ebook img

The Kolmogorov-Obukhov Theory of Turbulence: A Mathematical Theory of Turbulence PDF

119 Pages·2013·1.739 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Kolmogorov-Obukhov Theory of Turbulence: A Mathematical Theory of Turbulence

SpringerBriefs in Mathematics SeriesEditors KrishnaswamiAlladi NicolaBellomo MicheleBenzi TatsienLi MatthiasNeufang OtmarScherzer DierkSchleicher BenjaminSteinberg VladasSidoravicius YuriTschinkel LoringW.Tu G. GeorgeYin PingZhang SpringerBriefs in Mathematics showcases expositions in all areas of mathematicsandappliedmathematics.Manuscriptspresentingnewresults or a single new result in a classical field, new field, or an emerging topic, applications, or bridges betweennewresultsandalreadypublished works, are encouraged. The series is intended for mathematicians and applied mathematicians. Forfurthervolumes: http://www.springer.com/series/10030 Bjo¨rn Birnir The Kolmogorov-Obukhov Theory of Turbulence A Mathematical Theory of Turbulence 123 Bjo¨rnBirnir UniversityofCalifornia DepartmentofMathematics SantaBarbara,CA93106 USA ISSN2191-8198 ISSN2191-8201(electronic) ISBN978-1-4614-6261-3 ISBN978-1-4614-6262-0(ebook) DOI10.1007/978-1-4614-6262-0 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012956056 MathematicsSubjectClassification(2010):60H15,35R60,76B79,35Q35,35Q30,76D05,37L55 (cid:2)c Bjo¨rnBirnir2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To Inga,Addaand Einar. Preface Inthisbookwepresenttherecentlydevelopedstatistical theoryofturbulenceina formthatcanbeappreciatedbyphysicists,mathematicians,andengineers.Thethe- oryisgroundedinprobabilitytheoryandwedevelopfromprobabilityalltheresults that are necessary to understand the turbulence theory, without proofs. However, referencesaregiventostandardtextswheretheproofsandmorebackgrounddetails can be found.Thegoalsare to find estimates forstructurefunctionsof turbulence thatare realizedin simulationand experiments;to derivethe invariantmeasureof turbulencebothforthe one-pointstatistics andthe two-pointstatistics; andfinally to derive the probability density function (PDF) for the statistics that are used in practice.Wedonotassumeanymathematicalbackgroundbutfamiliaritywithbasic probabilitytheoryandpartialdifferentialequationsobviouslyhelps. We willseethattheNavier–Stokesequationforallbutthelargestscalesintur- bulent flow can be expressed as a stochastic Navier–Stokes equation (1.65). The stochasticforcingresultsfrominstabilitiesoftheflowthatmagnifiessmallambient noise and saturates its growth into large stochastic forcing. This has been mod- eledbeforebyaReynoldsdecompositionandbyacoarsegrainingoftheflow.The stochasticforceisgenericandisdeterminedbythegeneralprinciplesofprobability with a minimumof physicalinputs. It consists of two components:additivenoise and multiplicative noise and the additive component is determined by the central limittheoremandthelargedeviationprinciple.Thephysicalinputisthatthesetwo termsmustproducesimilarscalingsbecausetheyarethedetaileddescriptionofthe samedissipativeprocesses.Thisdeterminestherateinthelargedeviationprinciple. The multiplicative noise multiplies the fluid velocity and models jumps (vorticity concentrations)inthevelocitygradient.ItisexpressedbyagenericPoissonprocess whereonlytherateneedstobegiven.Thisrateisdeterminedbythespectralanaly- sisofthe(linearized)Navier–Stokesoperatorandtherequirement,following[64], thatthe dimensionofthemostsingularvorticitystructure(filaments)is one.Thus thestochasticforcingisgenericanddeterminedwithtwomildphysicalinputs. ThestochasticNavier–Stokesequationcanbeexpressedasanintegralequation (2.17) and the log-Poissonian processes found by She and Leveque and explored by She and Waymire and Dubrulle are produced from the multiplicative noise by vii viii Preface the Feynman–Kacformula. This givesa satisfying mathematicalderivationof the intermittency phenomena that had earlier been derived from impirical considera- tions.Moreover,theintegralequationsshowhowtheNavier–Stokesevolutionand thelog-Poissonianintermittencyprocessesactonthe dissipationprocessestopro- duce the intermittencyin the dissipation. This is a mathematical derivation of the experimental observation that intermittent dissipation processes accompany inter- mittent velocity variations. Using the integral equation, we get an estimate on all thestructurefunctionsofthevelocitydifferencesinturbulence.Theevidencefrom simulations and experimentsis that this upper bound is reached in turbulentflow. Why the inertial cascade achieves this maximal efficiency in the energy transfer remainstobeexplained. WethenbuildonHopf’s[29]ideastocomputetheinvariantmeasureofturbulent flow.Thismeasurecanbecomputedbecauseitsolvesalinearfunctionaldifferential equation, the Kolmogorov–Hopfequation; see [56]. It turns out to be an infinite- dimensionalGaussianmultipliedbya(discrete)Poissondistribution.ThisPoisson distributioncorrespondstotheintermittencyandthelog-Poissonprocesses.Thenby takingthetraceoftheinvariantmeasurewegetthePDFofthevelocitydifferences. Wefirstderivethefunctionaldifferentialequation(PDE)forthePDFandthenshow that there are infinitely many PDFs, each corresponding to a particular moment becauseoftheintermittencycorrections.ThePDE(3.15)forthesequenceofPDFs can also be solved and the PDFs turn out to be the normalized inverse Gaussian (NIG)distributionsofBarndorff–Nielsen[7].Theirparametersareeaslycomputed andweseehowtodothisforbothsimulationsandexperiments. ItisinterestingtonoticethatalthoughthesolutionoftheNavier–Stokesequation maynotbeuniqueorsmooththeinvariantmeasureofthevelocitydifferences(3.12) isstillwelldefinedbyLeray’s[42]existencetheory.Moreover,differentvelocities produceequivalentmeasures,sothestatisticalobservablesofturbulenceareunique althoughtheturbulentvelocitymaynotbe. Thetheorypresentedinthisbookmustbecomplementedbyadynamicalsystems theoryforthelarge-scalestructuresinfluidflowandeventuallyonewantstowork out how the small-scale flow presented here influences the large-scale dynamics. Thisisamaterialforfutureresearch,buthopefullythetoolspresentedinthisbook willalsobehelpfulinthatendeavor. SantaBarbara,California, Bjo¨rnBirnir UnitedStates Acknowledgements Theauthor wouldliketoacknowledge a largenumber ofcolleagues with whomtheresultsinthisbookhavebeendiscussedandwhohaveprovidedvaluableinsights.They includeOleBarndorff-NilsenandJurgenSchmiegelinAarhus,HenryMcKean,K.R.Sreenivasan, andR.VaradhaninNewYork,Z.-S.ZheinBeijing,EdWaymireinOregon,E.BodenschatzandH. XuinGottingen,MichaelWilczekinMunsterandM.SørenseninCopenhagen.Healsobenefitted fromconversationswithJ.Peinke,M.Oberlack,E.Meiburg,B.Eckhardt,S.Childress,L.Biferale, L-S. Yang, A. Lanotto, K. Demosthenes, M. Nelkin, A. Gylfason, V. L’vov, and many others. Thisresearch wassupported inpart bytheTheCourant InstituteandtheProject ofKnowledge InnovationProgram(PKIP)ofChineseAcademyofSciences,GrantNo.KJCX2.YW.W10,whose supportisgratefullyacknowledgedandbyagrantfromtheUCSantaBarbaraAcademicSenate. Contents 1 TheMathematicalFormulationofFullyDevelopedTurbulence...... 1 1.1 IntroductiontoTurbulence................................... 1 1.2 TheNavier–StokesEquationforFluidFlow .................... 4 1.2.1 EnergyandDissipation ............................... 5 1.3 LaminarVersusTurbulentFlow............................... 6 1.4 TwoExamplesofFluidInstabilityCreatingLargeNoise.......... 8 1.4.1 Stability............................................ 10 1.5 TheCentralLimitTheoremandtheLargeDeviationPrinciple, inProbabilityTheory ....................................... 15 1.5.1 Crame´r’sTheorem ................................... 17 1.5.2 StochasticProcessesandTimeChange .................. 18 1.6 PoissonProcessesandBrownianMotion ....................... 20 1.6.1 Finite-DimensionalBrownianMotion ................... 24 1.6.2 TheWienerProcess .................................. 26 1.7 TheNoiseinFullyDevelopedTurbulence...................... 28 1.7.1 TheGenericNoise ................................... 31 1.8 TheStochasticNavier–StokesEquationforFullyDeveloped Turbulence ................................................ 32 2 ProbabilityandtheStatisticalTheoryofTurbulence ............... 35 2.1 ItoProcessesandIto’sCalculus .............................. 35 2.2 TheGeneratorofanItoDiffusionandKolmogorov’sEquation .... 37 2.2.1 TheFeynman–KacFormula ........................... 39 2.2.2 Girsanov’sTheoremandCameron–Martin............... 39 2.3 JumpsandLe´vyProcesses................................... 40 2.4 SpectralTheoryfortheOperatorK............................ 42 2.5 TheFeynman–KacFormulaandtheLog-PoissonianProcesses .... 46 2.6 TheKolmogorov–Obukhov–She–LevequeTheory............... 48 2.7 EstimatesoftheStructureFunctions........................... 49 2.8 TheSolutionoftheStochasticLinearizedNavier–Stokes Equation.................................................. 53 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.