ebook img

The Laplace Transform PDF

235 Pages·2012·5.56 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Laplace Transform

The Laplace Transform: Theory and Applications Joel L. Schiff Springer Contents Preface ix 1 BasicPrinciples 1 1.1 TheLaplaceTransform . . . . . . . . . . . . . . . . . 1 1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 ContinuityRequirements . . . . . . . . . . . . . . . . 8 1.4 ExponentialOrder . . . . . . . . . . . . . . . . . . . . 12 1.5 TheClassL . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 BasicPropertiesoftheLaplaceTransform . . . . . . 16 1.7 InverseoftheLaplaceTransform . . . . . . . . . . . 23 1.8 TranslationTheorems . . . . . . . . . . . . . . . . . . 27 1.9 Differentiation and Integration of the LaplaceTransform . . . . . . . . . . . . . . . . . . . . 31 1.10 PartialFractions . . . . . . . . . . . . . . . . . . . . . 35 2 ApplicationsandProperties 41 2.1 GammaFunction . . . . . . . . . . . . . . . . . . . . 41 2.2 PeriodicFunctions . . . . . . . . . . . . . . . . . . . . 47 2.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 53 2.4 OrdinaryDifferentialEquations . . . . . . . . . . . . 59 2.5 DiracOperator . . . . . . . . . . . . . . . . . . . . . . 74 xiii xiv Contents 2.6 AsymptoticValues . . . . . . . . . . . . . . . . . . . . 88 2.7 Convolution. . . . . . . . . . . . . . . . . . . . . . . . 91 2.8 Steady-StateSolutions . . . . . . . . . . . . . . . . . . 103 2.9 DifferenceEquations . . . . . . . . . . . . . . . . . . 108 3 ComplexVariableTheory 115 3.1 ComplexNumbers . . . . . . . . . . . . . . . . . . . . 115 3.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . 128 3.4 PowerSeries . . . . (cid:2). . . . . . . . . . . . . . . . . . . 136 ∞ 3.5 IntegralsoftheType −∞f(x)dx . . . . . . . . . . . . 147 4 ComplexInversionFormula 151 5 PartialDifferentialEquations 175 Appendix 193 References 207 Tables 209 LaplaceTransformOperations . . . . . . . . . . . . . . . . 209 TableofLaplaceTransforms . . . . . . . . . . . . . . . . . . 210 AnswerstoExercises 219 Index 231 1 C H A P T E R ........................................... BPraisnicciples Ordinaryandpartialdifferentialequationsdescribethewaycertain quantitiesvarywithtime,suchasthecurrentinanelectricalcircuit, theoscillationsofavibratingmembrane,ortheflowofheatthrough aninsulatedconductor.Theseequationsaregenerallycoupledwith initialconditionsthatdescribethestateofthesystemattimet(cid:1)0. Averypowerfultechniqueforsolvingtheseproblemsisthatof theLaplacetransform,whichliterallytransformstheoriginaldiffer- entialequationintoanelementaryalgebraicexpression.Thislatter canthensimplybetransformedonceagain,intothesolutionofthe originalproblem.Thistechniqueisknownasthe“Laplacetransform method.”ItwillbetreatedextensivelyinChapter2.Inthepresent chapter we lay down the foundations of the theory and the basic propertiesoftheLaplacetransform. 1.1 The Laplace Transform Suppose that f is a real- or complex-valued function of the (time) variablet > 0andsisarealorcomplexparameter.Wedefinethe 1 2 1. BasicPrinciples Laplacetransformoff as (cid:1) (cid:3) (cid:4) ∞ F(s)(cid:1)L f(t) (cid:1) e−stf(t)dt 0 (cid:1) τ (cid:1) lim e−stf(t)dt (1.1) τ→∞ 0 whenever the limit exists (as a finite number). When it does, the integral(1.1)issaidtoconverge.Ifthelimitdoesnotexist,theintegral issaidtodivergeandthereisnoLaplacetransformdefinedforf.The notation L(f) will also be used to denote the Laplace transform of f,andtheintegralistheordinaryRiemann(improper)integral(see Appendix). Theparametersbelongstosomedomainonthereallineorin the complex plane. We will choose s appropriately so as to ensure theconvergenceoftheLaplaceintegral(1.1).Inamathematicaland technicalsense,thedomainofs isquiteimportant.However,ina practicalsense,whendifferentialequationsaresolved,thedomain ofsisroutinelyignored.Whensiscomplex,wewillalwaysusethe notations(cid:1)x+iy. The symbol L is the Laplace transformation, which(cid:3)act(cid:4)s on functionsf (cid:1)f(t)andgeneratesanewfunction,F(s)(cid:1)L f(t) . Example1.1. Iff(t)≡1fort≥0,then (cid:1) (cid:3) (cid:4) ∞ L f(t) (cid:1) e−st1dt 0 (cid:5) (cid:6) (cid:7) (cid:1)τl→im∞ e−−sst(cid:6)(cid:6)(cid:6)τ0 (cid:5) (cid:7) e−sτ 1 (cid:1) lim + (1.2) τ→∞ −s s 1 (cid:1) s providedofcoursethats>0(ifsisreal).Thuswehave 1 L(1)(cid:1) (s>0). (1.3) s 1.1. TheLaplaceTransform 3 Ifs≤0,thentheintegralwoulddivergeandtherewouldbenore- sultingLaplacetransform.Ifwehadtakenstobeacomplexvariable, thesamecalculation,withRe(s)>0,wouldhavegivenL(1)(cid:1)1/s. Infact,letusjustverifythatintheabovecalculationtheintegral canbetreatedinthesamewayevenifsisacomplexvariable.We requirethewell-knownEulerformula(seeChapter3) eiθ (cid:1)cosθ+i sinθ, θ real, (1.4) andthefactthat|eiθ|(cid:1)1.Theclaimisthat(ignoringtheminussign aswellasthelimitsofintegrationtosimplifythecalculation) (cid:1) est estdt(cid:1) , (1.5) s fors(cid:1)x+iyanycomplexnumber(cid:7)(cid:1)0.Toseethisobservethat (cid:1) (cid:1) estdt(cid:1) e(x+iy)tdt (cid:1) (cid:1) (cid:1) extcosytdt+i extsinytdt byEuler’sformula.Performingadoubleintegrationbypartsonboth theseintegralsgives (cid:1) (cid:8) (cid:9) ext estdt(cid:1) (xcosyt+ysinyt)+i(xsinyt−ycosyt) . x2+y2 Nowtheright-handsideof(1.5)canbeexpressedas est e(x+iy)t (cid:1) s x+iy ext(cosyt+isinyt)(x−iy) (cid:1) x2+y2 (cid:8) (cid:9) ext (cid:1) (xcosyt+ysinyt)+i(xsinyt−ycosyt) , x2+y2 whichequalstheleft-handside,and(1.5)follows. Furthermore, we obtain the result of (1.3) for s complex if we takeRe(s)(cid:1)x>0,sincethen lim |e−sτ|(cid:1) lim e−xτ (cid:1)0, τ→∞ τ→∞ 4 1. BasicPrinciples killingoffthelimittermin(1.3). Let us use the preceding to calculate L(cosωt) and L(sinωt) (ωreal). Example1.2. Webeginwith (cid:1) ∞ L(eiωt)(cid:1) e−steiωtdt 0 (cid:6) (cid:1)τl→im∞ eiω(iω−−s)st(cid:6)(cid:6)(cid:6)τ0 1 (cid:1) , s−iω since limτ→∞|eiωτe−sτ| (cid:1) limτ→∞e−xτ (cid:1) 0, provided x (cid:1) Re(s) > 0. Similarly, L(e−iωt) (cid:1) 1/(s+iω). Therefore, using the linearity propertyofL,whichfollowsfromthefactthatintegralsarelinear operators(discussedinSection1.6), (cid:5) (cid:7) L(eiωt)+L(e−iωt) eiωt+e−iωt (cid:1)L (cid:1)L(cosωt), 2 2 andconsequently, (cid:5) (cid:7) 1 1 1 s L(cosωt)(cid:1) + (cid:1) . (1.6) 2 s−iω s+iω s2+ω2 Similarly, (cid:5) (cid:7) 1 1 1 ω (cid:3) (cid:4) L(sinωt)(cid:1) − (cid:1) Re(s)>0 . 2i s−iω s+iω s2+ω2 (1.7) The Laplace transform of functions defined in a piecewise fashionisreadilyhandledasfollows. Example1.3. Let(Figure1.1) (cid:10) t 0≤t≤1 f(t)(cid:1) 1 t>1. Exercises1.1 5 f(cid:0)t(cid:1) (cid:2) FIGURE1.1 O (cid:2) t Fromthedefinition, (cid:1) (cid:3) (cid:4) ∞ L f(t) (cid:1) e−stf(t)dt 0 (cid:1) (cid:1) 1 τ (cid:1) te−stdt+ lim e−stdt 0 τ→∞ 1 (cid:6) (cid:1) (cid:6) (cid:1) te−−sst(cid:6)(cid:6)(cid:6)10+1s 01e−stdt+τl→im∞e−−sst(cid:6)(cid:6)(cid:6)τ1 1−e−s (cid:3) (cid:4) (cid:1) Re(s)>0 . s2 Exercises 1.1 (cid:3) (cid:4) 1. From the definition of the Laplace transform, compute L f(t) for (a)f(t)(cid:1)4t (b)f(t)(cid:1)e2t (c)f(t)(cid:1)2cos3t (d)f(t)(cid:1)1−cosωt (e)f(t)(cid:1)te2t (f)f(t)(cid:1)etsint  (g)f(t)(cid:1)(cid:11)01 tt<≥aa (h)f(t)(cid:1)sin0ωt 0π<≤tt< ωπ ω 6 1. BasicPrinciples (cid:11) 2 t≤1 (i)f(t)(cid:1) et t>1. 2. ComputetheLaplacetransformofthefunctionf(t)whosegraph isgiveninthefiguresbelow. f(cid:0)t(cid:1) f(cid:0)t(cid:1) (cid:0)a(cid:1) (cid:0)b(cid:1) (cid:2) (cid:2) O FIGUREE(cid:2).1 t O FIGU(cid:2)REE.2 (cid:3) t 1.2 Convergence Although the Laplace operator can be applied to a great many functions, there are some for which the integral (1.1) does not converge. Example1.4. Forthefunctionf(t)(cid:1)e(t2), (cid:1) (cid:1) τ τ lim e−stet2dt(cid:1) lim et2−stdt(cid:1)∞ τ→∞ 0 τ→∞ 0 foranychoiceofthevariables,sincetheintegrandgrowswithout boundasτ →∞. InordertogobeyondthesuperficialaspectsoftheLaplacetrans- form,weneedtodistinguishtwospecialmodesofconvergenceof theLaplaceintegral. Theintegral(1.1)issaidtobeabsolutelyconvergentif (cid:1) τ lim |e−stf(t)|dt (cid:3) (cid:4) τ→∞ 0 exists.IfL f(t) doesconvergeabsolutely,then (cid:6)(cid:6)(cid:6)(cid:1) τ(cid:8) (cid:6)(cid:6)(cid:6) (cid:1) τ(cid:8) (cid:6) e−stf(t)dt(cid:6)≤ |e−stf(t)|dt→0 (cid:6) (cid:6) τ τ

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.