catalysts Article The Kinetic Resolution of Racemic Amines Using a Whole-Cell Biocatalyst Co-Expressing Amine Dehydrogenase and NADH Oxidase HyunwooJeon1,†,SanghanYoon1,†,MdMurshidulAhsan2,SihyongSung1,Geon-HeeKim1, UthayasuriyaSundaramoorthy1,Seung-KeunRhee2andHyungdonYun1,* 1 DepartmentofSystemsBiotechnology,KonkukUniversity,Seoul05029,Korea; [email protected](H.J.);[email protected](S.Y.);[email protected](S.S.); [email protected](G.-H.K.);[email protected](U.S.) 2 SchoolofBiotechnology,YeungnamUniversity,Kyongsan38541,Korea; [email protected](M.M.A.);[email protected](S.-K.R.) * Correspondence:[email protected];Tel.:+82-2-450-0496;Fax:+82-2-450-0686 † HyunwooJeonandSanghanYoonhavecontributedequallytothiswork. Received:9August2017;Accepted:23August2017;Published:25August2017 Abstract: Amine dehydrogenase (AmDH) possesses tremendous potential for the synthesis of chiralaminesbecauseAmDHcatalyzestheasymmetricreductiveaminationofketonewithhigh enatioselectivity. AlthoughareductiveapplicationofAmDHisfavoredinpractice,theoxidative routeisinterestingaswellforthepreparationofchiralamines. Here,thekineticresolutionofracemic amines using AmDH was first extensively studied, and the AmDH reaction was combined with anNADHoxidase(Nox)toregenerateNAD+andtodrivethereactionforward. Whenthekinetic resolutionwascarriedoutwith10mMrac-2-aminoheptaneand5mMrac-α-methylbenzylamine (α-MBA)usingpurifiedenzymes,theenantiomericexcess(ee)valueswerelessthan26%duetothe productinhibitionofAmDHbyketoneandtheinhibitionofNoxbythesubstrateamine. Theuse of a whole-cell biocatalyst co-expressing AmDH and Nox apparently reduces the substrate and product inhibition, and/or it increases the stability of the enzymes. Fifty millimoles (50 mM) rac-2-aminoheptaneand20mMrac-α-MBAweresuccessfullyresolvedintothe(S)-formwith>99% ee using whole cells. The present study demonstrates the potential of a whole-cell biocatalyst co-expressingAmDHandNoxforthekineticresolutionofracemicamines. Keywords:aminedehydrogenase;biocatalysts;chiralamine;kineticresolution;oxidativedeamination 1. Introduction Recently, considerable efforts have been made to economically obtain enantiomerically pure intermediatesfordrugsandagrochemicals. Amongthem,thechiralaminesareofgreatinterestto thepharmaceuticalandfine-chemicalindustries,sinceenantiopureaminesareimportantbuilding blocksforpharmaceuticalmanufacturing[1]. Giventhesignificanceofchiralamines,theirefficient synthesisinenantiopureformhasbecomeanattractivechallengetoorganicchemistsandbiologists in recent years [2–4]. Recently, many biocatalytic methods for the production of chiral amines have been developed using biocatalysts, such as lipase [5], amine oxidase [6], imine reductase [7], transaminase[8],ammonialyases[9],Pictet-Spenglerase[10],barberinebridgeenzyme[11],engineered P450 monooxygenase [12], and amine dehydrogenase (AmDH) [3]. Each enzyme has its own advantages and disadvantages for the synthesis of chiral amines ([13] and references therein for moredetails). Catalysts2017,7,251;doi:10.3390/catal7090251 www.mdpi.com/journal/catalysts Catalysts2017,7,251 2of13 Among them, as AmDH catalyzes the asymmetric reductive amination of ketones, and uses cheap ammoniaas thereagentand generatesonly wateras byproduct, withhigh atomefficiency andenantioselectivity[14],AmDHishighlyattractiveandpossessestremendouspotentialforthe synthesisofchiralamines[13]. Untilnow,onlyoneNAD+-dependentAmDHfoundinnaturehas beenreported,inStreptomycesvirginiae,butitshowedpoorenantioselectivityanditsDNAinformation is not available [15]. Recently, AmDHs have been created through protein engineering using the existingL-aminoaciddehydrogenase. First,AmDHwasengineeredbytheBommariusgroupusing leucinedehydrogenase(LeuDH)fromBacillusstearothomophilustoacceptketonesubstratesthroughthe introductionof2–4pointmutations[16]. Subsequently,asecondaminedehydrogenasewasdeveloped basedonthescaffoldofphenylalaninedehydrogenase(PheDH)fromBacillusbadiusbythesamegroup usingasimilarapproach[17]. Further,achimericenzymewasgeneratedbycombiningtheN-terminal section (residues 1–149) of the second AmDH (PheDH variant) with residues 140–366 of the first AmDH(LeuDHvariant),andthechimericenzymedisplayedgoodactivitytowardsvariousamines, such as acetophenone and adamantyl methyl ketone, and converted them to (R)-amine products with excellent enantioselectivity [18]. Since then, different AmDHs have been developed using L-aminoaciddehydrogenasesfromRhodococcussp. M4,Exiguobacteriumsibiricum,andCaldalkalibacillus thermarum[14,19,20]. Asystematicinvestigationofsubstrateacceptance,optimalreactionconditions, andthechemo-andstereoselectivityofAmDHshasbeencarriedout[13,20]. Inaddition,AmDHs havebeenusedineleganthydrogenborrowingdual-enzymecascadereactionsforthesynthesisof chiralaminesfromalcoholswith“closed-loop”recyclingofthecofactor[19,21]. Duetotheimportance ofthereductiveaminationofketonesbyAmDH,anextensiveanddetailedreviewonrelevantstudies hasrecentlybeenpublished[3]. Althoughareductiveapplicationofdehydrogenasesisfavoredinpractice,theoxidativeroute is interesting as well for the preparation of asymmetric compounds from prochiral substrates, such as D-amino acids with L-amino acid dehydrogenases, (S)-alcohols with (R)-specific alcohol dehydrogenases,ortheconversionofhydroxyacids,aminoacids,andalcoholsintothecorresponding ketocompounds[22]. Untilnow,allreportedAmDHsexhibit(R)-enantioselectivitybecausetheywere generatedfromanL-aminoaciddehydrogenasescaffold. Therefore,(R)-aminesareproducedthrough reductiveaminationbyAmDHsfromketones(forcertaincompounds,(S)-formsweregenerateddue totheCahn–Ingold–Prelogpriorityrulesfornamingchiralcenters). Since(S)-specificAmDHisnot available, (S)-amines cannot be synthesized via reductive amination. Although (S)-amines can be obtainedthroughthekineticresolutionofracemicaminesusingoxidativedeaminationby(R)-specific AmDH,thekineticresolutionofaminesusingAmDHhasnotbeenextensivelystudieduntilrecently. Wedescribehereintheproductionof(S)-aminesthroughtheoxidativedeaminationofracemic amines by AmDH with help of an NADH oxidase (Nox) (Figure 1). One of the main advantages of using Nox for NAD+ coenzyme regeneration is that it catalyzes an irreversible reaction, which then shifts the equilibrium of the primary reaction to the side of the product formation. Nox is a flavoproteinwhichoxidizesNADHtoNAD+ viaacoupledreactionofmolecularoxygentoeither waterinafour-electronreductionortohydrogenperoxideinatwo-electronreduction[22]. Dueto thetoxicityofhydrogenperoxide[23],water-formingNoxfromLactobacillusbreviswasusedinthis study[24]. AmongthereportedAmDHs,thechimericenzyme[18]generatedbythedomainshuffling oftheLeuDHandPheDHvariantswasusedinthisstudy. CCaattaallyyssttss 22001177,, 77,, 225511 33 ooff 1133 Catalysts 2017, 7, 251 3 of 13 NH NH O RR1 NHRR222 AAmmDDHH RR1 NHRR222 ++ RR1 O RR2++ NNHH44++ 1 2 1 2 1 2 NNAADD++ NNAADDHH HH22OO NNOOXX 11//22 OO22 FFiigguurree 11.. TThhee kkiinneettiicc rreessoolluuttiioonn ooff aammiinnee bbyy ((RR))‐-ssppeecciiffiicc AAmmDDHH iinn ccoommbbiinnaattiioonn wwiitthh NNAADDHH ooxxiiddaassee Figure 1. The kinetic resolution of amine by (R)‐specific AmDH in combination with NADH oxidase ((NNooxx)).. ((RR))‐-aammiinnee iiss ooxxiiddiizzeedd iinnttoo tthhee ccoorrrreessppoonnddiinngg kkeettoonnee bbyy AAmmDDHH uuttiilliizziinngg NNAADD++.. AAddddiittiioonnaallllyy,, (Nox). (R)‐amine is oxidized into the corresponding ketone by AmDH utilizing NAD+. Additionally, NNAADD++ iiss rreeggeenneerraatteedd bbyy NNooxx,, aanndd eennaannttiioommeerriiccaallllyy ppuurree ((SS))‐-aammiinnee iiss oobbttaaiinneedd.. NAD+ is regenerated by Nox, and enantiomerically pure (S)‐amine is obtained. 22.. RReessuullttss aanndd DDiissccuussssiioonn 2. Results and Discussion 22..11.. SSuubbssttrraattee SSppeecciiffiicciittyy aanndd KKiinneettiicc PPaarraammeetteerrss ooff AAmmDDHH 2.1. Substrate Specificity and Kinetic Parameters of AmDH TThhee AAmmDDHH ggeennee wwaass cclloonneedd iinnttoo aa ppEETT2244mmaa vveeccttoorr wwiitthh aa CC-‐tteerrmmiinnaall HHiiss66-‐ttaagg,, eeffffeeccttiivveellyy The AmDH gene was cloned into a pET24ma vector with a C‐terminal His6‐tag, effectively eexxpprreesssseedd inint htheeE sEcshcehriecrhiciahicao lcioBliL 2B1Lc2e1l lc(eDllE (3D),Ea3n)d, saunbds esquubesneqtluyepnutrlyifi peduroinfieadN oi-nN aT ANaif‐fiNnTitAy caoflfuinmitny. expressed in the Escherichia coli BL21 cell (DE3), and subsequently purified on a Ni‐NTA affinity Acoslummennt. iAonse mdeanbtoivoen,etdh eabmoavien, itnhtee rmesatino finthteisresstut doyf tihsitsh setuodxiyd iast itvhee doexaimdaintiavteio dneaomfaimnaintieosnb oyf AammiDneHs. column. As mentioned above, the main interest of this study is the oxidative deamination of amines Tbyh eAomxiDdaHti.v Tehdee aomxiidnaattiivoen daectaimviitnyaotfioAnm aDctHivtitoyw oafr dAsmvaDrHio utoswamaridnes svwaraisoeuxsa amminineedsi nwoarsd eexratmoeinxpedlo irne by AmDH. The oxidative deamination activity of AmDH towards various amines was examined in tohredearp tpol iecxapbliolirtey tohfe tahpepelinczaybmilietyt ooft thhee keinnzeytimcer etsoo tlhuet ikoinneotficv raersiooulustiaomn ionfe vsa(rFioiguusr aem2)in. eTsh (eFiegnuzryem 2)e. order to explore the applicability of the enzyme to the kinetic resolution of various amines (Figure 2). sThhoew eendzycomnes isdheorawbelde accotnivsiitdyetroawblaer dascttihveityte sttoewdaarmdsi ntehse. Ttehseteedn zaymmineessh. oTwheed egnozoydmaec tsihvoitwyetodw gaorodds The enzyme showed considerable activity towards the tested amines. The enzyme showed good (aRct)i-vαi-tmy ettohwylabrednsz y(Rla)m‐αi‐nmee(tαh-yMlbBeAnz,yal2a)maninde (S(α)-‐pMhBenAy, laal2a)n iannodl (a(S9)),‐pbhuetngyalvaelanneingolilg i(bal9e),a cbtiuvti tygafvoer activity towards (R)‐α‐methylbenzylamine (α‐MBA, a2) and (S)‐phenylalaninol (a9), but gave (nSe)g-αli-gMibBleA (aac3t)ivaintyd (fRo)r- ph(Se)n‐αyl‐aMlaBnAin o(la(3a)1 0a).nIdt su(Rgg)‐epshteednythlaaltatnhienoeln a(nat1io0s).e leIct tivsuitgygoefstthede enthzaytm ethies negligible activity for (S)‐α‐MBA (a3) and (R)‐phenylalaninol (a10). It suggested that the henigahn,taionsdeltehcetirveistuy ltoifs tchoen esniszteynmtew iist hhtihgaht, raenpdo rttheed rperseuvlito iuss clyon[1s8is]t.eTnht eweinthzy tmhaet’s rreepaocrtitvedit yptroewviaorudsslya enantioselectivity of the enzyme is high, and the result is consistent with that reported previously b[1r8o]a. dThraen egnezyomfseu’sb sretraactteivsiatyn dtohwigahrdesn aa bnrtiooasde lreacntigvei toyf isnudbisctartaetetsh eanadp phliigcha beinliatnytoiofstehleecetnivziytym iendinictahtee [18]. The enzyme’s reactivity towards a broad range of substrates and high enantioselectivity indicate pthreo daupcptliiocnaboiflicthy ioraf lthame einnezsy.mAef tienr tthhea tp,rroadc-uαc-tMioBnA of( ac1h)iraanld amraicn-2e-sa. mAifnteorh tehpatta, nreac(‐aα1‐2M)wBAer (eas1e)l aenctde draacs‐ the applicability of the enzyme in the production of chiral amines. After that, rac‐α‐MBA (a1) and rac‐ r2e‐apmreisneonhtaetpivtaenaer o(am1a2t)i cwaenrde asleiplehcatetidc aams irneepsrefosernftuarttihveer asrtuomdya.tTico adnedte ramlipinheattihce akminienteics pfoarr afmurettheersr 2‐aminoheptane (a12) were selected as representative aromatic and aliphatic amines for further ostfutdhye. Tenoz dyemteer,mtihnee itnhiet ikailnreattice poafrtahmeeetenrzsy omf tehwe eanszaynmaely, ztheed inwitiitahl rvaatrei oouf sthceo ennczeynmtrea twioanss aonfalay1zeodr study. To determine the kinetic parameters of the enzyme, the initial rate of the enzyme was analyzed aw1i2th( 0v–a2r5iomusM co)nincenthtreaptiroensse nofc ea1o ofr1 am12M (0–N2A5 Dm+M()F iing uthree p3raesnedncFei gouf r1e mSM2). NTAhDe+k (iFniegtuicrepsa 3r aamnde tSe2r)s. with various concentrations of a1 or a12 (0–25 mM) in the presence of 1 mM NAD+ (Figures 3 and S2). w(3aoToT±.1ffhh9e 2AA0ee9r .e w2mmkk(5d±iieDDnn)er0eemetHH.ett 3ii8rM cc9ff.m 1oo)pp7rraimaan naa(rre±dM11aad0 mmww1.2ba1eeee5an.ttrr8)eesdee 8errm ss33d0( M..±ww.99o9990 n6eea .rr((5nt(±±ee3h±d00 )dde.. 0331meeL.991tt0eeii)).4nn8 rrmm38mme−) wMM1(iim±,nne0 reeaaaie.ndd5nnvs3− pddebb)r1e aa00–,mcss..Btr99eeiieu66vddns re− ((pkoo1l±±,yenn 00pr.c.. e00tlttosihh44vptee33.ee ))LLlTc ymmtiih.nniviieeeTnnewwK−−hl11y,,meee .rraa Keeavvssnmeeppdrree––acckBBnttcuuiiadvvtrreevkkkllc ayyppalt..ull ooTTvetthhas.. leeTTou KKfhheAeesmm KKmfaaonnmmDrdd aaaH kknn1ccdd2aaftto vvwkkrccaaaaeattll uur1vveeeaawssll8uu eff.1ooeer7essrr a12 were 8.17 (±0.25) mM and 11.88 (±0.53) min−1, respectively. NNHH22 NNHH22 NNHH22 NNHH22 aa11 aa22 aa33 FF aa44 NNHH22 NNHH22 NNHH22 NNHH22 F F FF aa55 aa66 aa77 aa88 FF FF NNHH22 NNHH22 NH NH NH2 NH2 2 2 OH OH aa99 OH aa1100 OH aa1111 aa1122 (a) (a) Figure2.Cont. CatCalaytsatlsys2t0s1 270,177,,2 75,1 251 4o4f 1o3f 13 Catalysts 2017, 7, 251 4 of 13 300 300 275 275 ) )% % ( ctivity (activity 252050 e ave 121020 elativRelati1081000800 R 60 60 40 40 20 20 0 0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 Substrate Substrate (b) (b) Figure 2. (a) Substrate spectrum; (b) Substrate specificity of AmDH. Oxidative deamination was Figure 2. (a) Substrate spectrum; (b) Substrate specificity of AmDH. Oxidative deamination was Figure2.(a)Substratespectrum;(b)SubstratespecificityofAmDH.Oxidativedeaminationwascarried carried out in 100 mM glycine buffer (pH 10.0) containing AmDH (0.15 mg/mL), 5 mM substrate, and carried out in 100 mM glycine buffer (pH 10.0) containing AmDH (0.15 mg/mL), 5 mM substrate, and outin100mMglycinebuffer(pH10.0)containingAmDH(0.15mg/mL),5mMsubstrate,and1mM 1 mM NAD+ at 25 °C. One hundred percent (100%) corresponds to 44 mU/mg. N1 AmDM+ NatA2D5+◦ Cat. 2O5n °eCh. uOnnder ehdunpderrceedn pte(1rc0e0n%t )(1c0o0rr%es) pcoonrrdessptoon44dsm toU /44m mg.U/mg. 0.06 0.06 ) )n minmi M/M/ n rate (on rate (0.004.04 2--2aM-m-aBMimAnBo iAn(hao e(1hap)e1tap)ntaen (ea (1a21)2) actioeacti0.002.02 eR R 0.00 0.00 0 5 10 15 20 25 0 5 10 15 20 25 Concentration (mM) Concentration (mM) FigFuigreur3e. 3.M Micihchaaeelilsi–s–MMeenntetenn pplloott ooff tthhee rreeaaccttiioonn rraattee ddeeppeennddiningg onon thteh esusbusbtrsatrtea tceocnocnencetrnattriaotnio. nT.he Figure 3. Michaelis–Menten plot of the reaction rate depending on the substrate concentration. The Threeraecaticotinosn wswereer ceacrarrieride douotu itni n10100 0mmMM TrTirsi/sH/CHlC (lp(Hp H8.58). 5c)ocnotnaitnaiinnign sgusbusbtrsatrtae t(e0(–03–03 m0mMM), )A,AmmDDHH (0.3 reactions were carried out in 100 mM Tris/HCl (pH 8.5) containing substrate (0–30 mM), AmDH (0.3 (0.3mmg/gm/Lm fLorf oar1a21, 20,.405.4 m5gm/mg/Lm foLrf ao1r)a, 1a)n,da n1d m1Mm NMANDA+ Dat+ 2a5t °2C5. ◦C. mg/mL for a12, 0.45 mg/mL for a1), and 1 mM NAD+ at 25 °C. 2.22..2K.i KneintiectRice Rsoelsuotliuotnioonf oAf mAimneisneUs sUinsginagP au PriufireidfieAdm ADmHD/HN/oNxoCxo CupoulipnlginSgy sStyesmtem 2.2. Kinetic Resolution of Amines Using a Purified AmDH/Nox Coupling System InItnh etkhien ektiicneretisco luretsioonluotfioanm ionfe sabmyinAems DbHy ,tAhmerDegHe,n ethraet iorengoefnceorfaatciotonr NofA Dco+faisctoofri mNpAoDrta+ nicse ,of In the kinetic resolution of amines by AmDH, the regeneration of cofactor NAD+ is of asitmhpeorretaacntcioen, arse qtuheir erseaactsitoonic hreioqmuieretrsi ca asmtooicuhnitomofeNtrAic Da+m(oFuignut roef 1N).AIDn+a d(Fdigituiorne t1o). rIend uacdidnigtiothne to importance, as the reaction requires a stoichiometric amount of NAD+ (Figure 1). In addition to corsetdoufctihneg ethnez ycmosat toicf trheea cetniozny,mNatAicD r+eaccotfioanct,o NrAreDg+e ncoefraacttioorn rseigmenpelirfiaetisopnr soidmupcltifiiseos lpatrioodnu,cpt riesvoelanttison, reducing the cost of the enzymatic reaction, NAD+ cofactor regeneration simplifies product isolation, propbrelevmenstosf pprroodbulecmtisn hoifb iptiroondbuyctt hienchoibfaitcitoonr, abnyd tchaen fcaovfaocratobrl,y adnridv ectahne rfeaavcotrioanblfyo rdwraivrde .tFhoer NreAacDti+on prevents problems of product inhibition by the cofactor, and can favorably drive the reaction forward. For NAD+ regeneration, Nox from Lactobacillus brevis was used [24]. The reduced byproduct forward. For NAD+ regeneration, Nox from Lactobacillus brevis was used [24]. The reduced byproduct ofo Nf Noxo ixs iHs H2O2O, a,n adn dth tihs irse raecaticotino nis icso cnosnidsiedreerde dir rirerveevresribsilbe,l ew, whihchic hm meaenasn tsh tahta itt iits itsh teh de rdivriivnign gfo frocrec teo t o Catalysts2017,7,251 5of13 Catalysts 2017, 7, 251 5 of 13 regeneration,NoxfromLactobacillusbreviswasused[24]. ThereducedbyproductofNoxisH O,and move the reaction forward in a coupled AmDH/Nox reaction [25]. In the coupled enzyme 2reaction, thisreactionisconsideredirreversible,whichmeansthatitisthedrivingforcetomovethereaction especially when the optimum pH of the two enzymes is different, the pH of the reaction should be forwardinacoupledAmDH/Noxreaction[25]. Inthecoupledenzymereaction,especiallywhenthe carefully determined to balance the two enzyme activities. Therefore, the pH dependence of the optimumpHofthetwoenzymesisdifferent,thepHofthereactionshouldbecarefullydetermined activities of AmDH and Nox was examined (Figure 4). The AmDH and Nox showed the highest tobalancethetwoenzymeactivities. Therefore,thepHdependenceoftheactivitiesofAmDHand activity at pH 10.0 and 7.5, respectively. The results are in good agreement with previously reported Noxwasexamined(Figure4). TheAmDHandNoxshowedthehighestactivityatpH10.0and7.5, results [18,26]. The specific activity of AmDH and Nox was 48 mU/mg and 95 U/mg at the optimum respectively. Theresultsareingoodagreementwithpreviouslyreportedresults[18,26]. Thespecific pH, respectively. activityofAmDHandNoxwas48mU/mgand95U/mgattheoptimumpH,respectively. 100 80 ) % ( y vit 60 cti a e AmDH, Tris/HCl buffer v ati 40 AmDH, Glycine buffer el Nox, Tris/HCl buffer R Nox, Glycine buffer 20 0 7 8 9 10 11 pH FiFgiugruere4 .4E. Efffefcetcot fopf HpHo nonth tehea catcivtiivtiytyo foAf AmmDDHHa nadndN Noxo.xF. Forort htheeA AmmDDHHa catcitvivitiytya sassasya,yt,h tehere raecatciotinosns wwereerep eprefrofromrmededi nin1 01000m mMMT rTisr/isH/HCCllb buufffefrer( p(pHH7 .70.–09–9.0.0))o orr1 01000m mMMg lgylycicnineeb buufffefrer( p(pHH9 .90.–01–11.10.)0) cocnotnatianiinningg2 020m mMMa 1a,11, 1m mMMN NADA+D,+a, nadndA AmmDDHH( 0(.01.515m mg/gm/mLL).).F Foorrt htheeN Nooxxa actcitvivitiytya sassasay,y0, .02.2m mMM NNAADDHHa nadnd0 .00.101m mg/gm/mLLo offN Nooxxw weerereu usesedd.. Next, the kinetic resolution of 10 mM rac‐2‐aminoheptane (a12) was carried out in 100 mM Next, the kinetic resolution of 10 mM rac-2-aminoheptane (a12) was carried out in 100 mM TrTirsi/sH/HCCllb buufffeferr( p(pHH8 .80.–09–.90.)0)c ocnotnatianiinnigng1 1m mMMN NAADD+w+ witihthA AmmDDHH(1 (1m mg/gm/mLL))a nanddN Noxox( 1(1m mg/gm/mLL).). The enantiomeric excess (ee) value of a12 was 22%, 26%, and 19% at pH 8.0, 8.5, and 9.0, respectively Theenantiomericexcess(ee)valueofa12was22%,26%,and19%atpH8.0,8.5,and9.0,respectively (Figure 5). Also, when the kinetic resolution was carried out with 5 mM rac‐α‐MBA (a1) at the (Figure5).Also,whenthekineticresolutionwascarriedoutwith5mMrac-α-MBA(a1)atthecondition condition described above at pH 8.5 for 24 h, the ee value of a1 was only 20%. The results suggest that described above at pH 8.5 for 24 h, the ee value of a1 was only 20%. The results suggest that the the activities of AmDH and Nox were affected by the substrate and/or product. Several amino acid activities of AmDH and Nox were affected by the substrate and/or product. Several amino acid ddehehyyddroroggenenaasessesh haavveeb beeeenno obbsseerrvveedd ttoo ssuuffffeerr ffrroomm ssttrroonngg pprroodduucctt iinnhhiibbiittiioonn,, oofftteenn bbyy ththeeirir nnaatitvivee L‐ amino acid product [20]. In addition, in the asymmetric synthesis of amines from ketones by AmDH, L-aminoacidproduct[20]. Inaddition,intheasymmetricsynthesisofaminesfromketonesbyAmDH, product inhibition has been previously suggested by the use of a biphasic reaction system to productinhibitionhasbeenpreviouslysuggestedbytheuseofabiphasicreactionsystemtoostensibly ostensibly overcome inhibition in AmDH‐catalyzed reactions [27]. overcomeinhibitioninAmDH-catalyzedreactions[27]. Catalysts 2017, 7, 251 6 of 13 Catalysts2017,7,251 6of13 Catalysts 2017, 7, 251 6 of 13 30 30 25 25 20 20 ) % ) %( 15 ( e 15 ee e pH 8.0 10 ppHH 88..05 10 ppHH 89..50 pH 9.0 5 5 0 0 0 5 10 15 20 25 0 5 10 15 20 25 Time (h) Time (h) Figure 5. The kinetic resolution of 10 mM a12. Reaction conditions: 1 mM NAD+, 100 mM Tris/HCl FiguFriegu5r.eT 5h.e Tkhien ektiincertiecs orelusotiluontioonf o10f 1m0 MmMa1 2a.12R. eRaecaticotinonc ocnodnidtiitoionns:s:1 1m mMMN NAADD++,, 110000 mmMM TTrriiss//HHCCl l buffer (pH 8.0–9.0), 1 mg/mL of AmDH, and 1 mg/mL of Nox. buffbeurf(fpeHr (p8H.0 –89.0.0–)9,.10)m, 1g m/mg/LmLof oAf AmmDDHH,a, nandd1 1m mgg//mmLL ooff NNooxx.. Therefore, the product inhibition of AmDH by ketones (2‐aminoheptanone or acetophenone) Therefore, the product inhibition of AmDH by ketones (2‐aminoheptanone or acetophenone) wTahse reexfaomrei,ntehde ipnr otdhue cptrinesheinbcitei oonf o1f0A mmMD Ha1b yankde toan12e s((F2i-gaumrein 6oah)e. pItna nthoen eporresaecnecteo pohfe 2n omneM) w2a‐s was examined in the presence of 10 mM a1 and a12 (Figure 6a). In the presence of 2 mM 2‐ examaminiendohinepthtaenpornees eanncde aocfe1to0pmheMnoan1ea, nthdea e1n2z(yFmigeu srheo6wa)e.dI notnhlye p60re%s eanncde o49f%2 mofM its2 -oarmigiinnoahl eapcttiavnitoyn. e aminoheptanone and acetophenone, the enzyme showed only 60% and 49% of its original activity. These results indicate that the continuous removal of ketone in the reaction mixture could improve andacetophenone,theenzymeshowedonly60%and49%ofitsoriginalactivity. Theseresultsindicate These results indicate that the continuous removal of ketone in the reaction mixture could improve the degree of conversion. Also, the activity inhibition of Nox by the substrate and product was thatthecontinuousremovalofketoneinthereactionmixturecouldimprovethedegreeofconversion. the degree of conversion. Also, the activity inhibition of Nox by the substrate and product was examined (Figure 6b). The ketones did not significantly affect the activity of Nox, but the activity was Also,theactivityinhibitionofNoxbythesubstrateandproductwasexamined(Figure6b).Theketones examined (Figure 6b). The ketones did not significantly affect the activity of Nox, but the activity was dramatically reduced in the presence of amine (5 mM). The relative activities of Nox in the presence diddnroatmsiagtniciafilclya nrteldyuacfefedc itnt htheea cptrievsietyncoef oNf oaxm,binuet (t5h emaMct)i.v Tithyew realsatdivraem acattiivciatlileys roefd Nuocexd inin ththe epprerseesnencec e of a1 and a12 were only 38% and 74% of its original activity, respectively. The unexpected poor ofamofi na1e (a5nmd Ma1)2. Twheerree loantliyv e3a8c%ti vaintide s7o4f%N oofx iitns tohreigpinreasl eanccteivoitfya, 1reasnpdecat1iv2ewlye. rTehoen luyn3e8x%peacntedd 7p4o%oro f conversion of the coupled AmDH/Nox reaction is partly due to product inhibition of AmDH by itsocroignivnearlsaiocnti voift yt,hree scpoeucptilvedel yA.mThDeHu/nNeoxxp ercetaecdtiopno oisr cpoanrvtleyr sdiuone otof tphreocdouucpt liendhiAbimtioDnH o/fN AomxDreHac tbiyo n ketone and activity inhibition of Nox by the amine. ispakrettloynde uaendto apctriovdituyc itnihnihbiitbioitnio onf oNfoAx mbyD tHheb aymkienteo. neandactivityinhibitionofNoxbytheamine. 100 100 2-heptanone 80 2a-cheetopptahneonnoene %) 80 acetophenone ) %( (y activity e activit 6600 ative elativ 4400 elR R 20 20 0 0 0 2 4 6 8 10 0 2 4 6 8 10 Concentration (mM) Concentration (mM) (a) (a) Figure6.Cont. Catalysts2017,7,251 7of13 Catalysts 2017, 7, 251 7 of 13 120 100 ) % ( 80 y vit cti 60 a e v ati el 40 R 20 0 CON a12 2-heptanone a1 acetophenone (b) Figure 6. Substrate and product inhibition of AmDH and Nox; (a) Effect of ketone concentration on Figure6.SubstrateandproductinhibitionofAmDHandNox;(a)Effectofketoneconcentrationon AmDAmHDaHct iavcittiyv.itRy.e Racetaicotniocno cnodnidtiiotinosn:s:1 10000 mmMM TTrriiss//HHCCl lbbuufffefre r(p(HpH 8.58).,5 1), m1Mm MNANDA+, D10+ ,m1M0 ma1M2 (ao1r 2 a1), 2‐heptanone (or acetophenone) (0–25 mM), 0.3 mg/mL of AmDH; (b) Effect of amine and ketone (ora1),2-heptanone(oracetophenone)(0–25mM),0.3mg/mLofAmDH;(b)Effectofamineand on Nox activity. Reaction conditions: 0.2 mM NADH, 5 mM amine or ketone, 100 mM Tris/HCl buffer ketoneonNoxactivity.Reactionconditions:0.2mMNADH,5mMamineorketone,100mMTris/HCl (pH 8.5), and 0.05 mg/mL of Nox. (CON: control, the Nox activity in the absence of amine and ketone.) buffer(pH8.5),and0.05mg/mLofNox. (CON:control,theNoxactivityintheabsenceofamine andketone.) 2.3. Kinetic Resolution of Amines Using E. coli Co‐Expressing AmDH and Nox The immobilization of enzymes on a solid support system improves catalyst stability, recycling, 2.3. KineticResolutionofAminesUsingE.coliCo-ExpressingAmDHandNox and longevity under industrially relevant process conditions [28]. For example, polyethyleneimine‐ acTthiveateimd magoabroilsiez abteiaodns woferee nuzsyedm teos noonn‐coavasloelnidtly sauttpapcho rpthossypshteomrylaimtedp rvoevrseisoncsa otfa ltyhset cosftaacbtoilristy , recyNclAinDg+,, FaAnDd+, laonndg PevLiPt,y crueantdinegr ainn dasussotcriiaatliloyn/dreislesovcainattiopnr eoqcuesilsibrciounmd iotfi opnhsos[p2h8o].rylaFteodr aenxda nmopnl‐e, polypehtohsyplhenoreyimlatiende -accotfiavcatotersd oang asruopsepobret a[d2s9]w. Aerne iunscerdeastoe nino ntu-cronvoavleern tnlyumabttearc hwapsh oosbpsherovreydla tined verscioomnspoarfitshoen ctoof ancotno‐rismNmAoDbi+li,zFeAd Den+z,yamndesP oLrP ,ncorne‐aitminmgoabniliazsesdo ccioaftaiocnto/rds.i sHsoocwiaetvieorn, einq uthiliisb rsituumdyo, f phossupbhsotrraytlea taendda pnrdodnuocnt- pinhhoisbpithioonrsy loaft eednzcyomfaecst owrseroen thsue pmpaojortr [h2u9]r.dAlens fionrc rceaarsryeiinngt ouurnt othvee refnfuicmienbte r waskoinbesetircv reedsoinluctioomn poaf rriasocenmtoic naomni-nimesm uosibnigli zAemdDenHz yamnde sNoorxn. oTnh-eimremfooreb, irliezceodmcboifnaacntot rEss.cHheoriwcheiva ecro,lii n thiscsetlulsd cyo,‐seuxbpsrtersastiengan AdmpDroHd uacntdi nNhoibxi twioenrse oufseendz aysm beisocwatearleystthse (mvidaejo irnhfrua)r.d Tlehse fuorsec aorfr ywihnogleo‐ucetltlhs e efficiinesntteakdin oetfi cisroelsaoteludt ieonnzyomfreasc einm bicioalmogiinceasl upsroincgesAsems DhaHs aan sdimNpolxe .aTnhde reecfoonroem,rieccaol madbvinaanntatgEes,c haesr tihchei a coliccoesllts focor -ceexllp lryessissi anngdA pmurDifHicaatinodn Nis orexdwuceered u[3s0e]d. Aasnobtihoecra atadlvyasntsta(gveid oefi na fwrah).oTleh‐ceeull sreeaocftiwonh osyles-tceemll s is that cofactor‐dependent enzymatic reactions can be effectively performed by using endogenous insteadofisolatedenzymesinbiologicalprocesseshasasimpleandeconomicaladvantage,asthecost cofactors without adding costly cofactors [30]. Sometimes, a whole cell reaction is less susceptible to forcelllysisandpurificationisreduced[30]. Anotheradvantageofawhole-cellreactionsystemisthat enzyme inhibition by substrate and product due to the diffusion barrier of the cell membrane [31]. cofactor-dependentenzymaticreactionscanbeeffectivelyperformedbyusingendogenouscofactors In order to develop a recombinant E. coli system expressing both enzymes in a single cell, the withoutaddingcostlycofactors[30]. Sometimes,awholecellreactionislesssusceptibletoenzyme AmDH and Nox genes were cloned into pET24ma and pETDuet vectors, respectively. After inhibitionbysubstrateandproductduetothediffusionbarrierofthecellmembrane[31]. overnight induction at 20 °C, the cells were harvested, washed twice with 100 mM Tris/HCl buffer InordertodeveloparecombinantE.colisystemexpressingbothenzymesinasinglecell,the (pH 8.5), and used for the whole‐cell reaction. When kinetic resolutions of 10 mM a12 and 5 mM a1 AmDHandNoxgeneswereclonedintopET24maandpETDuetvectors,respectively. Afterovernight were carried out in the 100 mM Tris/HCl buffer (pH 8.5) with whole‐cell (20 mg dry cell weight inductionat20◦C,thecellswereharvested,washedtwicewith100mMTris/HClbuffer(pH8.5), (DCW)/mL) without adding cofactor NAD+ for 24 h, both of the amines were successfully resolved and used for the whole-cell reaction. When kinetic resolutions of 10 mM a12 and 5 mM a1 were into the (S)‐form with a high ee (>99%). These results clearly showed that the use of whole‐cell was carriedoutinthe100mMTris/HClbuffer(pH8.5)withwhole-cell(20mgdrycellweight(DCW)/mL) much more efficient than the reaction using purified enzymes that gave 26% ee (Figure 6b). The Shell withgorouutpa dredpionrgtecdo tfhaactt oinr NthAe aDs+ymfomre2tr4ich s,ybnoththesoisf otfh cehairmali anmesinwe ebrye AsumcDceHs,s ftuhell ylyroepshoillvizeedd iwnhtoolteh‐e (S)-fcoerllm gawveit hbeattehri gcohnevee(r>si9o9n%s b).otThh iens ethree asbusletsnccele aanrdly psrhesoewnceed otfh caot‐stohleveunste hoefpwtanheo lteh-acne lllywopahsilmizuedch morleyseaftfie c[i2e0n]t. tThhaen utshee orfe awcthioolne‐ucesliln agpppuarreifinteldy erendzuycmese sthteh astubgsatvraete2/6p%rodeeuc(tF iignuhribeit6iobn)., aTnhde/oSrh ietl l grouinpcrreeapsoerst ethdet shtaatbiinlittyh oefa tshyem enmzeytmriecss. yWnhtheens tihseo rfecahcitriaolnas mwiinthe 2b0y, 3A0m, 4D0,H an,tdh 5e0l ymoMph ai1li2z ewderwe hcaorleri-ecde ll gavoeubte attt eprHc o8n.5v uerssiniogn wshboolteh‐cienll t(h25e mabgs eDnCcWe a/mndL)p froers 2e4n che, tohfec eoe- vsoalluveesn tofh (eSp)‐taa1n2e wthearen >l9y9o%p,h 8il7iz%e,d lysa te [20]. The use of whole-cell apparently reduces the substrate/product inhibition, and/or it Catalysts2017,7,251 8of13 Catalysts 2017, 7, 251 8 of 13 increasesthestabilityoftheenzymes. Whenthereactionswith20,30,40,and50mMa12werecarried outatpH8.5usingwhole-cell(25mgDCW/mL)for24h,theeevaluesof(S)-a12were>99%,87%, 48%, and 30%, respectively (Figure 7). At initial substrate concentrations of 20, 40, and 50 mM, the 48%,and30%,respectively(Figure7). Atinitialsubstrateconcentrationsof20,40,and50mM,the produced 2‐heptanone, determined by the consumed a12, was 14.0, 12.9, and 11.6 mM, respectively. produced2-heptanone,determinedbytheconsumeda12,was14.0,12.9,and11.6mM,respectively. When 2‐heptanone is accumulated to some extent (11–14 mM), the reaction does not seem to proceed When2-heptanoneisaccumulatedtosomeextent(11–14mM),thereactiondoesnotseemtoproceed any further. The main reason for the lower ee at higher substrate concentrations seems to be the any further. The main reason for the lower ee at higher substrate concentrations seems to be the inhibition of AmDH by 2‐heptanone. inhibitionofAmDHby2-heptanone. 100 80 20 mM 30 mM ) 60 40 mM % 50 mM ( e e 40 20 0 0 5 10 15 20 25 Time (h) FigFuigreur7e. R7e. aRcteioanctpiorno fiplersoofifleths eokfi ntehteic kreinsoeltuict iornesaotludtififoenre natt cdoinffceernetnrat ticoonnscoefnat1ra2t.iRoneasc toiof nac1o2n. dRiteiaocntsi:on a12co(0n–d5i0tiomnMs: ),a11020 (m0–M50T rmisM/H), C1l0b0u mffeMr( pTHris8/.H5)C,wl hboulfef-ecre l(lp(H25 8m.5g),d wryhcoellel‐wceelilg h(2t5( DmCgW d)/rym cLe).ll weight (DCW)/mL). Thenextstepwastoincreasethefinalproduct’sconcentration,whichcouldbeaccomplished The next step was to increase the final product’s concentration, which could be accomplished by byenhancingthebiocatalystconcentrationsinthereactionmedium. Comparedtoa12,thekinetic enhancing the biocatalyst concentrations in the reaction medium. Compared to a12, the kinetic resolution of a1 is much more difficult due to the poor reactivity of AmDH for a1, a more severe resolution of a1 is much more difficult due to the poor reactivity of AmDH for a1, a more severe productinhibitionbythecorrespondingketone,acetophenone,andastrongerinhibitionofNoxby product inhibition by the corresponding ketone, acetophenone, and a stronger inhibition of Nox by a1 (Figure 6). After the concentrations of a1 and a12 were set at 20 mM and 50 mM, respectively, a1 (Figure 6). After the concentrations of a1 and a12 were set at 20 mM and 50 mM, respectively, the the reaction was performed to determine the amount of whole-cell catalyst required to obtain the reaction was performed to determine the amount of whole‐cell catalyst required to obtain the opticallypure(S)-amine(Figure8). Theminimumamountsofwhole-cellrequiredtoresolve50mM optically pure (S)‐amine (Figure 8). The minimum amounts of whole‐cell required to resolve 50 mM a12and20mMa1into(S)-form(>99%ee)were60and100mgofDCW/mL,respectively. Next,the a12 and 20 mM a1 into (S)‐form (>99% ee) were 60 and 100 mg of DCW/mL, respectively. Next, the reactionprofilesforthekineticresolutionofa1anda12weredetermined(Figure9). Inthe50mMa12 reaction profiles for the kinetic resolution of a1 and a12 were determined (Figure 9). In the 50 mM reaction,40mgDCW/mLofwhole-cellgaveonly77%eefor24h(Figure8),but60mgDCW/mLof a12 reaction, 40 mg DCW/mL of whole‐cell gave only 77% ee for 24 h (Figure 8), but 60 mg DCW/mL whole-cellgave>99%eein1h(Figure9). Also,theeevalueofa1was95%in24hofreactionwith of whole‐cell gave >99% ee in 1 h (Figure 9). Also, the ee value of a1 was 95% in 24 h of reaction with 80mgDCW/mLofwhole-cell;however,theeevaluebecame>99%after5hofreactionwith100mg 80 mg DCW/mL of whole‐cell; however, the ee value became >99% after 5 h of reaction with 100 mg DCW/mLofwhole-cell. Thisresultisconsistentwiththeobservationthattheenzymeactivityof DCW/mL of whole‐cell. This result is consistent with the observation that the enzyme activity of AmDHisinhibitedbytheketoneproduct. AmDH is inhibited by the ketone product. Catalysts 2017, 7, 251 9 of 13 CaCtaatlyalsytsst2s0 21071,77,, 72,5 2151 99o fo1f 313 100 100 a12 80 a1a21 80 a1 60 %) 60 %) (e (ee 40 e 40 20 20 0 0 0 20 40 60 80 100 0 20 40 60 80 100 Concentration (mg DCW/mL) Concentration (mg DCW/mL) Figure 8. The effect of the amount of whole‐cell on the kinetic resolution of 50 mM a12 or 20 mM a1. FiFgiRugeruaerce8t .i8oT.n hT cehoeen fedffeifcteitcootn fost:f h 1teh00ea mmamoMuo unTntritos fo/Hfw wChlho bloeul-efc‐fecelerl l(lop onHnt h8the.5ek) ,ki n5ine0t emitcicMr er seaos1ol2ul u(toitoiron 2n0o ofmf5 M500m am1MM), aa a1n12d2o worrh2 2o00lme m‐cMeMlla a1(11.0. – RRea1ec0at0cito minongc oDconCndWditiit/omionnLs:s).: 110000 mmMM TTrriiss//HHCCll bbuuffffeerr (p(pHH 8.85.)5,) 5,05 0mmMM a1a21 (2or(o 2r02 m0Mm Ma1)a, 1a)n,da nwdhwolhe‐ocleel-lc (e1l0l– (1100–01 0m0gm DgCDWC/Wm/Lm). L). 100 100 80 a12 80 a1a21 a1 ) 60 % %) (e 60 (ee e 40 40 20 20 0 0 0 2 4 6 8 10 0 2 4 6 8 10 Time (h) Time (h) FigFuirgeu9r.eR 9e. aRcetiaocntiporno fiplreosfiolefst hoef kthinee ktiicnreetsioc lruetsioonluotifo5n0 omf M50a m12Mo ra2102 morM 20a 1m.SMix aty1.m Siilxlitgyr mamilsli(g6r0ammsg )(60 anFdimg1ug0r)0 ea m9n.gd R D1eCa0c0Wt imo/nmg pLDrooCffWiwle/hsm ooLlfe -tochefe l lwkwihnaoeslteiuc‐cs reeedlls ofwolurattsih ouensr eoedaf c 5tf0ioo rmn tMohfe 5 ar01e2ma coMtri o2an01 2mofoM r5 20a0 1mm. SMMix taay11 2,m roeilsrlp ig2er0ca tmimvesM l(y 6.a01 , mrge)s paencdti v1e0l0y . mg DCW/mL of whole‐cell was used for the reaction of 50 mM a12 or 20 mM a1, respectively. Toinvestigatetheutilityofawhole-cellsystemexpressingAmDHandNox,thekineticresolutions To investigate the utility of a whole‐cell system expressing AmDH and Nox, the kinetic ofvariousrac-amines(10mM)wereperformed(Table1). a5,a7,anda8weresuccessfullyresolved resoTluo tiionnvse ostfi gvaatreio uthse r auc‐tailmityin eosf (1a0 wmhMol)e w‐ceerlle psyesrftoemrm eedxp (Treasbslien g1) .A am5, Da7H, a nandd a 8N woexr,e tshuec ckeisnsefutilcl y into (S)-form with a high ee (>99%). However, the kinetic resolutions of a4, a6, and a11 gave 66%, rerseosloulvtieodn sin otfo v (aSr)i‐ofoursm ra wc‐iatmh ian hesig (h1 0e em (>M99) %w)e.r He powerefovremr, etdhe ( Tkainbeleti 1c )r. eas5o,l au7ti, oannsd o af8 a w4, ear6e, sauncdc eas1s1f uglalyv e 28%,and33%ee,respectively. Amongthefluorinatedamines(a4,a5,anda6),a4isthemostreactive re6s6o%lv, e2d8 %in,t oa n(Sd) ‐3fo3%rm e we, irtehs ap ehcitgihve eley (. >A99m%o)n. gH tohwe efvluero,r tihnea tkeidn eatmic irneesso l(ua4ti,o an5s, oafn ad4 ,a a66),, aan4 dis a 1th1e g mavoes t substrate,butonlya5wasconvertedintoanopticallypureform. Also,althougha11wasthemost 66re%a,c t2i8v%e ,s uabnsdt r3a3te%, beue,t roenslpye ac5ti vwealys .c Aonmvoenrtge dth ine tfol uaonr ionpattiecdal laym piunrees f(oar4m, a. 5A, lsaon,d a lat6h)o, uag4h i sa 1th1 ew maso tsht e reactivesubstrateinthetestedsubstrates(Figure2),theeevalueofa11wasonly33%. Ingeneral,the remacotsitv ree saucbtisvter astueb, sbturat toen ilny tah5e wteasste cdo nsuvbesrttreadt eins t(oF iagnu orep 2ti)c, atlhlye epeu vrael ufoer omf .a A11ls wo,a asl tohnolyu g3h3% a1. 1In w gaesn tehrea l, morereactivesubstratesareexpectedtohavehigherconversionratesintoproduct. However,itis most reactive substrate in the tested substrates (Figure 2), the ee value of a11 was only 33%. In general, the more reactive substrates are expected to have higher conversion rates into product. However, it likelythattherewasnoclearcorrelationbetweenfinalconversionandsubstratereactivitybecauseof thise lmikoerlye trheaact ttihveer esu wbastsr natoe sc laeraer ceoxrpreecltaetdio nto b heatwvee ehnig fhinear lc coonnvveerrssiioonn r aanteds siunbtos tprartoed ruecatc. tHivoitwy ebveecra,u ist e is likely that there was no clear correlation between final conversion and substrate reactivity because Catalysts2017,7,251 10of13 anunclearcorrelationbetweenthereactivityandproductinhibitionofAmDHbythecorresponding ketone. Inthecaseofa4,a6,anda11,thereactionswerecarriedoutatalowerconcentration(5mM) withthesamecondition,andtheeevalueswere77%,78%,and51%,respectively(Table1). Although theeevalueincreasedmorethanwhen10mMsubstratewasused,theopticallypureformcouldnot beobtained. Table1.KineticresolutionofvariousaminesusingAmDH/Noxa. Substrate Conc.(mM) Conv.(%) eeS(%) a4 10 40 66 a4 5 44 77 a5 10 50 >99 a6b 10 22 28 a6b 5 44 78 a7 10 50 >99 a8 10 50 >99 a11 10 25 33 a11 5 34 51 aThereactionconditions: 5mLofreactionvolume,120mgDCW/mLofwhole-cell,Tris/HClbuffer(100mM, pH8.5),and5or10mMracemicsubstrate(seeFigure2)fora24hreactionat37◦C.Conversionandeewere determinedbyCrownpakCR(+)column;bConversionandeeweredeterminedbyC18Symmetrycolumnafter GITCderivatization. 3. MaterialsandMethods 3.1. Chemicals Allamines(a1–a12),GITC(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosylisothiocynate),cofactors (NADHandNAD+),andisopropyl-β-D-thiogalactopyranosidewereobtainedfromSigma-Aldrich Yongin,Korea. 3.2. EnzymeExpressionandPurification TheAmDHandNoxgenes[18,24]weresynthesizedbyBioneerCorporation(Daejeon,Korea),and eachgenewastheninsertedintoIPTG-induciblepET24mavectors. Theplasmidwasthenintroduced intoE.coli(BL21)cellsandthetransformantsweregrownat37◦Cin1LLB-containingkanamycin (100µg/mL)[32]. WhentheOD reached0.5,IPTGwasaddedtoafinalconcentrationof0.5mM. 600 Afterovernightinductionat20◦C,thecellswereharvestedandwashedtwicewith100mMTris/HCl buffer(pH8.5). Aftercentrifugation,thecellpelletswereresuspendedin10mLvolumeof20mM Tris/HClbuffer(pH8.5). Thesuspensionwasthensubjectedtoultrasonicdisruption. Thedisruption periodwas5swith10sintervalsinanicebathforadurationof30min. TheC-terminalHis6-tagged enzymewaspurifiedat4◦ConaNi-NTAagaroseresinobtainedfromQiagen(Hilden,Germany). Theelutedsolutioncontainingpurifiedproteinwasdialyzedagainst50mMpotassiumphosphate buffer(pH8.5)andconcentratedusinganAmiconPM-10ultrafiltrationunit. Glycerolwasaddedto thepurifiedenzymesolution(25%)anditwasstoredat−20◦Cforfurtherstudy. For the co-expression of AmDH and Nox, the AmDH gene was amplified and subsequently insertedintothepETDuet-1(Novagen,Madison,WI,USA).Theplasmidwasthenintroducedinto the E. coli (BL21) bearing pET24ma:Nox. Then, enzymes were overexpressed in the presence of kanamycin(100µg/mL)andampicillin(100µg/mL)asdescribeabove. Afterharvesting,thecells werewashedtwicewith100mMTris/HClbuffer(pH8.5)andtheywereimmediatelyusedforthe whole-cellreaction. 3.3. EnzymeAssay The activities of AmDH and Nox were determined using an NADH-dependent (340 nm, λ =6220M−1cm−1) spectrophotometric assay. Activity is calculated from the stoichiometric 340
Description: