ebook img

The kinetic SZ tomography with spectroscopic redshift surveys PDF

0.83 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The kinetic SZ tomography with spectroscopic redshift surveys

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed25January2011 (MNLATEXstylefilev2.2) The kinetic SZ tomography with spectroscopic redshift surveys Jiawei Shao1,2⋆, Pengjie Zhang1 , Weipeng Lin1, Yipeng Jing1, Jun Pan3 1 1KeyLaboratoryforResearchinGalaxiesandCosmology†,ShanghaiAstronomicalObservatory,NandanRoad80,Shanghai,200030,China 1 2GraduateSchooloftheChineseAcademyofSciences,19A,YuquanRoad,Beijing,China 0 3ThePurpleMountainObservatory,2WestBeijingRoad,Nanjing210008,China 2 n a 25January2011 J 4 2 ABSTRACT The kinetic Sunyaev Zel’dovich effect (kSZ) effect is a potentially powerful probe to the ] missing baryons. However, the kSZ signal is overwhelmed by various contaminations and O the cosmologicalapplicationis hamperedby loss of redshiftinformationdue to the projec- C tion effect. We proposea kSZ tomographymethodto alleviate these problems,with the aid . ofgalaxyspectroscopicredshiftsurveys.Weproposetoestimatethelargescalepeculiarve- h locity throughthe 3D galaxy distribution, weigh it by the 3D galaxy density and adopt the p productprojectedalongthelineofsightwith aproperweightingasanestimatorofthetrue - o kSZtemperaturefluctuationΘ.Sincetheunderlyingdirectionaldependenceintheestimator r Θˆ closelyresemblesthatinthetruekSZsignalΘ,Θˆ istightlycorrelatedwithΘ.Itthusavoids t s the problem of null correlation between the galaxy density and Θ, which prohibitsthe kSZ a extractionthroughtheusualdensity-CMBtwo-pointcrosscorrelationmeasurement.Wethus [ propose to measure the kSZ signal through the Θˆ-Θ cross correlation. This approach has a 2 numberofadvantages.(1)DuetotheunderlyingdirectionaldependenceofΘˆ,itisuncorre- v latedwiththeprimaryCMB,thethermalSZeffectandastrophysicalcontaminationssuchas 1 the dusty star forming galaxies. Thus the Θˆ-Θ cross correlation picks up the kSZ signal in 0 3 theSZsurveywithacleanmanner.(2)Withtheaidofgalaxyredshifts,thecrosscorrelation 1 recoverstheredshiftinformationofthekSZsignalandallowsformoredetailedinvestigation . onmissingbaryons.(3)SincethegalaxysurveysusuallyhavehighS/N,theS/NofthekSZ 4 measurementthroughtheΘˆ-Θcrosscorrelationcanbesignificantlyimproved. 0 0 WetesttheproposedkSZtomographyagainstnon-adiabaticandadiabatichydrodynam- 1 ical simulations. We confirm that Θˆ is indeed tightly correlated with Θ at k . 1h/Mpc,al- : though nonlinearities in the density and velocity fields and nonlinear redshift distortion do v weakenthetightnessoftheΘˆ-Θcorrelation.We furtherquantifythereconstructionnoisein i X Θˆ from galaxy distribution shot noise. Based on these results, we quantifythe applicability r of the proposed kSZ tomographyfor future surveys. We find that, in combination with the a BigBOSS-Nspectroscopicredshiftsurvey,thePLANCKCMBexperimentwillbeabletode- tectthekSZwithanoverallsignificanceof 50σandfurthermeasureitsredshiftdistribution ∼ atmanyredshiftbinsover0<z<2. Keywords: cosmology:observations–large-scalestructureofUniverse–cosmicmicrowave background 1 INTRODUCTION 2004,2006forcensusofthebaryonbudget),while 50%ofthe ∼ baryonsremainselusivetorobustdirectdetection. RobustevidencesfromCMBandBBNshowthatthebaryonicmat- teraccountsfor 4%ofthetotalmatterandenergyoftheuniverse. Lookingforthese“missing”baryonsiscrucialforthevalid- ∼ However,onlyafractionofthisbaryonbudgethasbeendetectedin ityofourstandardcosmologymodel.Thestandardtheoryofhier- thelocaluniverse, eitherintheformofstars,interstellarmedium archical structure formationmodels indicates that themajorityof (ISM)andintraclustermedium(ICM)(refertoFukugita&Peebles baryonsexistbetweengalaxiesasthediffuseintergalacticmedium (IGM). Numerical simulations in the standard cosmology further suggestthatalargeportionofthisIGMisintheformofwarm-hot intergalactic medium (WHIM) (Cen&Ostriker 1999; Dave´etal. ⋆ Email:[email protected] 2001;Cen&Ostriker2006)withtemperature105K<T< 107 K, Email:[email protected] whichisbelievedtoresideinmoderatelyoverdensestructuressuch † 2 Shaoet al. asfilaments.Ononehand,thiskindintergalacticmediumisionized tivisticcorrectionsbymassiveclusters.Othercontaminationssuch dominantlybycollisions,andistransparenttoLyαradiation,and asthedustystar-forminggalaxies(Halletal.2010)makethekSZ thusishardtotracebyLyαforest.Theabsorptionsignaturetoward detectionevenmoredifficult.Forthesereasons,evenforCMBex- a bright X-ray source is also too weak to be resolved by current periment as advanced as Planck, which has multiple bands over spectrographs.Ontheotherhand,thoughWHIMemitsradiationin widefrequencyrange, itisdifficulttodetectthekineticSZeffect theUVandsoftX-raybands,theemissionstrengthistooweakfor directly,givenitslimitedangularresolution.Secondly,likethether- currentinstrumentstodetect.Therehavebeenobservationstrying malSZeffect,thekineticSZeffectsuffersfromsevereprojection todetectWHIMviaabsorptionandradiationsignature,butmany effect.Itmeasurestheelectronmomentumprojectedalongtheline of them are of low significance or misinterpreted. See (Bregman of sight, thus the redshift information of baryons is entangled in 2007)forarecentreviewofthestatusofWHIMdetections. theprojectionwithaprojection lengthof thesizeof thehorizon. Amongthemethodsofprobingmissingbaryons,theSunyaev Thisnotonlydegradesitspowertoinfertheevolutionofmissing Zel’dovich(SZ)effectisoneofthemostpromising.Ouruniverse baryons over thecosmic epoch, but could alsolead tolargebias. isalmostcompletelyionizedafterz = 6,wherefreeelectronsare Forexample,thepatchyreionizationcouldcontributeasignificant prevailing in galaxy clusters as high energy ICM and in the less fractiontothekineticSZeffect(Zahnetal.2005;McQuinnetal. overdensefilamentarystructuresasIGM.Freeelectronswillscatter 2005; Ilievetal. 2007). Without redshift information, unless the offCMBphotonsthroughinverseComptonscattering,andgenerate reionization process is well understood and interpreted appropri- secondary CMB temperature anisotropies, which isknown asthe ately,theextracontributionfrompatchyreionizationcouldbemis- SunyaevZel’dovicheffect.Therefore,theSZeffectiscontributed interpretedasthesignofmissingbaryons.It’sinterestingtonotice by virtually all electrons. In principle, from the SZ observations, theworkofHerna´ndez-Monteagudo&Ho(2009),whichproposed weareabletofindallelectronsandhenceallbaryons, duetothe to recover the signature of the bulk flow of the missing baryons electricneutralityoftheuniverse. by cross correlating future CMB data sets with kSZ estimates in ThetwomajorcategoriesoftheSZeffectarethethermalSZ galaxyclusters. effect (tSZ),arisingthrough the thermal motion of electrons, and In this paper, we propose a kinetic SZ tomography method thekineticSZeffect(kSZ),arisingthroughthebulkmotionofelec- toovercometheaboveobstacles.Thebasicideaistocrosscorre- trons.TheefficiencyforgivenelectronstogeneratetheSZeffectis late the CMB observation with a galaxy redshift survey or other proportional tothe thermal temperature for the thermal SZeffect surveysof thelargescalestructurewithsufficiently accuratered- andisproportionaltothebulkpeculiarvelocityforthekineticSZ shiftinformationsuchasthe21cmintensitymapping(Changetal. effect.Sincethethermaltemperatureofelectronsstronglycouples 2008).Duetothecancellationmechanismarisingfromtheunder- to the electron density, the dominant contribution to the thermal lyingdirectionaldependenceofthekineticSZsignalasaresultof SZeffectcomesfromthehigh-densityandhigh-temperatureICM. its vector nature, direct cross correlation between the kinetic SZ Forexample,Whiteetal.(2002)foundthat75%ofthetotalther- effectandthegalaxynumber densityvanishes (refertoFig.1for malSZeffectatmultipoleℓ<2000comesfromvirializedregions moredetailedexplanation).Thisdifferssignificantlyfromthetight withgasoverdensityδ >100andHerna´ndez-Monteagudoetal. correlation between the thermal SZ effect and the galaxy density gas (2006)foundsimilarresults:80%ofthetSZsignalcomesfromcol- (Zhang&Pen2001;Shaoetal.2009).Onewaytocircumventthis lapsedstructures.Sincethemissingbaryonsarelikelyinlessdense cancellationistosquarethekineticSZeffectandmeasureitscor- regionswithlowertemperature,theabilitytofindmissingbaryons relationwithgalaxies(Dore´etal.2004;DeDeoetal.2005). throughthethermalSZeffectislimited. Weproposeanalternativeapproachtoavoidthecancellation. On the other hand, the kinetic SZ effect has a better poten- One can reconstruct the peculiar velocity field from the galaxy tial to probe the missing baryons. The peculiar velocity is deter- spectroscopic redshift survey, weigh it with the observed galaxy mined by the large scale gravitational potential and is thus only numberdensityandotherredshift-dependentfactorstoreconstruct weaklycoupledtolocalmassconcentration. Hence,thecontribu- a weighted momentum field. This weighted momentum field has tiontothekSZeffect isroughly proportional tothetotalmassof roughlythesamedirectionaldependenceasthetruekSZsignaland eachbaryoncomponent,e.g.,ICMandIGM.Namely,itisanap- thusavoidsthecancellation.Wethusexpectameasurablecrosscor- proximatelyunbiasedprobeofbaryons,regardlessoftheirthermal relationbetweenthereconstructedfieldandtheCMBmap,which state(aslongas theyareionized). Sincethe massfractionof the extractsthekSZcomponentintheCMBtemperaturefluctuation. missingbaryonsis 50%,wethusexpectacomparablecontribu- Thecrosscorrelationsignalshouldarisesolelyfromthecor- ∼ tion to the kSZ effect from the missing baryons. This makes the respondingredshiftrangewheregalaxiesreside,toanexcellentap- kinetic SZ effect a promising probe of the missing baryons. For proximationforareasonablythickgalaxyredshiftbin(∆z & 0.2) example,therehavebeenworksstudyingthecontributionofkSZ andsufficientlysmallangularscales(ℓ&10).Thusitdisentangles effect by WHIM to the CMB anisotropies (Atrio-Barandelaetal. the kinetic SZ contribution in this redshift range from contribu- 2008;Ge´nova-Santosetal.2009). tions of any other redshifts and recovers the redshift information The remaining question is to measure the kinetic SZ effect, of the kinetic SZ effect. It is for this reason that we dubbed this forwhichthereareseveralobstacles.Firstofall,thesignalofthe methodasthekineticSZtomography,analogoustothethermalSZ kinetic SZ effect is not only weak, but also lack of spectral fea- tomography and also to the well known lensing tomography. An turestoextractfromtheoverwhelmingprimaryCMB.Thus,from immediateapplicationofthekineticSZtomographyistoseparate the CMB measurement alone, we only expect to detect it in the thepatchreionizationfromthelatetimekineticSZeffect.Itisalso auto power spectrum measurement at ℓ & 3000, where the pri- effectivetoeliminatecontaminationsfromtheprimaryCMB,ther- maryCMBdampssignificantlyandthekineticSZeffectbeginsto mal SZ and other foreground contaminations, which do not have dominate(e.g.Ma&Fry2002;Zhangetal.2004),andatν=217 thecharacteristicdirectionaldependenceandthusshouldbeuncor- GHzfrequencyband,wherethe(non-relativistic)thermalSZeffect related with the reconstructed momentum field. Since the galaxy vanishes. However, refer toan interesting paper by Nozawaetal. surveysusuallyhaveexcellentsignaltonoise(S/N),thecrosscor- 2006concerningtheresidualtSZeffectat217GHzduetotherela- relationmeasurement canachievemuchhigher S/Nthantheauto ThekineticSZtomographywithspectroscopicredshiftsurveys 3 is negligible. Realistic surveys have much lower galaxy number densityandthusshotnoiseinthegalaxydistributioninducesnon- negligible reconstruction noise. We directly quantify it from our simulationswithaproperscaling( 4.1).Wearethenabletofore- § castitsperformanceforsurveycombinationslikethePlanckCMB experiment plustheBigBOSSspectroscopic redshift survey( 4). § Wediscussandconcludein 5.Wepresentmoretechnicaldetails § andfurtherdiscussionsinthetwoappendices. 2 THEKINETICSZTOMOGRAPHY Bulk motions of free electrons induce secondary CMB anisotropies, namely the kinetic Sunyaev Zel’dovich (kSZ) effect (Sunyaev&Zeldovich 1972, 1980), with temperature fluctuations ∆T (1+δ )v nˆ Θ(nˆ) |kSZ = χ n¯ σ e · exp[ τ(z)]adχ ≡ T e e T c − CMB Z pW (z)dχ ≡ k kSZ Z χi+∆χi/2 Θ ; Θ = pW (z)dχ, (1) ≡ Xi i i Zχi−∆χi/2 k kSZ where Θ is the contribution from electrons in the i-th redshift Figure1.ThevanishingcorrelationbetweenthekineticSZeffectandthe i bin, spanning the comoving coordinate range χ ∆χ/2 < χ < galaxynumberdensity.Thelineofsightisfromtheobserver(O),through i− i χ +∆χ/2.χisthecomoving radialcoordinate, cisthespeedof thepointsB,EandA,tothelastscatteringsurface.Onegalaxyresidesat i i pointGandweshalldiscussthevelocitydistributiongiventheexistenceof light and τ is the Thompson optical depth. p ≡ (1+δe)v is the thisgalaxy.ThelineEGisperpendiculartothelineofsightandAE=EB. (normalized)electronmomentumandthesubscript“ ”denotesthe k Thevelocityatanypointalongthelineofsight,e.g.,thepointA,canbe projectionalongthelineofsight.δeistheelectronnumberoverden- decomposed,withrespecttothepositionofthegivengalaxy,intoonecom- sity,andvistheelectronpeculiarvelocity.Theweightingfunction ponentalongthedirectionAGandoneperpendiculartothedirectionAG. W = χ n¯ σ exp( τ)a/cmodulatesthecontributionfromeach Theperpendicularcomponenthasequalprobabilitytobealongthedirec- redkSsZhift. TehreouTghout−the paper, we focus on the kSZ effect after tion AC orthe direction ADand thus the net contribution to the kinetic reionizationandthussetχ = 1,anexcellentapproximation.Due e SZ-galaxycrosscorrelationiszero.Sotheonlyvelocitycomponentwhich totheneutrality,δ =δ ,whereδ istheoverdensityof(ionized) maycontributeistheonealongthedirectionAG.However,fromthesym- e gas gas gas. metryargument,iftheevolutioneffect(lightconeeffect)canbeneglected, Asavector,pcanbealwaysdecomposedintoagradient(ir- velocityatpointBhasanequalprobabilitytohaveacomponentalongthe directionBG,withthesameamplitude.Theprojectionofthetwoontothe rotational)partpEandcurl(rotational)partpB,p≡pE+pB,where lineofsightcancelsexactly.SothecrosscorrelationbetweenthekineticSZ ∇×pE = 0 and ∇·pB = 0 respectively. Here, the “E”and “B” effectandthegalaxydensityvanishes. notationsareanalogoustotheelectromagneticfields.Ascanbein- ferredfromEq.1,thecontributionfromthegradientpartislargely canceledoutwhenintegratingalongthelineofsight,aslongasthe correlationmeasurementofthekineticSZeffectfromtheSZsur- weightingfunctionW variesslowlyacrossacorrelationlength kSZ veysalone.Laterwewillshowthat,PLANCKplusBigBOSScan ofp ,whichisoftheorder100Mpc/htoday.1.ForthekineticSZ E detectthekineticSZeffectat 50σlevel. effect after reionization, W only changes significantlyover the ∼ kSZ Atthebeginningstageofthiswork,Hoetal.(2009)published Hubblescale,thusthecontributionfromthegradientpartisnegli- a work based on similar idea, whose applicability is further con- gibleandtheonlysignificantcontributioncomesfromp (Vishniac B firmedinthispaper.Thetwoworksarecarriedoutindependently 1987). andthusdifferinmanydetails.WetesttheproposedkSZtomog- p ingeneralhastwosourcesofcontribution.Since p = raphyagainstacontrolledsetof hydrodynamical simulationsand pB=(1+δ ) v+ δ v,theB-modeofpcanco∇m×efrBom quantify the tightness of correlations between the reconstructed t∇he×B-mode ofev∇o×r from∇thee×cross talk between the density and mapandthetruekSZsignalatvariousredshiftsover0<z<2.We velocity.Followingthesamenotation, wecandecompose theve- furtherinvestigateseveral complexitiessuchasredshiftdistortion locityintoa“E”mode(gradientpart)v anda“B”mode(rotational E andfeedback,anddemonstratetherobustnessofthekSZtomogra- part)v .Forpurelygravitationalinteraction,thevelocity“B”mode B phyagainstvariouscomplexities.Bothworksconfirmthepowerof decays, until multi-streaming and shell crossing arise due to the thekSZtomography. nonlinearevolution(seeforexamplechapter2ofBernardeauetal. The paper is organized as follows. In 2, we introduce the 2002 for a discussion). Thus in the linear and weakly nonlinear § kSZtomographymethodanddiscussitslimitationsingeneral.We regimesagoodapproximationisv=v andtheonlycontribution E thentestitagainstourhydrodynamicsimulationsin 3.Therecon- to the kSZ effect comes from the cross talk between the density § structionandthetestaredoneinboththerealspace( 3.1)andthe § redshift space ( 3.2). In this section, we approximate galaxies as § darkmatterparticles.Soitcorrespondstoidealizedsurveysofvir- 1 This condition can be violated atthe epoch ofreionization, where the tually infinite galaxies such that shot noise in galaxy distribution patchyreionizationcausesWtovarysignificantlyover 10h/Mpcscales. ∼ 4 Shaoet al. gradientandthevelocity.ThisisthewellknownOstriker-Vishniac ofthematterfield.Inthesameregime,namelyatlargescale,the (OV)effect(Ostriker&Vishniac1986;Vishniac1987).Inthenon- 3Dgalaxydistributionisagoodproxyoftheunderlying3Dmat- linear regime,v grows andcanalsocontributetothekSZeffect terdistribution.Thiscanbedescribedbyagalaxybiasδ =b δ . B g g m (Zhangetal.2004). Undertheabovecondition,giventheobserved3Dgalaxydistribu- ThekineticSZtomography thatweproposerequirescombi- tionδobs(x),weareabletoobtainanestimatorofthevelocityfield, g nation of aSZ survey and agalaxy spectroscopic redshift survey whichinFourierspacereads withoverlappingskycoverage.Itcontainsthreemajorsteps: k in•theCio-tnhstrreudcsthaift2bDinm.IadpeaΘˆlliyf,rΘoˆmshthoeul3dDbedtiisgtrhitbluyticoonrroelfagteadlawxiieths vˆ(k)=−ifHδogbs(k)k2 , (3) i Θ,thetruekineticSZsignal fromthisredshift bin.Acrucialin- wherekisthe3Dwavevector, f dlnD/dlnaandDisthelin- i ≡ gredienttoguaranteeatightcorrelationistoestimatethepeculiar eardensitygrowthrate.Thesuperscript“hat”inv(vˆ)andinother velocitythroughthe3Dgalaxydistributionanduseittoconstruct symbols (e.g. Θˆ) denotes thereconstructed quantity. Inreality, to Θˆ .Hereafter,weoftenneglectthesubscript“i”whereitdoesnot suppress the noise and stabilize the reconstruction, we often ap- i causeconfusion. plysomefilterstothedensityfield,beforeapplyingEq.3.Soδogbs CrosscorrelatethereconstructedΘˆ withaoverlappingSZsur- shouldbetreatedasthesmootheddensityfield. vey•. The cross correlation signal, to an excellent approximation, Eq.3isabiasedestimatorofthetruepeculiarvelocityv.(1) solely comes fromthekinetic SZinthe chosen redshift bin. It is The galaxy bias causes vˆ to be overestimated by a factor bg. (2) this step that recovers the redshift information of the kinetic SZ Redshiftdistortioncausestheobserveddensitytodeviatefromthe effect,eliminatesvariouscontaminationsandreducesstatisticaler- underlyingmatterdensityandthusbiasesthevelocityreconstruc- rors. tion. (3) Nonlinearities in the density evolution causes deviation Interpretthemeasuredcrosscorrelationsignalandreconstruct fromEq. 2. (4) Inthe nonlinear regimewhere shell crossing and the•truekineticSZsignal.Tricksimilartotheoneadoptedinthe multi-streaminghappen, velocityvorticity(rotationalpart,orcurl thermalSZtomography(Shaoetal.2009)canalsobeappliedhere. part)develops,whichiscompletelymissedbytheestimatorEq.3. Theimperfectnessofthevelocityreconstructionisnotasse- Thecurrentpaperwillfocusonthefirsttwostepsandonlybriefly vereasitlooks,forthekineticSZtomography.Laterwewillshow discussthethirdstep. thattheperformanceofthekSZtomographyisinsensitivetodeter- ministicerrorsinthevelocityreconstruction.Thusadeterministic galaxy density and velocity bias, uncertainties in f and H, linear 2.1 ThekineticSZreconstruction redshift distortion (the Kaiser effect) do not degrade the kSZ to- TheprimarygoalofthispaperistoextractthekSZsignalaswellas mography.However,stochasticerrorsfromstochasticgalaxybias, itsredshiftinformationthroughcrosscorrelatingSZsurveyswith nonlinearitiesintheevolutionofdensityandvelocitydo.Laterwe galaxyspectroscopicredshiftsurveys.Asexplainedearly,theusual willquantifytheirimpactsandshowthemtobemoderateatrele- two-point cross correlation between the kinetic SZ effect Θ and vantscales. galaxyoverdensityδgvanishes(hΘδgi=0),duetothecancellation With the 3D density field δg and thereby the recovered 3D ofpositiveandnegativevelocitiesalongthelineofsight(Fig.1). velocity field vˆ in hand, we can then reconstruct a weighted 2D Anaturalsteptoavoidsuchcancellationistorecoverthevelocity momentummap informationandweighthegalaxiesaccordingly.Thiscanbedone inspectroscopicgalaxyredshiftsurveys. Θˆ dχpˆ Wˆ(z), (4) Spectroscopic galaxy redshift surveys, such as LAMOST2, ≡ k Z BOSS3,BigBOSS4,SKA5,Euclid6andJDEM/ADEPT7,willmea- sure the 3D galaxy distribution δg(x). At least part of them will wherepˆ ≡(1+δogbs)vˆ(x),andvˆ(x)istheinverseFouriertransform overlapwithSZsurveyssuchasACT8,SPT9 andPLANCK10 on ofvˆ(k).WechoosetheweightingfunctionWˆ(z)=WkSZ(z).Thein- the sky coverage. We are able to recover the velocity field from tegralinEq.4isoverthecorrespondingredshiftbin.Again,wecan δ (x)andthenΘˆ,thegalaxymomentumproperlyweighted.Since alsoapplysomefilterstothedensityfield,beforetakingtheprod- g thedirectionofthepeculiarvelocityistakenintoaccountinΘˆ,the uctinpˆ.Thesefiltersarenotnecessarytobethesameastheones crosscorrelation ΘˆΘ nolongersuffersfromtheusualcancellation forthevelocityreconstruction.Furthermore,thedensitymeasure- andthus ΘˆΘ ,h0. i mentintheproductmaynotevenbethesameastheoneusedin h i Inthelinearregime,themassconservation(i.e.thecontinuity thevelocitymeasurement,ascorrectlypointedbyHoetal.(2009). equation)reducesto Herewewanttoclarifyalikelyconfusingpoint.Asdiscussed before, the kinetic SZ effect is mainly contributed by p instead δ˙ + v=0, (2) B m ∇· ofpE.Ontheotherhand, thereconstructed vˆ inEq.3isactually where δm is the matter overdensity and v is the peculiar velocity pE, whichbecomesclear laterinEq.8.Itthusseemsthat there- constructionmissesthedominantcontributiontothekineticSZef- fectandthusshouldfailtowork.However,thereisanextrafactor 2 http://www.lamost.org/website/en (1+δ ) in the estimator Θˆ (Eq. 4). Recall that, in the OV effect g 3 http://cosmology.lbl.gov/BOSS/ (Ostriker&Vishniac1986;Vishniac1987),itisthecross-talkbe- 4 http://bigboss.lbl.gov/index.html tweenthedensitygradientandthecurl-freevelocitythatgenerates 5 http://www.skatelescope.org/ a curl component in p. Here, the cross-talk between the density 6 http://sci.esa.int/euclid 7 http://jdem.gsfc.nasa.gov/ andpEgeneratesaB-modeinthereconstructedpˆ,whichistightly 8 http://www.physics.princeton.edu/act/index.html correlated with the true pB on relevant scales. This explains the 9 http://pole.uchicago.edu/ reasonableperformanceofthereconstructiontechniqueandtheki- 10 http://www.rssd.esa.int/index.php?project=planck neticSZtomography. ThekineticSZtomographywithspectroscopicredshiftsurveys 5 2.2 HowtoquantifythekSZtomographyperformance? Forthesereasons,inthemaintextwewillfocusonrtoquan- tifytheperformanceof thekineticSZtomography andleavedis- TheestimatorΘˆ iscertainlyimperfect.Itcanhavebothsystemati- cussiononb intheAppendixA. calandrandomoffsetswithrespecttoΘ.Thesedeviationsshould Θˆ bebothscaleandredshiftdependent. Thesedeviationscanbevi- sualizedbyaΘ-Θˆ plot.Alternatively, itcanbequantifiedbytwo 2.3 Originsofthestochasticityr,1 parameters, r and b . r describes the tightness of the Θˆ-Θ corre- Θˆ lation11 andb isthebiasinΘˆ withrespect toΘ.Clearly,bothr A number of approximations made in the reconstruction pipeline Θˆ causethestochasticityintheΘ-Θˆ relation(r , 1).(1)Firstofall, and b depend on the redshift range of galaxies used for recon- Θˆ asanapproximationtotheexactmassconservationequation struction.Wewanttoquantifytheredshiftdependenceofrandb. Thuslaterintheanalysiswewillchooseaprojectionlengthacross δ˙ + (1+δ )v=0, (8) whichevolutionsinrandb arenegligible.Forsuchprojection,r m ∇· m Θ andbΘˆ arefunctionsofzandthe2Dwavevectork ,theinverseof the starting point Eq. 2 only holds where δm ≪ 1. (2) From theperpendicularspatialseparation, ⊥ Eq. 2 to Eq. 3, we have made assumptions of linear evolution (δ (k,z) D(z)δ (k,z)), deterministic bias between δ and δ , r(k ,z) PΘˆΘ(k⊥,z) , (5) anmd curl-f∝reevelocmity. Ni one of theseapproximations areg exact min ⊥ ≡ PΘˆ(k ,z)PΘ(k ,z) thenonlinearregime.(3)Evenundertheseassumptions,Eq.2and ⊥ ⊥ 3 only hold in real space. Namely, we have implicitly assumed and p that the observed δobs is the galaxy overdensity δ in real space g g (δobs = δ ). However, in reality, what we directly measure is the P (k ,z) g g bΘˆ(k⊥,z)≡ sPΘΘˆ(k⊥,z) , (6) tghaelarxeydsnhuifmtbdeisrtoorvteiordne,nδssit,yδδgs.iTnhreedδssh-δiftrseplaactieon(δiogsbsst=ocδhgsa)s.tDicu,edutoe ⊥ g g g g tononlinearmappingbetweenredshiftandrealspace,nonlineari- Laterwewillrecognizek astheperpendicularcomponentofthe usual3Dwavevectork.T⊥hePsarethecorrespondingpowerspec- tiesinboththedensityandvelocityfields(e.g.Whiteetal.2009) andvelocityvorticity(Carlsonetal.2009).(4)Evenifwehaveper- tra. fectE-modevelocityreconstruction,westillhavenohandleonthe Thereisnoguaranteethatb isclosetounity,eveninthelin- Θˆ B-modevelocity,whichcontributesthekineticSZeffect.(5)InEq. earregime.Asexplainedearlier,thevelocityestimationisbiased. Further,intheproductΘˆ (1+δobs)vˆ,δobsisalsobiasedwithre- 4,wemultiplythereconstructed velocitywith1+δogbs insteadof ∝ g g 1+δ .Thepossiblestochasticitybetweenδ andδ alsoincreases specttoδ .LaterintheAppendixAwewillshowthecomplicated e e g e thestochasticitybetweenΘandΘˆ. behaviorofb . Θˆ Withtheaidofourhydrodynamicsimulation,weareableto However,largedeviationofb fromunitydoesnotnecessar- Θˆ quantify the combined influence of all these factors on r, except ilymeanpoorperformanceofthekineticSZtomography,forthree reasons.(1)First,thesignal-to-noiseratio(S/N)ofthe ΘΘˆ mea- for the stochastic galaxy bias. Hoetal. (2009) used the halo oc- h i cupation model and N-body simulations to produce galaxy mock surement,issolelydeterminedbyr.TheS/Nofeachmode(Fourier catalog.Thisapproachcapturesthegalaxystochasticityandshows ormultipolemode)is thatthekSZtomographyisrobustagainstit.Oursimulationshave S 2 = P2ΘΘˆ relativelysmallboxsize(100h−1Mpc)andhencedonotallowusto N P2 +(P +PN)(P +PN) followthesameapproach.Soweleavethisissueforfurtherinves- (cid:18) (cid:19) ΘΘˆ Θ Θ Θˆ Θˆ tigation. 1 = , (7) 1+r 2 1+ PΘN 1+ PΘNˆ − (cid:18) PΘ(cid:19) PΘˆ! 3 TESTINGAGAINSTHYDRODYNAMICAL where PN and PN arethecorresponding noisepower spectra. We SIMULATIONS Θ Θˆ find that the b dependence drops out in the error estimation. A Θˆ We test the kinetic SZ tomography against our hydrodynamical rescalingΘˆ b Θˆ leavesnoeffectontheS/Nofthecrosscorre- → Θˆ simulations. The simulations are run with the GADGET2 code lation measurement, since both PN,P b2 and r is unchanged under this scaling. (2) b , 1 dΘeˆfiniΘˆtel∝y aΘffˆects the expectation (Springel 2005) in a ΛCDM cosmology with parameters: Λ = Θ 0.732, Ω = 0.268, Ω = 0.044 h = 0.71, σ = 0.85. The box 0 b 8 value of the cross correlation. However, since in the theoretical sizeof the simulationis L = 100h 1Mpc oneach side, in which − interpretation of the measured crosscorrelation, one can take the 5123darkmatterparticlesand5123gasparticlesareinitiallyseeded galaxybias,redshiftdistortionandpossiblyothercomplexitiesinto (SeemoredetailsaboutthesimulationinJingetal.2006;Linetal. accountandthusavoidsystematicalerrorsinducedbyb ,1rea- Θ 2006).Wehaveannon-adiabaticrun,inwhichgasparticlesareal- sonably well.(3) BasedonthesametechniqueinthethermalSZ lowedtocoolandcondenseintocollisionlessstarparticles,along tomography(Shaoetal.2009),wecancombinethecrosscorrela- with which SN feedback is taken into account. We also have an tionmeasurementP andtheautocorrelationmeasurementP to ΘΘˆ Θˆ adiabaticrunwiththesamecosmologicalparametersandthesame obtainP = P2 /(r2P ).Thisestimationreliesonnoinformation Θ ΘΘˆ Θ initialconditions.Wewillfocusonthenon-adiabaticrun,sinceit ofb andthusavoidsthebiasproblem. Θˆ hasbettercaptureonthegastrophysicsandhencebettermodeling ofthekineticSZeffect.Unlessotherwisespecified,allsimulations arebasedonthissimulation.Wealsoanalyzetheadiabaticrunto 11 rthatwedefinediffersfromtheonedefinedinHoetal.(2009).First, betterunderstandingthegeneralityofthekSZtomography(§3.3.2). theirrisforthevelocityfieldinsteadofthemomentumfield,3Dinstead Wechoose inthisworkafewrepresentative redshiftstoquantify of2D.Second,theirrisnotthecrosscorrelationcoefficient,butisactually thefeasibilityofthetomographytechnique,whichismainlychar- analogoustor/bofthe3Dvelocityfield,inournotation. acterizedbythequantityr(k ,z). ⊥ 6 Shaoet al. Ourhydrodynamicsimulationshavedirectinformationofthe gas momentum distribution and thus the kinetic SZ effect. How- ever, thesimulations don’t simulategalaxies. Toproceed, weap- proximate galaxies as simulation dark matter particles. Since the galaxy stochasticity is likely sub-dominant (Bonoli&Pen 2009; Baldaufetal.2010),thisapproximationisreasonabletoestimater betweenΘˆ andΘ,althoughitindeedover-estimatesit.Asdemon- stratedbyHoetal.(2009),thekSZtomography isrobust against the galaxy stochasticity. So we will leave this issue elsewhere. Since the number density of simulation particles is much higher than that of galaxies in any realistic surveys, shot noise in the Θˆ reconstructionisnegligible.Tousethemeasuredrforforecasting, we have totake the shot noise inevitable inrealistic surveys into account.Weleavethisissueuntilnextsection. WetestthekineticSZtomographyatseveraltypicalredshifts z = 0,0.53,1.02,2.08. We reconstruct the velocity and conse- quentlythemomentumfieldfromthedarkmatterdistributioninthe correspondingsimulationoutputs.Attheseredshifts,weprojectthe 3Dmomentumfieldoverasingleboxsize(100h 1Mpc)togetthe − 2Dmomentummaps.Wethencomparethesemapswiththemaps ofunderlyingkineticSZsignal,whichisdirectlymeasuredbymul- tiplyingthegasdensityandvelocitydistributioninthecorrespond- ingsimulationoutputs.Sincethesimulationshaveinformationof peculiarvelocity,wecarryoutthereconstructionandcomparison inbothrealspaceandredshiftspace. Figure2.TheΘˆ-Θmap(inarbitraryunit)intherealspaceatz=0,0.53, 1.02,2.08.InordertofurtherreducethescatteringofΘˆ-Θrelation,weav- eragetherecoveredvelocityfieldineveryneighboring43=64cellstoget 3.1 Thereconstructioninrealspace theaveragedvelocityfieldvˆaswellasthedensityfieldδonamuchcoarser partitioning,say,643cells.Weshowherethecell-to-cellcorrespondencein 3.1.1 Thereconstructionprocedure allthreeCartesiandirectionsbyrandomlyselecting512outof643couples. Therecovered Θˆ fieldintimately followsthekSZsignalalongthediago- Wefirstcarryoutthereconstructioninrealspace.Thereconstruc- nalathighredshifts,whileatlowredshift,therearegreatfluctuationsdue tion is a two-step process. The first step is to reconstruct the pe- tonon-linear evolutionofthedensityfieldandtherebythevelocity field. culiarvelocity.Ateachredshiftz,weconstructthematterdensity i ThethreecomponentsinCartesiandirectionsaredenotedbydifferentpoint field δ(x) using clouds-in-cells (CIC) scheme in a partitioning of types,trianglesforx,squaresforyandcirclesforz. n3 = 2563 cells,followedbyaFouriertransformtogetthematter g distribution in Fourier space δ(k). We then apply a Gaussian fil- ter12 W (k) = exp( k2R2/2) to the original fieldδ(k) in order to equation (Eq. 9) is the unsmoothed density, which preserves the G − s wipeoffnonlinearfluctuationsonsmallscales,whichareuncorre- necessary information of the true density field in the deriving of latedwiththelargescalevelocity. Theadopted smoothing length themomentumfield.Inpractice,weconstructateachredshiftthree R =1.56h 1Mpcappliedinthewholecontextisaroundtheradius mapsalongthreeCartesiancoordinatedirectionsofthesimulated s − of atypical cluster,and wewilldiscuss theinfluenceof different box respectively. Astheycan beconsidered asthreeindependent smoothing lengthin 3.3.1. Wethenobtain the reconstructed ve- measurements,inthefollowingfigureswhichconcernstatistics,we § locityvˆ(k)fromEq.3throughthissmootheddensityfield.Bythe showtheaverageresultsunlessspecified. inverse Fourier transform, we obtain the real space velocity field Atthesametime,weobtainthetruekSZsignalinasimilar vˆ(x). way The second step is to project the momentum field along the v lineofsightnˆ togetthereconstructed2Dmapatredshiftzi Θj1,j2(nˆ)= nˆ· b,j1c,j2,j3(1+δb,j1,j2,j3), (10) j3 vˆ X Θˆj1,j2(nˆ)= nˆ · j1,cj2,j3(1+δj1,j2,j3). (9) where δb is the nonlinear overdensity of baryons. vb is the bulk Xj3 velocityderiveddirectlyfromthesimulationbyaveragingwithin Sincetheweighting functionW changes littleover thatscales, thehostcell(j1,j2,j3) kSZ so wetreat it asa constant and omit it.The sum isover a single vmw simulated box at the investigatedredshift, insteadof stacking the vb = i mi wi i , (11) box in the light cone. Notice that the density term in the above P i i i wherev andm arethecomovingpeculiarvelocityandthemassof i i P i-thgasparticleinthehostcell.w isasplinekernelusedtosmooth i 12 Hoetal. (2009) populated halos with galaxies. Since in that case the thegasparticles. galaxy density is low, and shot noise is non-negligible, they applied the WienerfiltertoreducethePoissonnoise.Thisisalsoanecessaryprocedure whendealing withrealdata. Inourwork, weusesimulation particles as 3.1.2 TheΘˆ-Θrelation galaxies,whosenumberdensityismuchhigherandthustheshotnoiseis negligible.Forthisreason,weinsteadapplygenerallyaGaussianwindow InFigure2weshowthecell-to-cellΘˆ-Θcorrespondence.TheΘˆ-Θ functiontofilteroutsmallscalenonlinearfluctuations. datapointsscatteraroundΘˆ =Θ,meaningabiasbΘ 1.However, ∼ ThekineticSZtomographywithspectroscopicredshiftsurveys 7 Figure3.Thecrosscorrelation coefficientsrbetweenΘˆ andΘ.Thecor- Figure4.TheΘ-Θˆsrelationintheredshiftspace.ThesameroutineasFig. relation coefficient is averaged over the three components. The two are 2isusedinderivingthisrelation.Athighredshifts,therecoveredΘˆsover- hshigifhtlsy,wcohrilreellaetsesd,corr≃r0el.a9t,edontolasrmgeallsecralsecakl⊥es6end1shdMuepcto−1thfoernaolnl-tlhineea4rirteieds- twheeigdhesnstihtyeubnydaerflaycintogrkSZ1s+igfn/a3l,Θa,ndbetchaeusheigthheerKreadissheriftefftheectheignhhearncthees coming into play. Nevertheless, the correlation coefficient is still tight at slopeis,since f Ω0.6(∼z)islargeratearlyepochs.Ontheotherhand,the z=0,withr>0.6uptok 8hMpc 1. scattersinΘ-Θˆsi≃smumchlargerthanthatintherealspaceduetothelarger ⊥∼ − stochasticitiesofdensity-velocityrelationandtherealspace-redshiftspace mapping. this should not be over-emphasized since this only represents an unrealisticcaseofgalaxy biasb = 1without redshiftdistortion. g Reconstructionsbasedongalaxysamplewithb , 1wouldresult g inbΘ ,1andhenceadifferentslopeoftheΘˆ-Θrelation.Redshift at z = 0, theΘˆ-Θ correlationisstillprettytight, withr > 0.6to distortion also changes the slope of the Θˆs-Θ relation, as can be k 8hMpc 1.Wedon’tcorrectforthealiasingeffect,suchthat − seenfromFig.4. sm⊥a∼llscaleresultsmaybemisleading(Jing2005).Nevertheless,we TheΘˆ-Θrelationshowsnon-negligibledispersionaroundthe doexpectgoodresultsuptoaquarteroftheNyquistwavenumber, mean,butstillreasonablytight.Thismeansthatthestochasticityis i.e.around2hMpc 1,andit’ssafeforustoestimatethecrosspower − noticeable,butnotyetoverwhelming.Wealsonoticethat,thedis- spectrumuptoℓ 2000 3000. ∼ − persiongetsstrongeratlowerredshift.Thisisnotsurprising,since thereconstructionisbasedonlineartheoryandthusworksbetterat higherredshift.Nonlinearitiesinthedensityfieldandvelocityfield degradesthereconstructionaccuracy,asdiscussedin 2.3. § 3.2 Thereconstructioninredshiftspace In reality, what we get from a galaxy survey is the galaxy num- 3.1.3 Thecrosscorrelationcoefficientr ber density in the redshift space. As expected in 2, the redshift § Outofthetwoquantitiesconcerning tothereconstructionperfor- space distortion will induce new sources of uncertainty and fur- mance,thecrosscorrelationcoefficientrdescribesthetightnessof therdegradesthereconstruction.Weareabletoquantifyitsimpact Θˆ-ΘrelationandisamajormeasureofthekineticSZtomography. throughoursimulations.Duetoitsownpeculiarmotion,theappar- b is of less importance in quantifying the kSZ tomography per- entpositionofeachdarkmatterparticlealongthelineofsightcan Θˆ formance,soweleaverelatedresultstotheAppendixA.Tomea- bewrittenas surethem, weperform2DFouriertransformsofΘ(Θˆ).Θ(k ) = v nˆ d2x Θ(x )exp(ik x )/A,whereAistheareaofthemap.N⊥ote xs =x+ · , (12) ⊥ ⊥ ⊥· ⊥ H here k and x are both 2D variables. Wethen obtain the power RspectFrui⊥gm. P3Θshwo⊥iwths(t2hπa)t2δthDe(ks⊥to−chka⊥s′t)icPiΘty(ki⊥n)t=hehΘΘˆ(-kΘ⊥)rΘel(akt⊥io′)ni.is in wthheecroemnˆovdienngotpeescuthliearuvneitlovceictyto.rxsailsonpgostihtieonlininetohfesriegdhsth,ifatnsdpavceis, general not asevere issue, even inthe stronglynonlinear regime, and from here on the superscript “s” indicates the corresponding consistentwithFig.2.Asshownwehavestrongcorrelations,r & quantityintheredshiftspace.Asaresultofthisdisplacement,what 0.9 to k = 1hMpc 1at all redshifts, and even r & 0.8 to k weobservedisadistorteddensityfieldδs.Withδs asthestarting − 3hMpc⊥1exceptz=0.Nonlinearitiesdodegradethereconstruct⊥ion∼, point,wecanreconstructthemomentumfieldsΘˆs throughEq.3, − as we see that r decreases towards low redshifts. However, even followingthesameprocedureasintherealspace. 8 Shaoet al. Figure5.TheΘ-Θˆs relation intheredshiftspaceaftercorrecting forthe Figure6.Thecrosscorrelationcoefficientsr(k ,z)s intheredshiftspace. Kaiser effect. It’s interesting tofindthat the slopes approach unity atall Thicklinesshowrs withKaisereffectcorrecte⊥dfor.ComparedtoFig.3, investigatedredshifts,whilethescatterskeepnearlyunchangedcompared r(k ,z)sissuppressedthroughoutallscales,especiallyatk &1hMpc−1. toFig.4. At⊥z . 1,thereconstruction workspoorly,withr 0.3o⊥nscalesk & 3hMpc−1.However,there’saconsiderablecorrelatio≃nstrengthrs&0.5⊥for k .1hMpc−1atz=0.Athigherredshiftwherenonlinearityofvelocityis n⊥otsignificant,thecorrelationstrengthisstilltightenough,e.g.withr 0.7 fork 1hMpc 1atz=2.08. ≃ ⊥∼ − 3.2.1 Θ-Θˆsrelationintheredshiftspace TheΘ-ΘˆsrelationisshowninFig.4,whichissignificantlydifferent 3.2.2 rs(k ,z)intheredshiftspace fromtheoneinrealspace(Fig.2).Wecanseethatintwoaspects. ⊥ (1)TheaverageslopeoftheΘ-Θˆ relationchanges,fromΘˆ Θto The cross correlation coefficient r in redshift space is shown in Θˆ aΘwitha>1.Thisiscausedbythelinearredshiftdis≃tortion Fig. 6. Compared to Fig. 3, the correlation coefficient is sup- ≃ pressed throughout all scales, especially at k & 1hMpc 1. At (theKaisereffect),whichinduces − k & 3hMpc 1andz . 1,thekineticSZreco⊥nstructionandthus − th⊥ekineticSZtomographyworkspoorlysincethereconstructedΘˆ δs(k)=δ(k)(1+βµ2k), (13) barelyresembles thetruesignal Θ (r . 0.3).These resultsshow unambiguouslythatredshiftdistortionisasignificantsourceofer- where µ = nˆ kˆ is the cosine of the angle between the line of ror in the kinetic SZ tomography. It’s also worthwhile to see the k · sightnˆ andthewavevectork.β= f/b .TheKaisereffectenhances changes if we correct for the Kaiser effect. They’re also shown g thegalaxyoverdensitybyafactor 1+β/3 > 1andthuscauses inFig.6asthicklines. Asindicated byFig.5, correctingfor the ≃ the slope a > 1. We also notices that the slope a decrease from Kaisereffectdoesnotinfluencerstoomuchonscalesofinterest. high redshifts to low redshifts. There are two causes. First, β = Asexplainedin 2.3,thedegradationiscausedbythestochas- § f Ω0.6(a)(Peebles1980)(inourcasewhereb = 1)decreases ticity in the δ-δs relation. They can be induced by the nonlinear ≃ m g withdecreasing redshift. Second, the finger of God effect caused mappingbetweentherealspacedensityandtheredshiftspaceden- bysmallscalerandommotionsuppressestheredshiftspacegalaxy sity(e.g.Scoccimarro2004)andthestochasticitybetweentheden- density.Thiseffectbecomesstrongeratlowerredshift.(2)Scatters sity and velocity field (e.g. Whiteetal. 2009). This stochasticity in the Θ-Θˆs relation are significantly larger than that in the real theninducesthestochasticityinthereconstructedvelocityvˆ,with space (Fig. 2). Stochasticitiesin the density-velocity relation and respecttotruevelocity(Eq.3).Inthemomentumreconstructionwe realspace-redshiftspacemappingarelargelyresponsibleforthese needtomultiplythereconstructedvelocitybyanextrafactor1+δ largerscatters. (Eq.4)toobtainthereconstructedmomentum. Sothestochastic- It’sinterestingtoshowtheΘ-Θˆsrelationifwecorrectforthe ityinthemomentumreconstructionandthusthekineticSZrecon- Kaisereffect.ThefigureisshowninFig.5.Wefindthattheslopes structionhasanextrasource,fromtheterm1+δ.Allthesecom- approachunityatallinvestigatedredshifts,whilethescatterskeep plexities worsen the reconstruction, increase scatters in Θ-Θˆ and nearly unchanged compared to Fig. 4. This is, however, not un- decreaser. expected,sincethedeterministicKaiserformulaonlychangesthe Despite the above degradations, the reconstructed Θˆ still amplitude and isreversible given cosmology. Thusfinger of God showsreasonablytightcorrelationwiththetruesignalΘatk . shouldbemainlyresponsibleforthescattersoftherelation. 1hMpc 1. We will show in the next section that this correla⊥tion − ThekineticSZtomographywithspectroscopicredshiftsurveys 9 Figure 7. The deviations between different smoothing scales, say, 0, Figure8.Thedifferenceofthecorrelationcoefficientbetweenadiabaticand 0.78h−1Mpc,1.56h−1Mpcand3.12h−1Mpc,inbothrealspace(toppanel) non-adiabaticsimulations.Theoverallrsisinsensitivetogastrophysics,and andredshiftspace(bottompanel).Intherealspace,smoothinglengthwith there’reonly 2-3%changesofrs.Itwillaccordinglyinfluencetheestima- 0.78h 1Mpcworksbestatz=2.08while3.12h 1Mpcisthemostsuitable torofthesig∼nal-to-noise ofthecrosspowerspectrum byseveral percent − − at z=0. However, in the redshift space, the enhancement due to smooth- level, however, forkSZtomography,this issufficientforthecurrentsur- ingislesseffective, andalargersmoothinglength isbetter. Probably an veys. anisotropicsmoothingotherthanaGaussiansmoothingshouldworkbetter. Asamediansmoothinglength, 1.56h 1Mpciseffective atbothlow and − highredshift. comprehensiveinvestigationonthisissue.Rather,wewillrestrict totheGaussianfilterandinvestigatethedependenceofronR .We s strength allows for robust kinetic SZ tomography, combining the arbitrarily compare between the cases of R = 0,0.78,1.56,3.12 s Planck CMB experiment and the BigBOSS galaxy spectroscopic h 1Mpc.Forclarity,weonlyshowthecomparisonsatz = 0and − redshiftsurvey,orothersurveyswithcomparablepower. z=2.08inFig.7. Aninterestingbehaviortonoticeisthatrsatz=0.53isworse Thebasic(andobvious)conclusionisthat,smoothingisnec- thanatz = 0.Thisresultisconsistentwithalargerscattersinthe essary to suppress small scale nonlinearities and improve the re- Θ-Θˆ plot at z = 0.53 than at z = 0, implying that stochasticities construction. Fig. 7 (upper panel) shows general improvement in induced by the Finger of God effect becomes the largest at that r whensmoothing istaken, comparing tothe caseof nosmooth- epoch.Atredshifthigherthanz 1,thereconstructionsuffersless ∼ ing (Rs = 0). For example, smoothing the density field with from the nonlinearities and is thus stronger, e.g. with r > 0.7 at R = 1.56h 1Mpc can boost r by 30% at k = 1hMpc 1and a k < 1h/Mpcatz=2.08.Actually,wefindinsimulationsthatthe s − ∼ − factorof2ormoreatsmallerscales,inrealspace. co⊥movingvelocitydispersionpeaksatz 0.6.Thiswouldinduce ∼ Gaussiansmoothingislesseffectiveinredshiftspace:theim- thelargestanisotropiesandhencemakersatz 0.6theworst. ∼ provementinrsisoftenlessthan10%onscalesofinterest(bottom panel, Fig. 7). The redshift space overdensity is anisotropic, so a spherical Gaussian smoothing willnot work well.Ananisotropic 3.3 Uncertaintiesinr filtermayworkbetterinredshiftspace.Thisiscertainlyaninter- Intheabovesection,wequantifytheimpactofredshiftdistortion estingtechnicalissueforfurtherinvestigation. on r and thus show that redshift distortion degrades the kinetic Arightsmoothingshouldbalancebetweensuppressingsmall SZ reconstruction significantly. There are other factors affecting scalenonlinearities and preserving largescale signal. If R istoo s the reconstruction. Here, we briefly discuss the influence of fil- large,itmaywipeofftoomuchlargescaleclusteringresponsible tersadoptedtosmooththedensityfield( 3.3.1)andgastrophysics forpeculiarvelocityandthusdegradethereconstruction(decrease § ( 3.3.2). r).ThismaybethereasonthatR =0.78h 1Mpcworksbetterthan § s − largerR ,atz=2.08intherealspace.However,overallR =1.56 s s h 1Mpcworksreasonablywellatallredshiftsinvestigated. 3.3.1 Theinfluenceofdensitysmoothingonr − Thesimulationdatawedealwithislikeanidealsurvey,with TheresultsshownabovealladoptaGaussianfilterwithsmoothing negligibleshotnoise,uniformselectionfunctionandregularsurvey lengthR =1.56h 1Mpctosmooththedensityfieldbeforevelocity boundary.Smoothingforrealdataisofcoursemuchmorecompli- s − reconstruction. Thereconstruction robustnessnowonder depends cated.Forexample,abigissueinrealsurveyisshotnoisedueto onthewaytosmooththedensityfield.Wedonotaimtoperforma lowgalaxynumberdensity,especiallyinspectroscopicredshiftsur- 10 Shaoet al. veys.Forthisissue,onecanrefertoHoetal.(2009)fordiscussion ontheapplicationoftheWienerfilter. 3.3.2 randgastrophysics r also depends on gastrophysics. All theresults shown above are basedonournon-adiabaticsimulation,withradiativecooling,star formation and supernova feedback. Although we are not able to robustly quantify its detailed dependence on these gastrophysical processes, we can obtain a rough estimation by comparing the aboveresultstoouradiabaticsimulationwithidenticalinitialcon- ditions.Therelativedifferencesofrs betweenthetwosimulations areshowninFig.8.Wefindthat,overallrandthustheperformance ofthekineticSZtomographyisinsensitivetothegastrophysics.r atk < 1hMpc 1onlyvariesbylessthan2-3%.Theinfluenceof − ⊥ gastrophysicsislargeratsmallerscales,butisstilllessthan5%up tok =3hMpc 1. − ⊥ Thisinsensitivitytogastrophysicshastwoimplicationsonour kineticSZtomography.First,itisunlikelythatsomerealisticgas- trophysical process not included in our non-adiabatic simulation can dramatically suppress r and thus invalidates the tomography. Second,thissignificantlysimplifiesthetheoreticalinterpretationof thetomographyresults.Basedonthesametechniquein(Shaoetal. 2009),wecancombinethetwomeasuredcorrelations, ΘΘˆ and Figure9.Theratio PN1,2/PΘˆs oftheshotnoisepower spectrum andthe ΘˆΘˆ ,toobtain ΘΘ arisingfromthesameredshiftbin.hTheionly reconstructedmomentumpowerspectrum.Boththe∆2 and∆2 aremuch hunkniown quantihty inithis approach is r, which we shall calibrate smaller than the reconstructed momentum powers, wNi1th N2 tNe2rms domi- againstsimulations.However,ifrisverysensitivetogastrophysics, nating N1 towards smaller scales. Given a small number density in cur- rent galaxy redshift survey, the total shot noise would be comparable to thecalibrationonrwouldbeverydifficultduetolargeuncertain- the signal. Nevertheless, on scales of interest for kSZ tomography, say ties in our theoretical and numerical understanding of these gas- k . 1hMpc−1,galaxysurveyswouldprovidearelatively lesscontami- trophysics. The insensitivity of r to gastrophysics shown in Fig. n⊥atedreconstructionofthemomentum. 8impliesthat,despiteimperfecttheoretical andnumerical under- standingofthesegastrophysics,rcanstillbeaccuratetoafewper- centlevelatrelevantscales.Thisprecisionsufficesforthekinetic weomittheprojectionalongthelineofsight) SZtomography. Θˆs(nˆ)WΘˆs(nˆ ) (1+δs+δ )(vˆs+vˆ ) nˆ h c c ′ i ∝ h N N · ×(1+δs′+δ′N)(vˆs′+v′N)·nˆ′i = (1+δs)vˆs nˆ(1+δs′)vˆs′ nˆ′ 4 ERRORFORECAST h · · i ThermeasuredabovequantifiestheperformanceofthekineticSZ +h(1+δs)vN·nˆ(1+δs′)v′N·nˆ′i + δ vˆs nˆδ vˆs nˆ . tomographyforavirtuallyidealgalaxysurvey,forwhichthesimu- h N · ′N ′· ′i lationparticlenumberdensityishighandtheshotnoiseisnegligi- The last two terms in the above equation are the leading non- ble.However,inrealsurveys,thegalaxynumberdensityisafactor vanishing noise terms. We denote the first noise term as N of104-105smaller,resultinginmuchlargerandthusnon-negligible (1+δs)v whilethesecondasN δ vˆs 1 ∝ shotnoise.Theshotnoiseaffectsboththevelocityandmomentum By rNandomizing the particl2e∝posNitions in the simulation, we reconstruction.Weuseoursimulationtoquantifytheseeffectsand can directly measure δ and derive therein v δ (k)kˆ/k. Fol- N N ∝ N thenapplytheseresultstoforecasttheperformanceofthekinetic lowing the same procedure as in reconstructing the momentum SZtomography.OurtargetCMBexperimentisPlanckandthetar- map,weproducetwocorrespondingmapsofthesetwoshotnoises. getgalaxyspectroscopicsurveyisBigBOSS(Schlegeletal.2009). In order to estimate the contribution of shot noise, we compute ThekineticSZtomographybasedonotherSZsurveyslikeSPTand the power spectrum of the two noise terms, and show the ratios galaxysurveyslikeADEPT,EuclidandSKAisexpectedtowork P /P in Fig. 9. We can see that both the P and P noise N1,2 Θˆs N1 N2 better. termsaremuchsmallerthanthereconstructedmomentumpowers. AlthoughN andN termsarecomparableontheverylargescales, 1 2 theydeviatesignificantlytowardssmallerscales,withN termspre- 2 dominantlyoverweighingN terms.Onthesmallscales,N terms 4.1 Estimatingthereconstructionnoisefromgalaxy 1 2 would turnout tobe several thousandth of thereconstructed mo- distributionshotnoise mentumΘˆs,andtheycanbecomparable toorevendominatethe Thediscretenessofdarkmatterparticlesinducesspuriousfluctua- signal,givenamuchsmallernumberdensityincurrentgalaxyred- tions(shotnoise)inthedensityfield,whichwedenoteasδ ,and shiftsurveys.Nevertheless,onscalesofinterestforkSZtomogra- N therebyinthereconstructedvelocity,whichwedenoteasv .The phy,sayk .1hMpc 1,galaxysurveyswouldprovidearelatively N − correlation of the contaminated momentum Θˆ is (for simplicity, lesscontam⊥inatedreconstructionofthemomentum. c

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.