions for laser operation, such as cryogenic temperatures for the lead salt semiconductor lasers described in Chap. 21. Operating characteristics of individual lasers depend strongly on structural components such as cavity optics, and in many cases a wide range is possible. Packaging can also have a strong impact on laser characteristics and the use of lasers for certain applications. Thus wide ranges of possible characteristics are specified in many chapters, although single devices will have much more limited ranges of operation. Differences from Other Light Sources The basic differences between lasers and other light sources are the characteristics often used to describe a laser: the output beam is narrow, the light is monochromatic, and the emission is coherent. Each Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. Introduction 4 Chapter One Figure 1.1 Simplified views of two common lasers, (a) ruby and (b) helium-neon, showing the basic components that make a laser. of these features is important for certain applications and deserves more explanation. Most gas or solid-state lasers emit beams with a divergence angle of about a milliradian, meaning that they spread to about one meter in diameter after traveling a kilometer. (Semiconductor lasers have much larger beam divergence, but suitable optics can reshape the beam to make it much narrower.) The actual beam divergence depends on the type of laser and the optics used with it. The fact that laser light is contained in a beam serves to concentrate the output power onto a small area. Thus a modest laser power can produce a high intensity inside the small area of the laser beam; the intensity of light in a 1- milliwatt (mW) helium-neon laser beam is comparable to that of sunlight on a clear day, for example. The beams from high-power lasers, delivering tens of watts or more of continuous power or higher Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. Introduction Introduction 5 peak powers in pulses, can be concentrated to high enough intensities that they can weld, drill, or cut many materials. The laser beam’s concentrated light delivers energy only where it is focused. For example, a tightly focused laser beam can write a spot on a light-sensitive material without exposing the adjacent area, allowing high-resolution printing. Similarly, the beam from a surgical laser can be focused onto a tiny spot for microsurgery, without heating or damaging surrounding tissue. Lenses can focus the parallel rays in a laser beam to a much smaller spot than they can the diverging rays from a point source, a factor which helps compensate for the limited light-production efficiency of lasers. Most lasers deliver a beam that contains only a narrow range of wavelengths, and thus the beam can be considered monochromatic for all practical purposes. Conventional light sources, in contrast, emit light over much of the visible and infrared spectrum. For most applications, the range of wavelengths emitted by lasers is narrow enough to make life easier for designers by avoiding the need for achromatic optics and simplifying the task of understanding the interaction between laser beam and target. However, for some applications in spectroscopy and communications, that range of wavelengths is not narrow enough, and special line-narrowing options may be required. One of the laser beam’s most unique properties is its coherence, the property that the light waves it contains are in phase with one another. Strictly speaking, all light sources have a finite coherence length, or distance over which the light they produce is in phase. However, for conventional light sources that distance is essentially zero. For many common lasers, it is a fraction of a meter or more, allowing their use for applications requiring coherent light. The most important of these applications is probably holography, although coherence is useful in some types of spectroscopy, and there is growing interest in communications using coherent light. Some types of lasers have two other advantages over other light sources: higher power and longer lifetime. For some high-power semiconductor lasers, lifetime must be traded off against higher power, but for most others the life-vs.-power trade-off is minimal. The combination of high power and strong directionality makes certain lasers the logical choice to deliver high light intensities to small areas. For some applications, lasers offer longer lifetimes than do other light sources of comparable brightness and cost. In addition, despite their low efficiency, some lasers may be more efficient in converting energy to light than other light sources. Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. Introduction 6 Chapter One The Laser Industry Commercial Lasers. There is a big difference between the world of laser research and the world of the commercial laser industry. Unfortunately, many text and reference books fail to differentiate between types of lasers that can be built in the laboratory and those which are readily available commercially. That distinction is a crucial one for laser users. Laser emission has been obtained from hundreds of materials at many thousands of emission lines in laboratories around the world. Extensive tabulations of these laser lines are available (Weber, 1982), and even today researchers are adding more lines to the list. However, most of these laser lines are of purely academic interest. Many are weak lines close to much stronger lines which dominate the emission in practical lasers. Most of the lasers that have been demonstrated in the laboratory have proved to be cumbersome to operate, low in power, inefficient, and/or simply less practical to use than other types. Only a couple of dozen types of lasers have proved to be commercially viable on any significant scale; these are described in the rest of this book and summarized in the Appendix. Some of these types, notably the ruby and helium-neon lasers, have been around since the beginning of the laser era. Others, such as vibronic solid-state, are promising newcomers. The family of commercial lasers is expanding slowly, as new types such as titanium-sapphire come on the market, but with the economics of production a factor to be considered, the number of commercially viable lasers will always be limited. There are many possible reasons why certain lasers do not find their way onto the market. Some require exotic operating conditions or laser media, such as high temperatures or highly reactive metal vapors. Some emit only feeble powers. Others have only limited applications, particularly lasers emitting low powers in the far-infrared, or in parts of the infrared where the atmosphere is opaque. And some simply cannot compete with materials already on the market. Market Size. Sales of lasers per se—including power supply and optics—was about $750 million in the noncommunist world in 1990 (Lasers & Optronics, 1990). Total sales of systems containing lasers was much higher, probably several billion dollars. The difference reflects an important fact: for many applications, the cost of the laser represents only a small part of the system cost. Because some lasers are much more expensive than others, there are large dichotomies between rankings of laser sales based on number and those based on dollars. Over 25 million semiconductor diode lasers were sold in 1990, representing 98 percent of the total number of lasers. Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. Introduction Introduction 7 However, diode lasers accounted for less than 30 percent of the dollar volume of sales. Conversely, some 4000 carbon dioxide gas lasers accounted for 21 percent of 1990 laser sales dollars (Lasers & Optronics, 1990). Types of Organizations. Many companies in the laser industry are young, and some are not far removed from humble origins in a garage or basement. Some large companies started their own laser divisions, but most laser groups began as independent start-ups. The first wave of laser start-ups were formed in the early to mid- 1960s, in the wake of the demonstration of the first laser in 1960. That wave included the two companies generally considered the largest laser manufacturers, Spectra-Physics Inc. and Coherent Inc. Many more laser companies have been formed since, with start-ups continuing to play an important role in developing new technology through the 1980s. The last half of the 1980s saw many mergers and much restructuring of the laser industry. Two of the largest independent laser companies, Spectra-Physics and Lumonics Inc., were acquired by much larger corporations, Ciba-Geigy and Sumitomo, respectively. (However, in mid-1990, Ciba-Geigy sold Spectra-Physics to Pharos AB, a Swedish company affiliated with the Nobel group, but comparable in size to Spectra-Physics.) Some smaller companies also were sold, reflecting a general consolidation of the industry, but that was offset by formation of new companies and spin-offs of laser divisions of some larger firms. No single company offers every kind of laser, but many of the larger firms do produce several different kinds. In contrast, most smaller companies specialize in just one or a few types of lasers. While some companies produce related products, others stick to lasers. Likewise, many other companies concentrate on related products such as optics or power supplies and stay away from producing lasers per se. Some companies build systems around lasers they purchase from outside vendors; others produce their own lasers for use in systems. The field is a dynamic one, and readers who want to keep up with who’s making what should follow the trade magazines which cover the field: Lasers & Optronics, Laser Focus World, and Photonics Spectra. Market Structure. There are few clear-and-fast patterns in the structure of the laser market. The market has become an international one, with major activity in North America, western Europe, and Japan. The two largest laser makers, Spectra-Physics and Coherent Inc., for many years concentrated on gas and dye lasers, but both now offer broader product lines. Both are nominally based in the United States but have strong ties to Europe; Spectra-Physics is a subsidiary of a Swedish company, while a Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. Introduction 8 Chapter One principal Coherent subsidiary is based in Germany. A third large laser manufacturer, Lumonics Inc., is a Canadian subsidiary of a Japanese company, and in turn has a major division based in the United States. Japanese electronics giants dominate the world market for low-priced semiconductor lasers, but they have some competition in other semiconductor lasers, and so far have not become major suppliers of high-power semiconductor laser arrays. Lasers have long been among the military sensitive technologies subject to export controls by the United States and many of its allies. The severity of restrictions depends on the political climate, and eased with the decreased international tensions of 1990. However, as of 1990, there is little trade in laser or related technologies between the Soviet Union, eastern Europe, and China on one hand and North America, Japan, and western Europe on the other. In general, developing countries must import laser equipment because they lack domestic industries. The biggest laser makers also offer optical components and accessories for single-stop shopping, but many laser makers offer accessories only if they can be used with their own products. There are many small companies (and some large ones) which make laser optics, often custom-made for specific applications. There are several companies which function as catalog supply houses for optics and accessories. All told, about a hundred companies make lasers, and several hundred more provide laser accessories and offer services to the laser industry. The cast of companies changes; for current information consult an industry directory. An Introduction to Laser Safety Laser safety has been controversial since lasers began appearing in laboratories. The two major concerns are exposure to the beam (which presents much more danger to the eyes than to the rest of the body) and high voltages within the laser and power supply. Many standards have been developed covering either the performance of laser equipment or the safe use oflasers; some developed by government agencies have legal status, while others are recommendations by voluntary organizations. Tabulations of these standards are available (Weiner, 1990). High-power laser beams can burn the skin, but the most important hazards of laser beams are to the eyes, which are the part of the body most sensitive to light. Like sunlight, laser light arrives in parallel rays, which the eye focuses to a point on the retina, the layer of cells that responds to light. Just as staring at the sun can damage vision, Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. Introduction Introduction 9 exposure to a laser beam of sufficient power can cause permanent eye damage. Eye hazards have attracted considerable attention from standards writers and regulators. They depend on parameters such as laser wavelength, average power over a long interval, peak power in a pulse, beam intensity, and distance from the laser. Wavelength is important because only certain wavelengths—between about 0.4 and 1.5 micrometers (µm)—can penetrate the eye well enough to damage the retina. Ultraviolet light can damage surface layers of the eye (and some can penetrate to the retina, especially in people whose natural ocular lens has been removed). Infrared light also can damage the surface of the eye, although the damage threshold is higher than that for ultraviolet light. Eye response also differs within the range that penetrates the eyeball because the eye has a natural aversion response, which makes it turn away from a bright visible light which is not triggered by infrared wavelengths longer than 0.7 µm. High-power laser pulses pose dangers different from those due to lower-power continuous beams. A single high-power pulse lasting less than a microsecond can cause permanent damage if it enters the eye. A lower-power beam presents danger only for longer-term exposure. Distance reduces laser power density, thus decreasing the potential for hazards to the eye. Many countries have safety standards which must be met by laser products sold within their borders. The National Center for Devices and Radiological Health, part of the U.S. Food and Drug Administration, has established standards in the United States (CDRH, 1985). Many other countries have individual standards based largely on recommendations of the International Electrotechnical Commission (IEC, 1984). Laser product standards include provisions for warning labels indicating hazard class. (In the United States, the hazards increase with class number, with Class IV covering the most powerful lasers.) Depending on hazard classification, lasers sold in the United States may require beam shutters to block the beam when not in use, key interlocks, and other safety features. The United States does not have federal standards for the safe use of lasers, but several states have set their own standards, and many other countries have standards for laser use. The IEC recommended standard covers the safe use of lasers. The American National Standards Institute (ANSI) has developed a voluntary standard for laser use. These standards concentrate on avoiding eye exposure. Systems incorporating lasers also must meet safety standards. In many of these systems the beam is contained so that it cannot leave the box or reach the user’s eye, thus avoiding the need for warning labels. Laser printers and compact-disk players are the most common Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website. Introduction 10 Chapter One examples. Some scan a low-power beam so rapidly that the beam does not stay in one place long enough to pose a hazard; laser scanners at supermarket checkout counters are an example. High-power lasers used in manufacturing may operate behind beam-absorbing shields, which separate the operator from the workpiece and laser beam. Such shields also may be used in some laboratories. People working where they cannot avoid exposure to laser beams that pose eye hazards should wear safety glasses or goggles. Special filters in the safety goggles block light at certain laser wavelengths, while transmitting enough other light to enable the worker to see. The proper goggles should be used for work with each type of laser; it does no good to block the blue-green light from an argon laser when working with a red helium-neon laser. Users can select general-purpose goggles that fit over the eyes and spectacles, or can have prescription spectacles made from laser-blocking filter glasses. Goggles should block all possible paths for laser light to reach the eye, because hazardous pulses can be reflected from any shiny surface and arrive from unexpected angles. High-voltage hazards have attracted less attention, but in practice are far more deadly. There is no public record of fatal injury due to a laser beam, but several people have been electrocuted by high voltages in a laser or power supply. Except for semiconductor lasers, virtually all lasers require high voltages and sometimes high currents to generate a beam. The high voltage may be applied directly to the laser medium or to a pump lamp, but it is present in the system. Capacitors and some other components may retain dangerous voltages for a considerable time after the laser is used, especially in pulsed lasers. Be wary of these electrical hazards. If you plan to work directly with lasers, you should read a book that discusses laser safety in more detail. The most exhaustive survey is by David Sliney and Myron Wolbarsht (1980). A briefer guide to laser safety with more emphasis on practical measures has been written by D.C.Winburn (1990). The Lawrence Livermore National Laboratory has issued a booklet on safety eyewear (1987). Documents also are available from the National Center for Devices and Radiological Health (1390 Piccard Dr., Rockville, MD. 20850), and the American National Standards Institute (1430 Broadway, New York, NY 10018). Overview of Laser Applications Laser applications are far too broad and diverse to cover in any detail here. Individual chapters cover the most important applications of each Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com) Copyright © 2004 The McGraw-Hill Companies. All rights reserved. Any use is subject to the Terms of Use as given at the website.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.