MNRAS000,1–19(2016) Preprint24January2017 CompiledusingMNRASLATEXstylefilev3.0 The KMOS Redshift One Spectroscopic Survey (KROSS): rotational velocities and angular momentum of z≈0.9 galaxies⋆ C. M. Harrison,1,2,† H. L. Johnson,1,3 A. M. Swinbank,3,1 J. P. Stott,4,1 R. G. Bower,3,1 Ian Smail,1,3 A. L. Tiley,4,1 A. J. Bunker,4,5 M. Cirasuolo,2 D. Sobral,6,7 R. M. 7 Sharples,8,1 P. Best,9 M. Bureau,4 M. J. Jarvis,4,10 G. Magdis11,12 1 1CentreforExtragalacticAstronomy,DurhamUniversity,SouthRoad,Durham,DH13LE,U.K. 0 2EuropeanSouthernObservatory,Karl-Schwarzschild-Str.2,85748Garchingb.München,Germany 2 3InstituteforComputationalCosmology,DurhamUniversity,SouthRoad,Durham,DH13LE,U.K. n 4Astrophysics,DepartmentofPhysics,UniversityofOxford,KebleRoad,Oxford,OX13RH,U.K. a 5AffiliateMember,KavliInstituteforthePhysicsandMathematicsoftheUniverse(WPI),TodaiInstitutesforAdvancedStudy,TheUniversityofTokyo, J 5-1-5Kashiwanoha,Kashiwa,Japan277-8583 3 6DepartmentofPhysics,LancasterUniversity,Lancaster,LA14YB,U.K. 2 7LeidenObservatory,LeidenUniversity,P.O.Box9513,NL-2300RALeiden,TheNetherlands 8CentreforAdvancedInstrumentation,DurhamUniversity,SouthRoad,Durham,DH13LE,U.K. ] 9SUPA,InstituteforAstronomy,RoyalObservatoryofEdinburgh,BlackfordHill,Edinburgh,EH93HJ,U.K. A 10DepartmentofPhysics,UniversityoftheWesternCape,Bellville7535,SouthAfrica G 11DarkCosmologyCentre,NielsBohrInstitute,UniversityofCopenhagen,JulianeMariesvej30,DK-2100Copenhagen,Denmark 12InstituteforAstronomy,Astrophysics,SpaceApplicationsandRemoteSensing,NationalObservatoryofAthens,GR-15236Athens,Greece h. †Email:[email protected] p - o AcceptedXXX.ReceivedYYY;inoriginalformZZZ r t s a [ ABSTRACT We present dynamical measurements for 586 Ha detected star-forming galaxies from the 2 KMOS (K-bandMulti-ObjectSpectrograph)Redshift One SpectroscopicSurvey(KROSS). v Thesamplerepresentstypicalstar-forminggalaxiesatthisredshift(z=0.6–1.0),withame- 1 dianstarformationrateof≈7M yr−1 andastellarmassrangeoflog(M [M ])≈9–11.We 6 ⊙ ⋆ ⊙ find that the rotation velocity-stellar mass relationship (the inverse of the Tully-Fisher re- 5 5 lationship) for our rotationally-dominated sources (vC/s 0 > 1) has a consistent slope and 0 normalisation as that observed for z=0 disks. In contrast, the specific angular momentum 1. (j⋆;angularmomentumdividedbystellarmass),is≈0.2–0.3dexloweronaveragecompared to z=0 disks. Thespecific angularmomentumscales as j (cid:181) M0.6±0.2, consistentwith that 0 s ⋆ 7 expectedfordarkmatter(i.e., jDM (cid:181) MD2/M3).We findthatz≈0.9star-forminggalaxieshave 1 decreasing specific angular momentum with increasing Sérsic index. Visually, the sources : withthehighestspecificangularmomentum,foragivenmass,havethemostdisk-dominated v morphologies.Thisimpliesthatanangularmomentum–mass–morphologyrelationship,sim- i X ilartothatobservedinlocalmassivegalaxies,isalreadyinplacebyz≈1. r a Keywords: galaxies:kinematicsanddynamics;—galaxies:evolution 1 INTRODUCTION mergers,inflows,outflowsandturbulence(e.g.,Fall1983;Moetal. 1998; Weiletal. 1998; Thacker&Couchman 2001). Wearenow It has been suggested for several decades that galaxies form inaneraoflargeintegral-fieldspectroscopy(IFS)surveysthaten- at the centre of dark matter halos (e.g., Rees&Ostriker 1977; ableustospatially-resolvetheseoutflows,inflowsandgalaxydy- Fall&Efstathiou1980;Blumenthaletal.1984;seeMoetal.2010 namicsfor hundreds tothousands ofgalaxiesthatspan>10Gyrs forareview).Thebaryonsmaycollapseintoagalaxydiskornot of cosmological time (e.g., Cappellarietal. 2011; Sánchezetal. dependingonhowtheangularmomentumisre-distributedthrough 2012;Bryantetal.2015;Bundyetal.2015;Wisnioskietal.2015; Stottetal. 2016). In tandem tothis, thelatest supercomputers al- low the modelling of cosmological volumes with sufficient res- ⋆ Basedonobservations obtainedattheVeryLargeTelescopeoftheEu- olution to study the evolution of these internal baryonic pro- ropean Southern Observatory. Programme IDs: 60.A-9460; 092.B-0538; cessesoflargesamplesofmodelgalaxies(e.g.,Duboisetal.2014; 093.B-0106;094.B-0061;095.B-0035 (cid:13)c 2016TheAuthors 2 C. M. Harrisonet al. Vogelsbergeretal.2014;Schayeetal.2015;Khandaietal.2015). ple and observations, in Section 3 we describe the analyses and The fundamental test of the latest cosmological models and their measured quantities, inSection 4wegive our resultsand discus- assumptions,istosuccessfullyreproducethepropertiesoftheob- sionontherotationalvelocity–M⋆andthe js–M⋆relationshipsand servedgalaxypopulationovercosmictime. inSection5wepresentourmainconclusions.Withthisworkwe Inthisstudywefocusonstudyingspecificangularmomentum releaseacatalogueofobservedandderivedquantitiesthatisavail- (js;i.e.,theangular momentumdivided bystellarmass, M⋆)that able in electronic format (see Appendix A). Throughout, we as- hasbeenproposedasoneofthemostfundamentalpropertiestode- sumeaChabrierIMF(Chabrier2003),quoteallmagnitudesasAB scribeagalaxy(e.g.,Fall1983;Obreschkow&Glazebrook2014). magnitudesandassumethatH0=70kms−1Mpc−1,W M=0.3and Correctlymodellinghowangularmomentumtransfersbetweenthe W L =0.7;inthiscosmology,1arcseccorrespondsto8kpcatz=1. haloandthehostgalaxyisfundamentalforgalaxyformationmod- Unlessotherwisestated,theupperandlowerboundsprovidedwith els to be successful, with early models having significant angu- quotedmedianmeasurementscorrespondtothe16thand84thper- larmomentumloss(e.g.,Navarroetal.1995;Navarro&Steinmetz centilesofthedistribution. 1997). Sufficient numerical resolution and realisticfeedback pre- scriptions are required to correctly reproduce galaxy sizes, ro- tation curves, mass-to-light ratios and hence the observed js– 2 SURVEYDESCRIPTION,SAMPLESELECTIONAND M⋆ relationship through the correct re-distribution of the angu- OBSERVATIONS lar momentum (e.g., White&Frenk 1991; Navarro&Steinmetz KROSSisdesignedtostudythegaskinematicsofastatisticallysig- 1997; Ekeetal. 2000; Weiletal. 1998; Thacker&Couchman 2001;Governatoetal.2007;Agertzetal.2011;Brooketal.2012; nificantsampleoftypicalz≈1star-forminggalaxiesusingKMOS data.Thefulldetailsofthesampleselection,theobservationsand Scannapiecoetal.2012;Crainetal.2015;Geneletal.2015). thedatareductionareprovidedinStottetal.(2016);however,we Furthermore, the distribution of angular momentum may be give an overview here in thefollowing sub-sections. Wealso de- fundamental in determining a galaxy’s morphology. For exam- scribethefinalsampleselectionusedforthisstudy. ple, the relative prominence of the bulge relative to the disk of galaxies (i.e., the morphology), for a fixed mass, appears to be a function of the specific angular momentum for local 2.1 TheKROSSsurveyandsampleselection galaxies (e.g., Sandageetal. 1970; Bertola&Capaccioli 1975; Fall1983; Romanowsky&Fall2012;Obreschkow&Glazebrook KROSS is an IFS survey of 795 z=0.6–1.0 typical star-forming 2014;Corteseetal.2016).Thespecificangularmomentumoflocal galaxies designed to spatially-resolve the Ha emission-line kine- ellipticalsisafactorof≈3–7lessthanspiralgalaxiesofequalmass matics. The targets were selected from four extragalactic deep (Romanowsky&Fall 2012; Fall&Romanowsky 2013). There- fields that are covered by a wide range of archival multi- fore, the angular momentum distribution may be fundamental wavelength photometric and spectroscopic data: (1) Extended in the formation of the Hubble sequence of galaxy morpholo- Chandra Deep Field South (E-CDFS; see Giacconietal. 2001; gies (e.g., Romanowsky&Fall 2012; Obreschkow&Glazebrook Lehmeretal. 2005); (2) Cosmological Evolution Survey (COS- 2014). Indeed, models have shown that very different morpholo- MOS; see Scovilleetal. 2007); (3) UKIDSS Ultra-Deep Sur- gies can be produced using the same initial conditions but with vey (UDS; see Lawrenceetal. 2007) and (4) SA22 field (see a different redistribution of angular momentum due to different Steideletal.1998 andreferences there-in). Most targetswerese- feedbackprescriptions(e.g.,Zavalaetal.2008;Scannapiecoetal. lected using new or archival spectroscopic redshifts; however, 2008,2012).Placingobservational constraintsonthespecifican- ≈25percent of the sample were selected as z = 0.84 narrow- gular momentum over a large range of cosmic epochs is there- band Ha emitters from the HiZELS and CF-HiZELS surveys fore fundamental for constraining galaxy formation models and (Sobraletal. 2013a; Sobraletal. 2015). Targets were selected so understanding the formation of galaxies of different morpholo- thattheHa emissionlineisredshiftedintotheJ-band,withahigher gies. However, whilst js measurements have been made for local priority given to targets where the wavelength range of the red- galaxiesandarewellconstrained,onlyafewattemptsto-datehave shiftedemissionlineisfreeofbrightskylines.Themedianredshift been made tomake similar measurements of high-redshift galax- ofthesampleisz=0.85+0.11.Thedetailsoftheredshiftcatalogues −0.04 ies(z&0.5;e.g., FörsterSchreiberetal. 2006; Continietal.2016; usedforselectionareprovidedinStottetal.(2016). Burkertetal. 2016; Swinbank et al. 2017) an epoch where angu- Inadditiontotheredshiftcriteria,thetargetswereprioritised larmomentumre-distributionmaybecrucialforgalaxyformation iftheyhaveobservedmagnitudesofKAB<22.5,correspondingto (e.g.,Danovichetal.2015;Lagosetal.2016). a stellar mass limit of approximately log(M⋆[M⊙])&9.5 (see be- In this paper we investigate specific angular momentum low)andtheyhavea‘blue’colourofr−z<1.5(seeFigure1).The of high-redshift galaxies using the KMOS Redshift One Spec- r−zcolour cut reduces thechance of observing passive galaxies troscopic Survey (KROSS; Stottetal. 2016), This survey con- and, potentially, very dusty star-forming galaxies for which it is sists of ≈600 Ha detected typical star-forming galaxies. Such challengingtoobtainhighsignal-to-noiseHa observations.How- a large survey has only become possible in recent years thanks ever, we show how our final sample represents typical z≈1 star- to the commissioning of KMOS (K-band Multi Object Spectro- forminggalaxiesinSection2.3. graph; Sharplesetal. 2004, 2013). This instrument that is com- posed of 24 individual near-infrared integral field units (IFU) 2.2 Stellarmasses has made it possible to map the rest-frame optical emission-line kinematics of large samples of z≈0.5–3.5 galaxies (Sobraletal. The KROSS targets are located in extragalactic deep fields with 2013b; Wisnioskietal. 2015; Harrisonetal. 2016; Stottetal. archivaloptical–infraredphotometricdata.Thereforeitispossible 2016; Masonetal. 2016), an order of magnitude faster than was tomeasureopticalmagnitudesandestimatestellarmasses(seede- possiblewithsurveysusingindividualnear-infraredIFUs. tails in Stottetal. 2016). For this work, we avoid using individ- InSection2wedescribetheKROSSsurvey,thegalaxysam- ual stellar mass estimates from the spectral energy distributions MNRAS000,1–19(2016) KROSS:angularmomentumofz≈0.9 galaxies 3 M -19.5 H-22.0 -24.5 33..00 22..55 Parent sample RUHaensr euosnlvodelevdtee vdcC tv e(cQd ( Q1(Q/3Q5/Q2) )[4 2[)71 [0%9%%]]] -1s] H[58a 6 ]detected RUAGensrNeo/slIvorerlevdeg vduC lav (CrQ (1Q/Q3/2Q)4) 22..00 erg 1042 22.9-1Myr]O • 11..55 bs) [ L*Ha ate [ r-z 11..00 sity (o 1041 2.3 mation r 00..55 mino 0.1 L*Ha ar for 00..00 u st l --00..55 aH 1040 0.2 1199 2200 2211 2222 2233 2244 10 9 10 10 10 11 K stellar mass [M ] AB O • Figure1.Left:Ther−zcolourversusobservedKABmagnitudefortheparentKROSSsample.Thesquaresymbolsrepresentthe586Ha detectedsourcesused fordynamicalanalysesinthiswork;withgreensymbolsrepresentingsourceswhichhavespatially-resolvedvelocitymeasurements(dark/lightcorresponds to quality 1/quality 2 [Q1/Q2]; see Section 3.4)and grey symbols representing sources that have spatially-unresolved velocity measurements (dark/light correspondstoquality3/quality4[Q3/Q4]).Thedashedlinesshowtheselectioncriteriaforthehighestprioritytargets.Right:ObservedHa luminosityversus stellarmass(scaledfromMH;topaxis;Section2.2)fortheHa detectedtargets.Thesymbolsarecolouredasintheleftpanel.Systematicerrorbarsareshown inthebottomright.Thesolidlineshowsthe“mainsequence”ofstarforminggalaxiesatz=0.85(Speagleetal.2014;seeSection2.3)andthegreydashedlines areafactoroffiveaboveandbelowthis.Thedottedlinesshow0.1×and1×L⋆Ha forthisredshift(Sobraletal.2015).Thetargetshaveamedianstar-formation rateof7M⊙yr−1andarerepresentativeoftypicalstar-forminggalaxies. (SEDs)duetothevarying qualitydataacross thefour fields.For mass range of this sample is log(M⋆[M⊙])=8.7–11.0, with a me- consistency we use interpolated absolute rest-frame H-band AB dianoflog(M⋆[M⊙])=10.0−+00..44.ThemedianobservedHa luminos- tmo-algignhittudraetsio(M(¡HH)=and0.c2o)nfvoelrlotwtoinsgtelMla⋆r=ma¡sHse×sw10it−h0a.4×fi(xMedH−m4.a7s1s)-. aittyzi≈sl1og(S(LobHraa[leergtsa−l.12])0=1451)..15−+O00v..33e,rawllh7ic9hpecrocrreenstpoofntdhsetsoam≈p0l.e6hLa⋆Hvae Thismass-to-lightratioisthemedianvalueforthesamplederived luminositiesbetween0.1L⋆Ha andL⋆Ha (seeFigure1).Themedian usingtheHYPERZSED-fittingcode(Bolzonellaetal.2000)witha Ha derivedstar-formationrateofoursampleis7+7M yr−1,fol- suiteofspectraltemplatesfromBruzual&Charlot(2003)andthe −4 ⊙ lowingKennicutt(1998)correctedtoaChabrierinitialmassfunc- U-bandtoIRAC4.5µmphotometry.Theinner68percentrangeis 0.3dexaroundthemedianmass-to-lightratiowhichwetaketobe tionandassuminganextinctionof AHa =1.73(themedianfrom our SED fitting, following Wuytsetal. 2013 to convert between thesystematicuncertaintyonthestellarmasses(seeFigure1).Our stellarand gasextinction; seeStottetal.2016).Themedian star- targetsaredominatedbybluegalaxies(Figure1)thatarelikelyto formation rate of our Ha detected sample is consistent with the havesimilarmass-to-lightratios;however,theimplicationsonour averagestar-formationandscatterof“mainsequence”galaxiesfor angular momentum versus galaxy morphology results of the po- themedianmassandmedianredshift(z=0.85)ofourtargetsfrom tentiallysystematicdifferentmass-to-lightratiosforredderversus various works; e.g., SFR =5+5 M yr−1 from Schreiberetal. bluergalaxiesisdiscussedinSection4.4. MS −2.5 ⊙ (2015)orSFR =8+5M yr−1 fromSpeagleetal.(2014),where MS −3 ⊙ wehaveconvertedtoaChabrierIMFinbothcases(seeFigure1). Forthefollowinganalyses ofthispaper weonly discussthe 2.3 Arepresentativesampleofstar-forminggalaxies ≈80percentofthefinalsamplethatareHa detectedsources.How- ever,basedontheabove,weconcludethatthestar-formationrates Forthisworkweapplyadditionalcutstotheoriginalsamplepre- of this sample are representative of the “main sequence” of star- sentedinStottetal.(2016).Firstlyweremove19sourcesforwhich forminggalaxiesandthesesourcescanbeconsideredtobetypical therewerepointingerrorswiththeIFUssuchthattheyhaveunreli- star-forminggalaxiesatthisredshift(alsoseeStottetal.2016and ablekinematicmeasurements.Secondly,weconsidertheobserved Magdisetal.2016). magnitude range of 19 <KAB <24.5 and remove any sources whichhavephotometrythatisflaggedasunreliableinr,zorK . AB Thisleavesafinalsampleof743targets(93percentoftheorigi- 2.4 KMOSobservations nalsample).Overall552(74percent)ofthefinalsamplelieinthe highpriorityselectioncriteriaofr−z<1.5andKAB<22.5(see TheKROSSobservationsweretakenusingtheKMOSinstrument Figure 1). As expected, the Ha detection rate is higher for these onESO/VLT.KMOSconsistsof24integralfieldunits(IFUs)that targetswith478(87percent)detectedforthehighpriorityand108 canbe placed withina7.2arcminute diameter field. EachIFUis detected(57percent)forthelowerprioritytargets(seeSection3.2 fordetectioncriteria).Overall586targets(79percent)fromthefi- nalsamplearedetectedinHa (seeSection3.2). 1 Weremovethe22targets identified ashavinganAGNcontribution to In Figure 1 we plot Ha luminosity (see Section 3.2) versus theiremissionlineswhencalculating averageluminosities,star-formation estimatedstellarmassfortheHa detectedtargets.Thefullstellar ratesandmasses(seeSection3.4). MNRAS000,1–19(2016) 4 C. M. Harrisonet al. C-HiZ_z1_195 2 Ha intensity 2 vel. (km s-1) 2 s (km s-1) 100 8800 RT+ O obs ec 1 1 1 1 -1m s) 50 -1-1m s)m s) 6600 arcs -10 QID1:13 --210 --210 -95 0 95 --210 0 40 81 vel. (k -500 ss (k (kobsobs 2424000000 - 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 -10-5 0 5 10 --1100--55 00 55 1100 2 U-zvipe_z 1_1071 2 Ha int ensity 2 vel. (k m s-1) 2 s obs (k m s-1) 112200 DN O arcsec -101 Q2 -101 -101 -101 -1el. (km s) 500 -1-1 (km s) (km s)obsobs 110046846800000000 ID:669 -77 0 77 0 76 152 v -50 ss 2200 -2 -2 -2 -2 00 - 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 -10 -5 0 5 10 --1100 --55 00 55 1100 2 C-zcos_z 1_652 2 Ha int ensity 2 vel. (k m s-1) 2 s obs (k m s-1) 40 5500 DN M arcsec -011 Q1 -101 -101 -101 -1el. (km s) 1230000 -1-1 (km s) (km s)obsobs 234234000000 ID:146 -40 0 40 0 31 62 v -10 ss 1100 -2 -2 -2 -2 -20 00 - 1 0 1 - 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 -10 -5 0 5 10 --1100 --55 00 55 1100 E-zmus_z 1_119 2 Ha int ensity 2 vel. (k m s-1) 2 s obs (k m s-1) 200 115500 RT+ M ec 1 1 1 1 -1m s) 100 -1-1m s)m s) 110000 arcs -10 QID1:183 --210 --210 -200 0 200 --210 0 78 156 vel. (k -1000 ss (k (kobsobs 550000 - 1 0 1 - 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 -10-5 0 5 10 --1100--55 00 55 1100 2 E-zmus_z 1_12 2 Ha int ensity 2 vel. (k m s-1) 2 s obs (k m s-1) 200 115500 RT+ M arcsec -101 Q1 -101 -101 -101 -1el. (km s) -1100000 -1-1 (km s) (km s)obsobs 1100550000 ID:184 -202 0 202 0 68 135 v -200 ss -2 -2 -2 -2 00 - 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 -10-5 0 5 10 --1100--55 00 55 1100 2 E-zmvvd_ z1_67 2 Ha int ensity 2 vel. (k m s-1) 2 s obs (k m s-1) 100 110000 RT+ M arcsec --0121 QID1:316 --2101 --2101 -141 0 141 --2101 0 50 100 -1vel. (km s) --11-555000000 ss-1-1 (km s) (km s)obsobs 246824680000000000 - 1 0 1 - 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 -10 0 10 --1100 00 1100 ec 12 SS-MC1F4H-1IZ6E4 L2S90- 12 Ha int ensity 12 vel. (k m s-1) 12 s obs (k m s-1) -1m s) 50 -1-1m s)m s) 68680000 RT M arcs -10 Q3 -10 -10 -63 0 63 -10 0 43 85 vel. (k -500 (k (kobsobs 24240000 ID:337 ss -2 -2 -2 -2 00 - 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 -10 -5 0 5 10 --1100 --55 00 55 1100 arcsec -1012 SSQ-MC11F4H-8IZ5E7 L9S7- -1012 Ha int ensity -1012 -v15e1l. (k0 m s1-15)1 -1012 s 0obs (k5 0m s1-100) -1vel. (km s) 1-5500000 -1-1 (km s) (km s)obsobs 1100246824680000000000 RT+ M ID:359 -100 ss -2 -2 -2 -2 00 - 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 - 2 - 1 0 1 2 -10 0 10 --1100 00 1100 arcsec arcsec arcsec arcsec r (kpc) rr ((kkppcc)) Figure2.Examplespatially-resolvedgalaxiesfromtheKROSSsample(withexamplesfromeachfieldstudiedandcoveringtherangeindataquality).From lefttoright:(1)broad-bandimage(3-colourwhenavailablefortheHSTcoveredtargets)wherethedashedorangelinerepresentsPAim(IDsandqualityflags arealsoshown);(2)Ha intensitymapwheretheoverlaidcontoursshowthedistributionofcontinuumemissionandthedashedcirclerepresentstheseeing FWHM;(3)observedHa velocity mapwherethesolidblacklinerepresents PAvel andthedashedorangelinerepresents PAim;(4)observedHa velocity dispersionmap(s obs)wherethelinesareasinpanel3;(5)velocityprofilesextractedalongPAvel wherethesolidcurveisthediskmodelandthevertical dashedlinesaretheradiiatwhichtherotationalvelocitiesaremeasured(averageofhorizontaldashedlines);however,forquality3sourcesthevelocitiesare estimatedfromthegalaxy-integratedspectra(e.g.,ID337);(6)observedvelocitydispersionprofileextractedalongPAvelwherethehorizontaldottedlineis ats 0,obs,thedot-dashedlineisats 0.Thesolidhorizontallinesinpanels1and2represent5kpcinextent.Theequivalentfiguresforallspatially-resolved targetsareavailableonline(seeAppendixA). MNRAS000,1–19(2016) KROSS:angularmomentumofz≈0.9 galaxies 5 2.8 × 2.8 arcsec in size with 0.2 arcsec pixels. The observation Corteseetal.(2016)recentlypresentedIFSresultsonthean- weretaken during ESOperiods P92–P95using Guaranteed Time gularmomentumof≈500z<0.1galaxieswithlog(M⋆[M⊙])>8 Observations (Programme IDs: 092.B-0538; 093.B-0106; 094.B- from the SAMI survey (Bryantetal. 2015). Although this sample 0061; 095.B-0035). The sample is also supplemented with sci- is larger than Romanowsky&Fall (2012), their specific angular enceverificationdata(ProgrammeID:60.A-9460;seeSobraletal. momentum measurements are constructed using a very different 2013b; Stottetal. 2014). The median J-band seeing for the ob- method(followingEmsellemetal.2007)andarerestrictedbylim- servationswas0.7arcsec, with92percentof thetargetsobserved itations such as only measuring the angular momentum within a duringseeingthatwas<1arcsec.Theindividualseeingmeasure- small radii of R and removing small galaxies from their sam- 1/2 mentsaretakenintoaccountduringtheanalyses.Allobservations ple.Therefore,forthisstudy,weusetheirsampleforaqualitative weretakenusingtheYJ bandwithatypicalspectralresolutionof comparisononly(Section4.3). R=l /Dl =3400. We correct for the instrumental resolution in the In Section 4.2 we compare our rotation velocity-mass rela- analysespresentedhere.Individualframeshaveexposuretimesof tionshiptotherelationshippresentedfor189z<0.1diskgalaxies 600sandachoptoskywasperformedeverytwoscienceframes. inReyesetal.(2011).TheReyesetal.(2011)sampleisidealasit Mosttargetswereobservedwith9ksonsource,withaminimum alsousesHa emissionasatracerofrotationalvelocityandcovers of1.8ksandamaximumof11.4ks(seeStottetal.2016). thesamestellarmassrangeasoursample(seeTileyetal.2016for The data were reduced using the standard ESOREX/SPARK furtherdiscussiononlow-redshiftsamples). pipeline(Daviesetal.2013).However,eachABpairwasreduced individually, with additional sky subtraction being performed on each pair using residual sky spectra obtained from dedicated sky 3 ANALYSIS IFUs. These AB pairs were flux calibrated using corresponding observationsofstandardstarsthatwereobservedduringthesame In this study we investigate the rotational velocities and specific nightasthesciencedata.TheindividualABpairswerethenstacked angularmomentum(js)ofHa detectedgalaxies.Towardsthiswe using a clipped average and re-sampled onto a pixel scale of 0.1 makemeasurements ofthegalaxy sizes,intrinsicvelocitydisper- arcsec(Stottetal.2016).Thesecubeswereusedtocreatethespec- sions and inclination-corrected rotational velocities. We combine tra,thelineandcontinuum imagesandtheHa intensity, velocity archival high spatial resolution broad-band imaging, which trace and velocity dispersion maps used intheanalyses presented here thestellarlightprofile(Section3.1),withHa velocityandvelocity (seeSection3.2). dispersionmapsderivedfromourKMOSIFUdata,whichtracethe galaxykinematics(Section3.2).Theseanalysesbuildupontheini- tialkinematicanalysesoftheKROSSdata,whichdoesnotinclude the broad-band imaging analyses, presented in Stottetal. (2016) 2.5 Comparisonsamples whoinvestigateddiskpropertiesandgasanddarkmattermassfrac- For our specific angular momentum measurements, we fo- tions and in Tileyetal. (2016) who investigated the Tully-Fisher cus on a comparison to the local galaxy sample presented in relationship.Forallofthe586Ha detectedtargetstherawandde- Romanowsky&Fall(2012)(seeSection4.3).Thiscomprehensive rivedquantities,alongwithallofthenecessaryflagsdescribedin study contains kinematic measurements (primarily from longslit thefollowingsubsections,aretabulatedinelectronicformat(see data) for ≈100 nearby bright galaxies including a range of mor- AppendixA). phologiesfromearly-typegalaxiestodisk-dominatedspiralgalax- ies. They calibrate global relationships between observed veloci- 3.1 Broad-bandimagingandalignmentofdatacubes ties,radiiandintrinsicspecificangularmomentum.Therefore,we usethisstudytoguideouranalysistechniques,usingvelocitiesob- Tomake measurements of thehalf-light radii (R ),morpholog- 1/2 tained at the same physical radii as in their study (i.e., 2×R ) ical axes(PA ) and inclination angles (q ) wemake use of the 1/2 im im andthesameglobalrelationshipstoestimatespecificangularmo- highest spatial resolutionbroad-band imaging available. Withthe mentum using velocity, inclination angle and radii measurements aimof obtaining the best characterisation of thestellar light pro- (seeSection3).Whenquotingz=0diskangularmomentumweuse file for each target we prefer to use near infrared H- or K- band the raw values of disk radii, velocity and inclination angle pro- images; however, we use optical images obtained using HST in vided by Romanowsky&Fall (2012) for the spiral galaxies and preference to ground-based near infrared images, when applica- apply consistent methods to that adopted for our sample (Sec- ble, due to the &5× better spatial resolution. Overall 46percent tion4.3).Intheabsenceofanalternative,weusetheangularmo- ofthesamplehaveHSTcoverage,whilsttheremainderarecovered mentummeasurementsfortheearly-typegalaxiesdirectlyquoted byhigh-qualityground-basedobservations(detailsbelow).Weper- by Romanowsky&Fall (2012). We apply the colour-dependant formvariousteststoassessthereliabilityofourmeasurementsob- correctionstotheRomanowsky&Fall(2012)totalstellarmasses tainedusingthesedifferentdatasets.Exampleimagesofourtargets using(B−V)0coloursfromPatureletal.(2003)andEquation1of areshowninFigure2. Fall&Romanowsky(2013).2Wenotethatourdatatracesangular momentumusingHa emissionwhichmayresultin≈0.1dexlarger 3.1.1 Broad-bandimages angularmomentumcomparedtostellarangularmomentum,based onlow-redshiftmeasurements(e.g.,Corteseetal.2014,2016).We All of our targets in E-CDFS and COSMOS, and a subset of discussthisfurtherinSection4.3. the targets in UDS have been observed with HST observations. These data come from four separate surveys (1) CANDELS (Groginetal. 2011; Koekemoeretal. 2011); (2) ACS COSMOS 2 Wenotethat13oftheRomanowsky&Fall(2012)sampledonothave (Leauthaudetal.2007);(3)GEMS(Rixetal.2004)and(4)obser- (B−V)0 colours in Patureletal. (2003) and therefore we remove these vationsunderHSTproposalID9075(seeAmanullahetal.2010). sourcesfromthesample. Overall, WFC3-H-band observations are available for 36percent MNRAS000,1–19(2016) 6 C. M. Harrisonet al. of the HST observed targets (CANDELS fields) with a PSF of FWHM≈0.2arcsec. For the remainder, we use the longest wave- Ha detected [586] lengthdataavailable,thatis,ACS-Ifor57percentandACS-z′for 111555000 R measured (no upper limits) [94%] 1/2 7percent,whichhaveaPSFofFWHM≈0.1arcsec. Duetothedifferentrest-framewavelengthsbeingobservedfor thedifferentsetsofimageswetestforsystematiceffects.Wemea- surethekeypropertiesof R1/2,q im andPAim (seeSection3.1.2) berber 111000000 usingboththeH-bandandI-bandimagesforthe128targetswhere mm thesearebothavailable.Wefindthatthemedianratiosandstandard uu nn deviation between the two measurements to be: R /R = 1/2,I 1/2,H 1.1±0.2;q im,I/q im,H=1.0±0.2andPAim,I/PAim,H=1.0±0.1. 555000 This test indicates that our position angle and inclination an- glemeasurements arenot systematically affectedby thedifferent bands.However,theobservedI-bandsizesmeasurementsaresys- 000 tematically higher than the observed H-band size measurements 000 222 444 666 888 111000 by ≈10percent. This isconsistent withthe HST-based resultsof hhaallff--lliigghhtt rraaddiiii [[kkppcc]] vanderWeletal. (2014) (using their Equation 1) who find that z≈0.9,log(M⋆[M⊙])=10galaxiesareafactorof≈1.2±0.2larger Figure3.Distributionofcontinuumhalf-lightradii,includingupperlimits, intheobservedI-bandcomparedtointheobservedH-band,where fortheHa detected targets.Thedistributionforthe94percentoftargets the quoted range covers the results for the stellar mass range withmeasuredradii(i.e.,excludingupperlimits)isshownastheoverlaid log(M⋆[M⊙])=9–11.Weapplya10percentcorrectiontoaccount filledgreenhistogram.Themajorityofourgalaxieshavespatially-resolved forthiseffectinSection3.1.2. radiimeasurements. For the UDS targets, which are not covered by HST ob- servations, we make use of Data Release 8 K-band observa- targetsareHa detectedtargetsthatarespatially-resolvedintheIFU tions taken with the UKIRT telescope as part of the UKIDSS data(Section3.2)andhaveinclinationanglesandpositionangles survey (Lawrenceetal. 2007). The stacked image has a PSF of measureddirectlyfromthebroad-bandimaging(detailedbelow). FWHM=0.65arcsec. Finally, for the SA22 targets we make use Toobtainmorphological positionangles(PA ) andaxisra- oftheK-bandimagingfromtheUKIDSSDeepExtragalacticSur- im tiosofourtargetsweinitiallyfitthebroad-bandimageswithatwo- veyofthisfield(Lawrenceetal.2007).Theseimageshaveatypi- dimensionalGaussianmodel.Toobtaininclinationangles(q )we calPSFofFWHM=0.85arcsec.Wedeconvolvedthesizemeasure- im correct the axis ratios (b/a) for the PSF of each image and then mentstoaccountfortheseeingineachfield(Section3.1.2). converttheseintoinclinationanglesbyassuming, To assess the impact of the poorer spatial resolution of the ground based images compared to the HST images we con- (b/a)2−q2 volve the HST H-band images from our sample to a Gaus- cos2q im= 1−q2 0, (1) 0 sian PSF of: (1) FWHM=0.65arcsec (i.e., the UDS PSF) and where q is the intrinsic axial ratio of an edge-on galaxy (e.g., (2) FWHM=0.85arcsec (i.e., the SA22 PSF), before making 0 Tully&Fisher1977)andcouldhaveawiderangeofvalues≈0.1– the measurements of radius, positional angle and inclination an- 0.65(e.g.,Weijmansetal.2014;seediscussioninLawetal.2012). gle (described below). On average, position angles are unaf- fected by the convolution in both cases, with a median ratio of Weuseq0=0.2,whichisapplicableforthickdisks;however,asa PAim,conv/PAim,HST =1.0; however an introduced 1s scatter of guide,afactoroftwochangeinq0resultsina<7percentchange intheinclination-correctedvelocitiesforourmedianaxisratio.To 10percentand20percentfortheUDSPSFandSA22PSF,respec- beveryconservativeinouruncertaintiesarisingfromtheassumed tively.Similarlytheinclinationanglesareunaffected,onaverage, by the convolution, with q im,conv/q im,HST =1.0, but with an in- intrinsicgeometrywesettheuncertaintiesoftheinclinationangles troduced1s scatterof15percentand20percent,respectively.We tobeaminimumof20%. We compared our morphological position angles and in- includethesepercentagescattersasuncertaintiesonthemeasured clination angles to those presented in vanderWeletal. (2012)3 inclination angles from the ground based images. Following the for the 142 targets that overlap with the parent KROSS sam- methodsdescribedinSection3.1.2wefindasmallsystematicfrac- ple (see Section 2.3). vanderWeletal. (2012) fit Sérsic models tional increase the measured half-light radii after the convolution of5%; however, thisisnegligiblecompared totheintroduced 1s to the HST near-infrared images using GALFIT that incorporates PSF modelling. Excluding the 4 targets flagged as poor fits by scatterof25percentand35percent.Weincludethesepercentage vanderWeletal.(2012),wefindexcellentagreementbetweenthe scattersasuncertainties onthemeasuredhalf-light radiifromthe groundbasedimages. GALFIT results and those derived using our method. The median differenceintheinclinationanglesareDq im=0.4+−53degrees.For thepositionanglesthemediandifferenceis|D PAim|=1.8degrees 3.1.2 Positionangles,inclinationanglesandsizes with84percentagreeingwithin6degrees.Thisdemonstratesthat therearenosystematicdifferencesbetweenthetwomethods. We Weaimtoapplyauniformanalysisacrossalltargetsirrespectiveof alsocomparedourinclinationanglesfor152ofourCOSMOStar- thevarying spatialresolutionof thesupporting broad-band imag- getswithI-bandimagestothosederivedusingtheaxisratiospre- ing.However,weareabletomakeuseofmorecomplexanalyseson sentedinTascaetal.(2009)forthesamesources.Again,wefind theHST-CANDELSsubsetoftargetsforabaselineforcomparison (vanderWeletal. 2012). Furthermore, we define various quality flags,detailedbelow,tokeeptrackofthequalityandassumptions 3 WeconverttheaxisratiospresentedinvanderWeletal.(2012)toincli- oftheanaylsesthatwereappliedforindividualtargets.“Quality1” nationanglesfollowingEquation1. MNRAS000,1–19(2016) KROSS:angularmomentumofz≈0.9 galaxies 7 excellent agreement with Dq im =−0.4+−74degrees. We also note 3.1.3 Datacubealignment that wefindgood agreement between themorphological position ToalignourKMOSdatacubestothebroad-bandimagingwemade anglesandkinematicpositionanglesforboththeHSTtargetsand use of continuum measurements in the data cubes. We produced ground-based targets (see Section 3.3.2), which provides further continuum images by taking a median in the spectral direction, confidenceonourderivedvalues.Motivatedbythesmallscatterof avoiding spectral pixels in the vicinity of emission lines and ap- theabovecomparisons,weenforceanadditionalerrorof5oonall plying2-s clipping,toavoidregionswithstrongskylineresiduals. oftheinclinationanglemeasurements.Thegroundbasedmeasure- Weidentifythecontinuumcentroidsfor85percentoftheHa de- mentshaveanadditionaluncertaintyof15percentand20percent tectedtargets. Duetofaint continuum emissionfor 15percent of respectively for UDS and SA22 due to the effects of the poorer the targets we were required to obtain centroids from images in- resolutionforthesetargets(seedetailsinSection3.1.1). cludingthecontinuumandemissionlines.Examplesofcontinuum For7percentoftheHa detectedtargetsweareunabletomea- imagesareshownascontoursinFigure2.Thesecontinuumcentres werethenusedtoalignthedatacubestothecentresofthearchival suretheinclinationanglesfromtheimagingduetopoorspatialres- broad-bandimages. olution.Forthesesourcesweassumethemedianaxisratioofthe targetswithspatially-resolved HST images (b/a)=0.62+0.20 (i.e., −0.22 q im=53+−1178degrees). This median axis ratio is in agreement with 3.2 Emissionlinefittingandmaps theresultsof Lawetal. (2012) whouse therest-frameHSTopti- Inthissub-sectionwedescribethevariouskinematicmeasurements cal images for z≈1.5–3.6 star-forming galaxies and find a peak wemakeusingourIFUdata.Theseincludebothgalaxy-integrated axis ratioof (b/a)≈0.6. Thisassumed inclination value for these 7percentofourHa detectedtargetsresultsinacorrectionfactor and spatially-resolved measurements (e.g., rotation velocities, in- of1.2+0.5 totheobserved velocities.Thesetargetsareflaggedas trinsicvelocitydispersionsandkinematicmajoraxes).Weproduce −0.2 both galaxy-integrated spectra and two dimensional intensity, ve- “quality2”sources. locityandvelocitydispersionmaps.Inthefollowingsub-sections wedescribehowwefittheHa and[NII]6548,6583emission-line Tomeasurethehalf-light radiiofthebroad-band imageswe profiles, produce the spectra and maps and make the kinematic adoptedanon-parametricapproach.Wemeasuredthefluxesinin- measurements. Example maps are shown in Figure 2 and all ve- creasinglylargeellipticalaperturescentredonthecontinuumcen- locitymapsfor the552 targetsthatarespatially-resolvedsources tresthathavepositionanglesandaxisratiosasderivedabove.We intheIFUdataareshowninFigure4. measureR asthePSF-deconvolvedsemi-majoraxisoftheaper- 1/2 ture which contained half of the total flux. For the targets where the images are in the I or z′ band we apply a systematic correc- 3.2.1 Emissionlinefitting tion of a factor of 1.1 to account for the colour gradients (see Section 3.1.1). To test our technique, we compared to the GAL- WefittheHa and[NII]6548,6583emission-lineprofilesobserved FITSérsicfitstothesameHSTdataofvanderWeletal.(2012)for in both galaxy-integrated spectra and spectra extracted from spa- thetargetscoveredbybothstudies.Wefindthatthemedianoffset tialbinstoderiveemission-line fluxes,linewidthsand centroids. betweenthetwomeasurementstobeD R /R =−0.01 Thesefitswereperformedusingac 2minimisationmethod,where 1/2 1/2,GALFIT witha30percent1s scatter.Reassuringlywealsodidnotseeany we weighted against the wavelengths of the brightest sky lines trend intheoffset between these toomeasurements asafunction (Rousselotetal. 2000). The emission-line profiles were charac- of magnitude. This indicates that the two methods are in general terisedassingleGaussian components withalinear local contin- agreement; however, we assume a minimum error of 30percent uum. The continuum regions were defined to be two small line- (due to the method) on all of our half-light radii measurements. freewavelength regionseach sideof theemission linesbeing fit- Thegroundbasedmeasurementshaveanadditionaluncertaintyof ted.Toreducethedegeneracybetweenparameters,wecouplethe 25percentand35percentrespectivelyforUDSandSA22dueto [NII]6548,6583doubletandHa emission-lineprofileswithafixed theeffectsofthepoorerspatialresolutionofthebroad-bandimag- wavelengthseparationusingtherest-framevacuumwavelengthsof ingforthesetargets(seedetailsinSection3.1.1). 6549.86Å,6564.61Å and6585.27Å.Wealsorequirethatallthree emissionlineshavethesamelinewidthandwefixthefluxratioof For84oftheHa detectedtargetswewereunabletousethe the[N II]doublet tobe3.06(Osterbrock&Ferland2006).These imagingtodetermineR fromthebroad-bandimaging;however, constraints leave the intensity of the Ha and the [N II] doublet 1/2 wewereabletousetheturn-overradiusfromthedynamicalmodels freetovary,alongwiththeoverallcentroid,linewidthandcontin- toestimateR ,calibratedusingtheimagingradiifortheresolved uum. The emission-line widthsare corrected for the instrumental 1/2 sources(seeSection3.3.3).Wehighlightthesesourcesas“quality dispersion, which ismeasured fromunblended sky linesnear the 2”sources(seeFigure1).Forafurther33targets(only6percent observedwavelengthoftheHa emission. oftheHa detectedtargets),wherewewerenotabletoextractradii fromtheIFUdataorthebroadbandimaging,weassumeconser- 3.2.2 Galaxy-integratedspectraandvelocitymaps vativeupperlimitsonthehalf-lightradiiof1.8×s PSF. Galaxy-integratedspectrawerecreatedfromthecubesbysumming Ahistogramofthehalf-lightradiiforthe586Ha detectedtar- thespectrafromthespatialpixelsthat fallwithinacircularaper- getsisshowninFigure3.Themedianhalf-lightradiiis2.9+1.8kpc tureofdiameter1.2arcseccenteredonthecontinuumcentroid.We −1.5 (excludingupperlimits).Includingtheupperlimittargetswithzero thenfittheHa and[NII]emission-lineprofilesusingthemethods radiiortheirmaximumpossibleradii,resultsinamedianof2.7kpc describedabovetoderive:(1)the“systemic”redshiftofeachtar- or2.8kpc,respectively.Themedianhalf-lightradiifortheHa un- get;(2)theobservedvelocitydispersions tot and(3)theHa flux. detectedtargetsis2.7+1.5kpcandtherefore,thesearenotsignifi- Sourceswereclassedasdetectedifthesignal-to-noiseratio,aver- −1.1 cantlydifferentinsizetothosethatweredetected. agedover2×thederivedvelocityFWHMoftheHa line,exceeded MNRAS000,1–19(2016) 8 C. M. Harrisonet al. KROSS ] 1 (z~1) - r y O • M [ e t 10 a r n o i t a m r o f r a 1 t s 9 10 11 10 10 10 stellar mass [M ] O • Figure4.Velocitymapsforallofour552spatially-resolved targets.Eachmapispositionedatthecorrespondingpositioninthestar-formationrateversus stellarmassplaneasdescribedbytheaxes.Thesolidlineshowsthe“mainsequence”ofstar-forminggalaxiesatz=0.85fromSpeagleetal.(2014)andthe dashedlinesareafactoroffiveaboveandbelowthis.Theverticaldottedlinecorrespondstoourselectioncriteriaforhighprioritytargets(seeFigure1and Section2.1).Thehorizontaldottedlinerepresentsthe5thpercentileofthestar-formationratesofthespatially-resolvedtargets. three. The emission-line profiles and the fits for all 586 targets wasmet(uptoamaximumspatialof0.7×0.7arcsec;i.e.,thetyp- areavailableonline(seeAppendixA).The1.2arcsecaperturewas icalseeingoftheobservations).Forthiswork,thesemapsarefur- chosenasacompromisebetweenmaximisingthefluxandsignal- ther masked by visual inspection, identifying clearly bad fitsdue to-noiseratios.Weestimatetwomethodsforanaperturecorrection toskylinesordefects.Overall552(94percent)oftheHa detected to themeasured fluxes and hence to obtain galaxy-integrated Ha sourcesshowspatially-resolvedemission(seeStottetal.2016).We luminosities.First,weusetheHa fluxes(i.e.,with[NII]removed) assignalloftheunresolvedsourcesaflagof“quality4”.Example presented inSobraletal. (2013a) for theHiZELSsourcesfor the Ha intensity,velocityandvelocitydispersionmapsareprovidedin 112 of our Ha detected targetsthat overlap between the surveys. Figure2andallvelocitymapsareshowninastar-formationrate We obtain a median aperture correction of 1.7. Secondly, we re- versusstellarmassplaneinFigure4. measurethefluxesagainfromourIFUdatabutusinganaperture withadiameterof2.4arcsec.Usingthesourceswhicharedetected in both apertures we obtain a median aperture correction of 1.3. Within the uncertainties we did not find a significant correlation betweenaperturecorrectionandgalaxysize.Therefore,weapply afixedaperturecorrectionfactorof1.5tothemeasuredHa fluxes 3.3 Spatially-resolvedkinematicmeasurements anda30percenterrortoreflecttheuncertaintyonthisvalue. 3.3.1 Kinematicmajoraxes TheHa intensity,velocityandvelocitydispersionmapswere To identify the kinematic major axes for all of the targets in our firstproducedbyStottetal.(2016).Thesewerecreatedbyfitting dynamical sample we make use of the Ha velocity maps. We theHa and[NII]emissionlinesateachpixelfollowingtheproce- rotated the velocity maps around the continuum centroids (see duredescribedaboveandthenindividualvelocitiesarecalculated Section 3.1.3) in 1degree steps, extracting the velocity profile in withrespecttothegalaxy-integrated‘systemic’redshifts.Ifanin- 1.5arcsecwidth“slits”andcalculatingthemaximumvelocitygra- dividualpixeldidnotresultinadetectedlinewithasignal-to-noise dient along the slit. The position angle with the greatest velocity ratio of >5, the spatial binning was performed until this criteria gradientwasidentifiedasbeingthemajorkinematicaxis(PAvel). MNRAS000,1–19(2016) KROSS:angularmomentumofz≈0.9 galaxies 9 intheformof, 100 vvIrCCre//ssg00u><l11ar Quality 1 im=q v(r)2= r2p Gµ0(I0K0−I1K1)+voff, (3) 2 RD 80 5 g] o whereristheradialdistance,µ isthepeakmasssurfacedensity, e 0 ) [d 60 RBDessiselthfuendcitsioknrsadeivia,lvuoaftfeidsathte0.v5erl/oRcDity. Daturrin=g0thaenfidttIinnKgnwaereatlhsoe y (el allowtheradialcentretovaryby0.2arcsec(i.e.,theKMOSpixel m,v 40 scale). Thevelocity offset, voff,isapplied tothevelocity profiles Ai beforemakingmeasurementsofdynamicalvelocities. P Theprimaryfunctionofthemodelvelocityprofilesistoex- 20 D tractvelocitiesbyinterpolatingthroughthedatapointsandnotto derivephysicalquantities;however,in13%ofthecaseswearere- 0 quiredtoextrapolatethemodelbeyondthedata(seebelow).Focus- ingonthe“quality1”sourceswithHSTimages(i.e.,thosewiththe 0.0 0.2 0.4 0.6 0.8 bestconstraintsonthehalf-lightradiifromthebroad-band imag- image axis ratio ing), we derive a median ratio of R /R =0.8+0.5. This is con- 1/2 D −0.4 Figure5.Thedifferencebetweenthephotometricandkinematicposition sistentwithourpredictionsforanintrinsicratioofR1/2/RD=1.68 angles(Y )asafunctionofbroad-bandimageaxisratio.Thelargersymbols thathasbeenbeam-smearedduringour≈0.7′′KMOSobservations represent sources covered by broad-band HST imaging. The largest data (Johnsonetal.inprep.;seedetailsbelow).Weapplythismedian points with the error bars show the running median for the rotationally- ratiotothederivedR valuestoestimatethehalf-lightradiiforthe D dominatedsystemsandthethincurveshowstherunning84thpercentile. “quality2”sourcesthatdonothavespatially-resolvedbroad-band Fortherotationally-dominatedsourcesthemedianmisalignmentif13◦.The imagingdataandhencethatlackdirectR measurements(Sec- 1/2 good agreement between the positional angles observed for targets both tion 3.1.1). Due to the uncertainty in this estimate we impose an withandwithoutHSTimagingplacesconfidenceonourmeasurements(see uncertaintyof60percent.Wenotethatweobtainconsistentveloc- Section3.3.2). itymeasurements (seebelow)ifweapplythecommonly adopted arctan model (Courteau 1997; adopted for KROSS in Stottetal. 3.3.2 Morphologicalversuskinematicmajoraxes 2016) instead of the exponential disk model, with a median per- Herewe compare the derived kinematics major axes, PA , with centagedifferenceof(vC,arctan−vC,disk)/vC,disk=0.5+−93percent. vel Forconsistencyandtofacilitateafaircomparisontoourlow- themorphologicalpositionalangles,PA forourtargets.Follow- im redshiftcomparisonsamples(seeSection2.5)wemakemeasure- ing Wisnioskietal. (2015) (c.f. Franxetal. 1991) we define the mentsoftherotationalvelocitiesatthesamephysicalradiiforall “misalignment”betweenthetwopositionanglesas, targets.Wemake measurements at twodifferent radii of 1.3R 1/2 sinY =|sin(PAim−PAvel)|, (2) and2R1/2.Thesecorrespondto≈2.2RDand≈3.4RD,respectively, foranexponentialdisk.Thefirstofthese,wecallv ,iscommonly 2.2 whereY isdefinedasbeingbetween0◦ and 90◦.InFigure5we adoptedintheliteratureasitmeasuresthevelocityatthe“peak”of show Y as a function of image axis ratio for the sources where therotationcurveforanexponentialdisk(e.g.,Milleretal.2011; we have measured the kinematic position angles, morphological Pellicciaetal.2016)andweincludethesevaluesforreferencefor position angles and axis ratios (i.e., “quality 1” sources). As ex- interestedparties.Thesecondofthese,whichwecallv ,wascho- C pected, thedispersion-dominated systemswithalow rotationve- senforuseinourangularmomentummeasurementasitwasshown locity,vC,tointrinsicvelocitydispersion,s 0,ratio(i.e.,vC/s 0<1; byRomanowsky&Fall(2012)(ourmaincomparisonsample;Sec- seeSection4.1)havelargermisalignmentsduetoalackofawell tion2.5)tobeareliablerotationalvelocitymeasurement acrossa definedkinematicaxis.Fortherotationally-dominatedsources,the wide range of galaxy morphologies. Furthermore, reaching large median misalignment is13◦ and 81percent have a misalignment radii of &3RD can be crucial for measuring the majority of the of .30◦. These values are comparable to those found by using total angular momentum (e.g., Obreschkowetal. 2015). We note IFU data for high-z galaxies, all withcomplementary HST imag- that this measurement also roughly corresponds to another com- ing(Wisnioskietal.2015;Continietal.2016).Encouragingly,our monly adopted value, v , which is the velocity measured at a 80 misalignment results are similar when only considering our tar- radiicontaining80percentofthelightforanexponentialdisk(i.e. getswithoutHSTimaging,withamedianmisalignmentof15◦and at3.03RD;e.g.,Pizagnoetal.2007;Reyesetal.2011;Tileyetal. 82percent having a misalignment of .30◦. This provides confi- 2016). denceinouranalysesbasedontheground-basedimages. Tomakethevelocitymeasurements,wefirstconvolvetheR 1/2 valueswiththePSFoftheindividualKMOSobservationsandthen read off the velocity at the defined radii from the model velocity 3.3.3 Velocityprofilesandrotationalvelocities profiles (see Figure 2). The observed velocities quoted, v , are obs Weextractone-dimensionalvelocityprofiles[v(r)]alongthemajor half the difference between the velocities measured at the posi- kinematicaxes.Toachievethis,weextractthemedianvelocityin tiveandnegativesideoftherotationcurves.For13percentofthe 0.7arcsec“slits”alongthevelocitymaps,centredonthecontinuum targetsinthespatially-resolvedsamplewearerequiredtousethe centroids (see Section 3.1.3). Examples can be seen in Figure 2 model(seeabove)toextrapolateto>0.4arcsecbeyondthedatato wheretheerrorsbarsrepresentthescatteracrosstheslit. reach (i.e., >2 KMOS pixels). The uncertainties on the observed To reduce the effect of noise in the outer regions of the ve- velocities are obtained by varying the radii by ±1s and then re- locityprofilesweextrapolatethroughthedatapointsbyfittingan measuringthevelocities. exponentialdiskmodel(seeFreeman1970)tothevelocityprofiles Forsourceswherewedonothavespatially-resolvedIFUdata MNRAS000,1–19(2016) 10 C. M. Harrisonet al. (i.e., “quality 4”) or we do not have a measured half-light radii imposeanuncertaintyof50percentforthosetargetswhereweuse (i.e., “quality 3”) we are unable to measure the velocities at a themedianofthevelocitydispersion(s )maptoinfers . 0,obs fixed radii from the IFU data. Therefore we estimate the veloci- Forbothoftheapproachesformeasurings weobtained 0,obs tiesfromthewidthsofthegalaxy-integratedemission-lineprofiles theintrinsicvelocitydispersion,s ,byapplyingasystematiccor- 0 by applying correction factors derived from the resolved veloc- rection for the effects of beam-smearing based on mock KMOS ity measurements; i.e., the median ratios of s tot/vC,obs=1.13 and data(Johnson etal.inprep; seedetailsabove). Thesecorrections s tot/v22,obs=1.26.Inbothcasesthereis0.3dexscatteronthesera- areafunctionofboththeratioofhalf-lightradiitotheFWHMof tios,whichweapplyasauncertaintyonthesemeasurements. the KMOS PSF and the observed velocity gradient. When using Toobtaintheintrinsicvelocities,v andv ,weapplyacor- thevelocitydispersionsextractedfromtheouterregionsthebeam- 2.2 C rectiontotheobservedvelocitiesfortheeffectsofinclinationangle smearingcorrectionshaveamedianof0.97+0.02andforthoseex- −0.06 (q im)andbeamsmearingfollowing, tractedfromthesigmamapsthemediancorrectionfactoris0.8+0.1. −0.3 e The intrinsic velocity dispersions of the sample will be provided R,PSF v=vobs×sin(q im), (4) anddiscussedindetailinJohnsonetal.(inprep). wheree isthebeam-smearingcorrectionfactorthatisafunc- R,PSF 3.4 Summaryofthefinalsampleforfurtheranalyses tionoftheratioofhalf-lightradiitotheFWHMoftheKMOSPSF. ThesecorrectionfactorsarederivedinJohnsonetal.(inprep.),by We detected Ha emission in 586 of our targets (79percent) and creating mock KMOS data (also see Burkertetal. 2016 for sim- weshowed that thesearerepresentative of “mainsequence” star- ilar tests). A sample of ≈105 model disk galaxies were created forming galaxies at z≈1 (Section 2.3). For the following analy- assuming an exponential light profile, withadistributionof sizes ses,whicharebasedonvelocitymeasurements,weexcludethe50 andstellarmassesrepresentativeoftheKROSSsample.Theintrin- sourceswithaninclinationangleofq im≤25obecausetheinclina- sicvelocityfieldswereconstructedassumingadarkmatterprofile tioncorrectionstothevelocitiesforthesesourcesbecomeveryhigh plusanexponential stellardisk,witharangeof darkmatterfrac- (e.g.,>2.4for <25o and>10for <5o).Consequently, anysmall tionsmotivatedfromtheEAGLEsimulations(Schayeetal.2015). errorsintheinclinationanglescanresultinlargeerrorsintheve- Arangeofflatintrinsicvelocitydispersions,s 0werealsoassumed. locityvalues.Weremoveafurther20sourceswhichhaveeitheran “ Intrinsic” KMOS data cubes were constructed using the model emission-lineratioof[NII]/Ha >0.8and/ora&1000kms−1broad galaxiestopredictthevelocity,intensityandlinewidthofHa pro- linecomponentintheHa emissionlineprofiles(butnotthe[NII] files.Eachsliceofthesecubeswasthenconvolvedwithavarietyof profile).Thesesourceshaveasignificantcontributiontotheemis- seeingvaluesapplicablefortheKROSSobservations.Thesemock sion lines from AGN emission and/or shocks (e.g., Kewleyetal. observationswerethensubjecttothesameanalysesasperformed 2013;Harrisonetal.2016).Finally,weremoveafurther30sources ontherealdata.Differencesbetweeninputandoutputvalueswere which show multiple emission regions in the IFU data or broad- usedtoderivedthecorrectionfactorsasafunctionoftheratioof band imaging that resulted in unphysical measurements for the half-lightradiitotheFWHMoftheKMOSPSF.Fulldetailswill rotational velocitiesand/or thehalf-light radii.Thisleavesafinal beprovidedinJohnsonetal.inprep.ForthemeasuredvC values sampleof486targetsforanalysesontherotationalvelocities(Sec- these corrections range from e R,PSF=1.01–1.17 with a median of tion4.2)andspecificangularmomentum(Section4.3). 1.07.Wefollowthesameequationforv2.2butapplytheappropri- Of this final sample, only 33 (7percent) are unresolved in atee R,PSF correctionfactorforthisradii.Theuncertaintiesonthe theIFUdata(“quality4”)andonly24(5percent)areresolvedin intrinsicvelocitiesarecalculatedbycombining(inquadrature)the the IFU data but have only an upper limit on the half-light radii uncertaintiesontheobservedvelocities(seeabove)withthevaria- (“quality3”;seeSection3.1.2).Inbothofthesecasesthevelocity tionfromvaryingtheinclinationanglesby±1s . measurements are unresolved in that they are estimated from the galaxy-integrated emission-line profiles (Section 3.3.3). We note that 63 (13percent) are assigned “quality 2” because they have 3.3.4 Velocitydispersionprofilesandintrinsicvelocity fixed (unknown) inclination angle and/or a half-light radii that is dispersions estimatedfromthevelocitymodelsasopposed tothebroad-band imaging (see Section 3.1.2). Overall, the majority of the sources Toclassify thegalaxy dynamics of our sources we need tomake (366;i.e.,75percent)areassigned“quality1”forwhichwehave measurementsoftheintrinsicvelocitydispersions(s 0).Weextract spatially-resolvedIFUdataandboththehalf-lightradiiandincli- velocitydispersionprofiles[s (r)]usingthesameapproachasfor nationanglesaremeasureddirectlyfromthebroadbandimaging. thevelocityprofiles(seeabove)butusingtheobserveds maps(see examplesinFigure2).Wethenmeasuretheobservedvalues 0,obs intheouterregionsofthes (r)profilesbymeasuringthemedian 4 RESULTSANDDISCUSSION valuesfromeither>2×or<−2×thehalf-lightradii(whichever islowest).Attheseradiitheobservedvelocitydispersionwillonly In the previous sections we have presented our new analyses on haveasmallcontributionfromthebeam-smearingofthevelocity ≈600Ha detectedgalaxiesfromtheKROSSsurvey.Thesetargets field(seebelow).Theuncertaintiesaretakentobethe1s scatterin arerepresentativeoftypicalstar-forminggalaxiesatredshift≈0.9. thepixelsusedtocalculatethismedian.Whentheextentofthedata Usingacombinationofbroad-bandimagingandourIFUdatawe doesnotreachsufficientradii(orwedonothaveameasuredhalf- have measured inclination angles, half-light radii, morphological lightradii),whichisthecasefor52percentofourHa sample,we andkinematicpositionangles,rotationalvelocitiesandintrinsicve- adoptasecondapproachbytakingthemedianvalueofthepixelsin locitydispersions(seeAppendixAfordetailsofthetabulatedver- thes maps.Afterapplyingtheappropriatecorrections(seebelow), sionofthesevalues).Afterremovinghighly-inclinedsourcesand thesemethodsagreewithin4percent(whereitispossibletomake thosewithanAGNcontributiontothelineemission(Section3.4), bothmeasurements)witha≈50percentscatter.Consequentlywe weareleftwithasampleof486targetsforwhichweanalysethe MNRAS000,1–19(2016)