The Laplace Transform: Theory and Applications Joel L. Schiff Springer Contents Preface ix 1 BasicPrinciples 1 1.1 TheLaplaceTransform . . . . . . . . . . . . . . . . . 1 1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 ContinuityRequirements . . . . . . . . . . . . . . . . 8 1.4 ExponentialOrder . . . . . . . . . . . . . . . . . . . . 12 1.5 TheClassL . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 BasicPropertiesoftheLaplaceTransform . . . . . . 16 1.7 InverseoftheLaplaceTransform . . . . . . . . . . . 23 1.8 TranslationTheorems . . . . . . . . . . . . . . . . . . 27 1.9 Differentiation and Integration of the LaplaceTransform . . . . . . . . . . . . . . . . . . . . 31 1.10 PartialFractions . . . . . . . . . . . . . . . . . . . . . 35 2 ApplicationsandProperties 41 2.1 GammaFunction . . . . . . . . . . . . . . . . . . . . 41 2.2 PeriodicFunctions . . . . . . . . . . . . . . . . . . . . 47 2.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 53 2.4 OrdinaryDifferentialEquations . . . . . . . . . . . . 59 2.5 DiracOperator . . . . . . . . . . . . . . . . . . . . . . 74 xiii xiv Contents 2.6 AsymptoticValues . . . . . . . . . . . . . . . . . . . . 88 2.7 Convolution. . . . . . . . . . . . . . . . . . . . . . . . 91 2.8 Steady-StateSolutions . . . . . . . . . . . . . . . . . . 103 2.9 DifferenceEquations . . . . . . . . . . . . . . . . . . 108 3 ComplexVariableTheory 115 3.1 ComplexNumbers . . . . . . . . . . . . . . . . . . . . 115 3.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . 128 3.4 PowerSeries . . . . (cid:2). . . . . . . . . . . . . . . . . . . 136 ∞ 3.5 IntegralsoftheType −∞f(x)dx . . . . . . . . . . . . 147 4 ComplexInversionFormula 151 5 PartialDifferentialEquations 175 Appendix 193 References 207 Tables 209 LaplaceTransformOperations . . . . . . . . . . . . . . . . 209 TableofLaplaceTransforms . . . . . . . . . . . . . . . . . . 210 AnswerstoExercises 219 Index 231 1 C H A P T E R ........................................... BPraisnicciples Ordinaryandpartialdifferentialequationsdescribethewaycertain quantitiesvarywithtime,suchasthecurrentinanelectricalcircuit, theoscillationsofavibratingmembrane,ortheflowofheatthrough aninsulatedconductor.Theseequationsaregenerallycoupledwith initialconditionsthatdescribethestateofthesystemattimet(cid:1)0. Averypowerfultechniqueforsolvingtheseproblemsisthatof theLaplacetransform,whichliterallytransformstheoriginaldiffer- entialequationintoanelementaryalgebraicexpression.Thislatter canthensimplybetransformedonceagain,intothesolutionofthe originalproblem.Thistechniqueisknownasthe“Laplacetransform method.”ItwillbetreatedextensivelyinChapter2.Inthepresent chapter we lay down the foundations of the theory and the basic propertiesoftheLaplacetransform. 1.1 The Laplace Transform Suppose that f is a real- or complex-valued function of the (time) variablet > 0andsisarealorcomplexparameter.Wedefinethe 1 2 1. BasicPrinciples Laplacetransformoff as (cid:1) (cid:3) (cid:4) ∞ F(s)(cid:1)L f(t) (cid:1) e−stf(t)dt 0 (cid:1) τ (cid:1) lim e−stf(t)dt (1.1) τ→∞ 0 whenever the limit exists (as a finite number). When it does, the integral(1.1)issaidtoconverge.Ifthelimitdoesnotexist,theintegral issaidtodivergeandthereisnoLaplacetransformdefinedforf.The notation L(f) will also be used to denote the Laplace transform of f,andtheintegralistheordinaryRiemann(improper)integral(see Appendix). Theparametersbelongstosomedomainonthereallineorin the complex plane. We will choose s appropriately so as to ensure theconvergenceoftheLaplaceintegral(1.1).Inamathematicaland technicalsense,thedomainofs isquiteimportant.However,ina practicalsense,whendifferentialequationsaresolved,thedomain ofsisroutinelyignored.Whensiscomplex,wewillalwaysusethe notations(cid:1)x+iy. The symbol L is the Laplace transformation, which(cid:3)act(cid:4)s on functionsf (cid:1)f(t)andgeneratesanewfunction,F(s)(cid:1)L f(t) . Example1.1. Iff(t)≡1fort≥0,then (cid:1) (cid:3) (cid:4) ∞ L f(t) (cid:1) e−st1dt 0 (cid:5) (cid:6) (cid:7) (cid:1)τl→im∞ e−−sst(cid:6)(cid:6)(cid:6)τ0 (cid:5) (cid:7) e−sτ 1 (cid:1) lim + (1.2) τ→∞ −s s 1 (cid:1) s providedofcoursethats>0(ifsisreal).Thuswehave 1 L(1)(cid:1) (s>0). (1.3) s 1.1. TheLaplaceTransform 3 Ifs≤0,thentheintegralwoulddivergeandtherewouldbenore- sultingLaplacetransform.Ifwehadtakenstobeacomplexvariable, thesamecalculation,withRe(s)>0,wouldhavegivenL(1)(cid:1)1/s. Infact,letusjustverifythatintheabovecalculationtheintegral canbetreatedinthesamewayevenifsisacomplexvariable.We requirethewell-knownEulerformula(seeChapter3) eiθ (cid:1)cosθ+i sinθ, θ real, (1.4) andthefactthat|eiθ|(cid:1)1.Theclaimisthat(ignoringtheminussign aswellasthelimitsofintegrationtosimplifythecalculation) (cid:1) est estdt(cid:1) , (1.5) s fors(cid:1)x+iyanycomplexnumber(cid:7)(cid:1)0.Toseethisobservethat (cid:1) (cid:1) estdt(cid:1) e(x+iy)tdt (cid:1) (cid:1) (cid:1) extcosytdt+i extsinytdt byEuler’sformula.Performingadoubleintegrationbypartsonboth theseintegralsgives (cid:1) (cid:8) (cid:9) ext estdt(cid:1) (xcosyt+ysinyt)+i(xsinyt−ycosyt) . x2+y2 Nowtheright-handsideof(1.5)canbeexpressedas est e(x+iy)t (cid:1) s x+iy ext(cosyt+isinyt)(x−iy) (cid:1) x2+y2 (cid:8) (cid:9) ext (cid:1) (xcosyt+ysinyt)+i(xsinyt−ycosyt) , x2+y2 whichequalstheleft-handside,and(1.5)follows. Furthermore, we obtain the result of (1.3) for s complex if we takeRe(s)(cid:1)x>0,sincethen lim |e−sτ|(cid:1) lim e−xτ (cid:1)0, τ→∞ τ→∞ 4 1. BasicPrinciples killingoffthelimittermin(1.3). Let us use the preceding to calculate L(cosωt) and L(sinωt) (ωreal). Example1.2. Webeginwith (cid:1) ∞ L(eiωt)(cid:1) e−steiωtdt 0 (cid:6) (cid:1)τl→im∞ eiω(iω−−s)st(cid:6)(cid:6)(cid:6)τ0 1 (cid:1) , s−iω since limτ→∞|eiωτe−sτ| (cid:1) limτ→∞e−xτ (cid:1) 0, provided x (cid:1) Re(s) > 0. Similarly, L(e−iωt) (cid:1) 1/(s+iω). Therefore, using the linearity propertyofL,whichfollowsfromthefactthatintegralsarelinear operators(discussedinSection1.6), (cid:5) (cid:7) L(eiωt)+L(e−iωt) eiωt+e−iωt (cid:1)L (cid:1)L(cosωt), 2 2 andconsequently, (cid:5) (cid:7) 1 1 1 s L(cosωt)(cid:1) + (cid:1) . (1.6) 2 s−iω s+iω s2+ω2 Similarly, (cid:5) (cid:7) 1 1 1 ω (cid:3) (cid:4) L(sinωt)(cid:1) − (cid:1) Re(s)>0 . 2i s−iω s+iω s2+ω2 (1.7) The Laplace transform of functions defined in a piecewise fashionisreadilyhandledasfollows. Example1.3. Let(Figure1.1) (cid:10) t 0≤t≤1 f(t)(cid:1) 1 t>1. Exercises1.1 5 f(cid:0)t(cid:1) (cid:2) FIGURE1.1 O (cid:2) t Fromthedefinition, (cid:1) (cid:3) (cid:4) ∞ L f(t) (cid:1) e−stf(t)dt 0 (cid:1) (cid:1) 1 τ (cid:1) te−stdt+ lim e−stdt 0 τ→∞ 1 (cid:6) (cid:1) (cid:6) (cid:1) te−−sst(cid:6)(cid:6)(cid:6)10+1s 01e−stdt+τl→im∞e−−sst(cid:6)(cid:6)(cid:6)τ1 1−e−s (cid:3) (cid:4) (cid:1) Re(s)>0 . s2 Exercises 1.1 (cid:3) (cid:4) 1. From the definition of the Laplace transform, compute L f(t) for (a)f(t)(cid:1)4t (b)f(t)(cid:1)e2t (c)f(t)(cid:1)2cos3t (d)f(t)(cid:1)1−cosωt (e)f(t)(cid:1)te2t (f)f(t)(cid:1)etsint (g)f(t)(cid:1)(cid:11)01 tt<≥aa (h)f(t)(cid:1)sin0ωt 0π<≤tt< ωπ ω 6 1. BasicPrinciples (cid:11) 2 t≤1 (i)f(t)(cid:1) et t>1. 2. ComputetheLaplacetransformofthefunctionf(t)whosegraph isgiveninthefiguresbelow. f(cid:0)t(cid:1) f(cid:0)t(cid:1) (cid:0)a(cid:1) (cid:0)b(cid:1) (cid:2) (cid:2) O FIGUREE(cid:2).1 t O FIGU(cid:2)REE.2 (cid:3) t 1.2 Convergence Although the Laplace operator can be applied to a great many functions, there are some for which the integral (1.1) does not converge. Example1.4. Forthefunctionf(t)(cid:1)e(t2), (cid:1) (cid:1) τ τ lim e−stet2dt(cid:1) lim et2−stdt(cid:1)∞ τ→∞ 0 τ→∞ 0 foranychoiceofthevariables,sincetheintegrandgrowswithout boundasτ →∞. InordertogobeyondthesuperficialaspectsoftheLaplacetrans- form,weneedtodistinguishtwospecialmodesofconvergenceof theLaplaceintegral. Theintegral(1.1)issaidtobeabsolutelyconvergentif (cid:1) τ lim |e−stf(t)|dt (cid:3) (cid:4) τ→∞ 0 exists.IfL f(t) doesconvergeabsolutely,then (cid:6)(cid:6)(cid:6)(cid:1) τ(cid:8) (cid:6)(cid:6)(cid:6) (cid:1) τ(cid:8) (cid:6) e−stf(t)dt(cid:6)≤ |e−stf(t)|dt→0 (cid:6) (cid:6) τ τ