ebook img

the kinematic morphology–density relation in Abell 85, Abell 168 and Abell 2399 PDF

19 Pages·2014·3.11 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview the kinematic morphology–density relation in Abell 85, Abell 168 and Abell 2399

MNRAS443,485–503(2014) doi:10.1093/mnras/stu1165 The SAMI Pilot Survey: the kinematic morphology–density relation in Abell 85, Abell 168 and Abell 2399 L. M. R. Fogarty,1,2‹ Nicholas Scott,1,2 Matt S. Owers,3 S. Brough,3 Scott M. Croom,1,2 Michael B. Pracy,1 R. C. W. Houghton,4 Joss Bland-Hawthorn,1 Matthew Colless,5 Roger L. Davies,4 D. Heath Jones,6 J. T. Allen,1,2 Julia J. Bryant,1,2,3 Michael Goodwin,3 Andrew W. Green,3 Iraklis S. Konstantopoulos,3 J. S. Lawrence,3 Samuel Richards,1,2,3 Luca Cortese7 and Rob Sharp5 Do w n 1SydneyInstituteforAstronomy,SchoolofPhysics,UniversityofSydney,NSW2006,Australia lo a 2ARCCentreofExcellenceforAll-SkyAstrophysics(CAASTRO) de 34AAustsrtorpahliyasnicAss,tDroenpoamrtimcaelnOtobfsPerhvyastiocrsy,,UPnOivBerosxit9y1o5f,ONxofrotrhd,RDydeenyNsSWWil1ki6n7s0o,nABuustirldailniag,KebleRd.,OxfordOX13RH,UK d from 5ResearchSchoolofAstronomyandAstrophysics,AustralianNationalUniversity,CanberraACT2611,Australia h 6SchoolofPhysics,MonashUniversity,ClaytonVIC3800,Australia ttp s 7CentreforAstrophysicsandSupercomputing,SwinburneUniversityofTechnology,HawthornVIC3122,Australia ://a c a d e m Accepted2014June9.Received2014June2;inoriginalform2014April14 ic .o u p .c o ABSTRACT m /m Weexaminethekinematicmorphologyofearly-typegalaxies(ETGs)inthreegalaxyclusters n ra Abell85,168and2399.UsingdatafromtheSydney-AAOMulti-objectIntegralfieldspectro- s /a graphwemeasurespatiallyresolvedkinematicsfor79ETGsintheseclusters.Wecalculate rtic λ ,aproxyfortheprojectedspecificstellarangularmomentum,foreachgalaxyandclassify le R /4 the79ETGsinoursamplesasfastorslowrotators.Wecalculatethefractionofslowrotators 43 intheETGpopulations(fSR)oftheclusterstobe0.21±0.08,0.08±0.08and0.12±0.06for /1/4 Abell85,168and2399,respectively,withanoverallfractionof0.15±0.04.Thesenumbers 85 /1 arebroadlyconsistentwiththevaluesfoundintheliterature,confirmingrecentworkasserting 4 8 7 that the fraction of slow rotators in the ETG population is constant across many orders of 5 2 4 magnitude in global environment. We examine the distribution of kinematic classes in each b y cluster as a function of environment using the projected density of galaxies: the kinematic g u bmuotrpinhoAlobgeyll–1d6e8nsaitnydre2l3a9ti9ont.hWisetrfiennddtihsantointAsebeenl.l8W5efeSxRaimncinreeastheesidnifhfiegrheenrcedsenbseittwyereegniothnes est on 1 individualclusterstoexplainthis.Inaddition,wefindslowrotatorsontheoutskirtsoftwoof 0 M theclustersstudied,Abell85and2399.Thesegalaxiesresideinintermediatetolowdensity a rc regions and have clearly not formed at the centre of a cluster environment. We hypothesize h 2 thattheyformedatthecentresofgroupsandarefallingintotheclustersforthefirsttime. 0 2 3 Keywords: techniques:imagingspectroscopy–galaxies:clusters:individualAbell85,Abell 168,Abell2399–galaxies:ellipticalandlenticular,cD–galaxies:kinematicsanddynamics. symmetriclightprofilethatdoesnotexhibitspiralstructure.Within 1 INTRODUCTION thisdefinitionETGsaretraditionallyclassifiedmorphologicallyas Early-typegalaxies(ETGs)havebeenstudiedextensivelysincethe ellipticalandS0galaxies.However,thisclassificationdoesnotnec- questtounderstandgalaxyformationbegan.Exactlywhatdefines essarilyreflectphysicalprocesseswithinthegalaxiesthemselves. anETG,however,canbesubtlydifferentdependingonmanycon- TounderstandtheformationofETGswewishtoprobethesepro- textualfactors.HerewedefineanETGtobeagalaxywithasmooth cessesandinterprettheirimpactonETGsandtheirformationhisto- ries.OnewaytodothisistoprobetheangularmomentumofETGs throughtheirmeasuredkinematicsandinsteadclassifythembased (cid:3) onakinematicmorphology.TheSAURONandATLAS3Dsurveys E-mail:[email protected] (cid:2)C 2014TheAuthors PublishedbyOxfordUniversityPressonbehalfoftheRoyalAstronomicalSociety 486 L.M.R.Fogartyetal. introducedthistechnique(Cappellarietal.2007;Emsellemetal. thekinematicmorphology–densityrelationinAbell1689,amuch 2007,2011)andanewclassificationsystemforETGs.Inthissys- highermassanddenserclusterthanVirgo.Insteadofglobalgalaxy tem,highangularmomentumETGsareclassifiedasfastrotators fractions they used the metric of SR fraction, f , defined as the SR (FRs)andlowangularmomentumETGsasslowrotators(SRs). fractionofSRsintheETGpopulation.Theyfoundatrendofin- Inthisnewframework,mostETGs(∼86percent)arefoundto creasing f with increasing local density, analogous to the trend SR exhibitregularrotation,whereasacomparativelysmallerfraction in the fraction of SRs in the total population seen in ATLAS3D. ofobjectsshownoorweaksignsofrotation.Many(50percent) This work was then followed by a study of the Coma cluster by elliptical and most (90 percent) S0 galaxies turn out to be FRs. Houghtonetal.(2013)whosawthesametrendofincreasingf SR Thesegalaxiesareaxisymmetricoblatespheroidsandarethought withincreasinglocaldensity,butalsonotedthattheglobalvalue toharbourstellardiscs(Krajnovic´etal.2011).SRsontheotherhand forf wasconstantacrossallsamples.Thatistosaythatacross SR arethoughttomostlybetruedispersiondominatedsystems,which many types of global host environment (GHE; such as low-mass maybemildlytriaxial(Emsellemetal.2007).Giventhedifference cluster, high mass cluster, field, etc.) the relative number of SRs intheirdynamics,theformationmechanismsresponsibleforFRs andFRsisconstant.Thisimpliesthattheformationmechanismfor and SRs must be different. However, the dominant factor in the SRs must be equally efficient across a wide range of GHEs, i.e. D formationofSRsandFRsisstillopenfordebate. SRsarenotonlyformedinclusters.However,withinaparticular o w SinglemergingeventmodelsbyBoisetal.(2011)showthatitis GHE, Houghton et al. (2013) did confirm the strong dependence n lo possibletocreateFRsandSRsinmajormergerscenarios.However, of f on local point environment (LPE; defined as the local en- a SR d thecreationofanSRbyasinglemajormergerreliesontheorbits vironment of the galaxy) suggesting that perhaps SRs migrate to ed of the two progenitor galaxies being exactly retrograde, and this thecentreoftheirhostclustersthroughdynamicalfriction,despite fro m scenariocreatesanSRwithmanysignaturesofbeingadoublesigma forming elsewhere. Scott et al. (2014) investigated the kinematic h galaxy(i.e.twocounter-rotatingdiscs),thusnotatruedispersion- morphology–densityrelationinthelow-massFornaxcluster,find- ttp s dominatedsystem.Investigatingapopulationofgalaxies,Khochfar ing that fSR increases towards the centre of the cluster. The trend ://a et al. (2011) use semi-analytic models to show that in merging seen is weaker in Fornax than the more massive clusters studied c a scenariosanFRistheusualproduct,eitherthroughmaintaininga (Virgo, Coma and Abell 1689). Scott et al. (2014) also find that de m smallamountofstarsinastellardiscorregrowingthediscafterthe eveninmass-matchedsamplesofSRsandFRstheSRsaremore ic mergerevent.Conversely,theyfindthatalthoughSRsarelikelyto likelytoliveindenserLPEs.Thisimpliesthatdynamicalfriction .o u haveundergonemoremajormergerstheirrecentpastwasdominated alonecannotberesponsibleforthekinematicmorphology–density p.c o bymultipleminormergerswithrandomtrajectories.Theseminor relation. m events do not allow a stellar disc to build up in the remnant and Thecausesandnatureofthekinematicmorphology–densityre- /m n canthereforeleadtotheformationoftrueSRs.Naabetal.(2013) lation,anditsimportanceinrelationtotheformationofETGs,are ra s addressedtheformationofFRsandSRsbystudyingcosmological still not well understood. Outstanding questions include, what is /a hydrodynamical simulations of 44 central galaxies and satellites, thedominantformationmechanismforSRsandFRs,ifany?Are rtic withtheuniqueabilitytolinkthekinematicfeaturesintheirz=0 SRsmostlyformedinsituatthecentreoftheirGHEsordothey le/4 4 galaxies with the formation histories of individual objects. They migrate there through mass segregation by dynamical friction, or 3 /1 concluded that it is not possible to single out individual FR and both?Whatrolesdotheprocessesofmajorandminormergingplay /4 SR formation scenarios, instead finding it possible to make both in the creation of FRs and SRs and their observed distributions? 85 classes of ETGs by several means. Factors like the mass ratio in These questions can only be answered by increasing the number /14 8 mergingevents,theamountofgaspresent,andwheninthehistory ofETGsobservedwithspatiallyresolvedspectroscopyandcom- 7 5 ofaparticulargalaxymajormergereventsoccurred,canallimpact paringtheseobservationstoavarietyofsimulationssuchasthose 24 thetypeofETGformed. showninBoisetal.(2011),Khochfaretal.(2011)andNaabetal. by IthasbeenshowninworkbyOemler(1974)andDavis&Geller (2013).Sincethecollectionofintegralfieldspectroscopy(IFS)data gu e (1976)thattherelativefractionofdifferentgalaxymorphological tendstobetimeconsumingtheseobservationscanbedifficultto s typesvarieswithenvironment,suchthatETGsaremoreprevalent accomplishquickly.However,theintroductionofnewmulti-object t on ingalaxyclustersattheexpenseoflate-typegalaxies(LTGs,here IFSinstrumentsmeansthatsoonlargesamplesofgalaxieswillbe 10 includingbothspiralandirregulargalaxies).Usingthelocalgalaxy availableforstudyinthisway. M a density as an independent variable to study this effect, Dressler The Sydney-AAO Multi-object Integral field spectrograph rc h (1980)foundaverycleartrendwithdensity,suchthatthepopula- (SAMI; Croom et al. 2012) is one such multi-object IFS. SAMI 2 0 tionfractionofETGsincreased,withacorrespondingdecreasein was commissioned at the Anglo-Australian Telescope (AAT) in 23 theLTGfraction,athigherlocaldensity.Thisisthemorphology– 2011andcomprises13fibrebundleintegralfieldunits(IFUs)de- density relation. Crucially, this relation was found to hold for all ployable across a 1◦ diameter field of view. SAMI can target 13 typesofclustersstudied–hightolowmass,regularandirregular, galaxiesinasingleobservation(ormoreusually12galaxiesand andsomestrongX-raysources. one calibration star), significantly decreasing the amount of time TheimportanceofenvironmentintheformationofFRsandSRs neededtobuildalargesampleofgalaxieswithIFSdata.Alarge- has been investigated in several recent studies. Cappellari et al. scalegalaxysurveyusingSAMIiscurrentlyunderway(theSAMI (2011),usingtheATLAS3Dsampleof260ETGsina42Mpcvol- GalaxySurvey1)withmanyscientificaimssurroundingthenature ume,showedthatthefractionofSRsintheiroverallparentgalaxy ofgalaxyformationandevolution. sample(includingETGsandLTGs),increasessharplyinthecentre TheSAMIPilotSurveyisaprecursortotheSAMIGalaxySurvey, of the Virgo cluster. Analogous to the morphology–density rela- comprisingobservationsofthreegalaxyclusters,Abell85,168and tion,thisisknownasthekinematicmorphology–densityrelation. 2399.TheSAMIPilotSurveywascarriedoutinordertoanswer TheincreaseinthefractionofSRsatthecentreoftheVirgocluster suggeststhatSRsmaybeformedmoreefficientlyindenserenviron- ments.D’Eugenioetal.(2013)followedthisworkbyinvestigating 1http://sami-survey.org MNRAS443,485–503(2014) SAMIkinematicmorphology–density relation 487 Table1. InformationaboutthethreeclustersobservedaspartoftheSAMIPilotSurvey.Notethatthethreeclustershave arangeinmassandX-rayluminosity(columns5and6).TheX-rayluminositiesarefromPiffarettietal.(2011).Roughly halftheobservedsampleispartoftheAbell2399selectionandthisistheonlyclustersamplewithcontaminationfrom non-memberETGs. Cluster RA(J2000) Dec.(J2000) Redshift M200virial LX,500 Numberof Numberof (×1014M(cid:5)) (×1044ergs−1) ETGs clusterETGs Abell85 10.46021 −9.30318 0.0549 11.9±1.4 5.10 28 28 Abell168 18.73997 0.40807 0.0451 2.4±0.3 0.47 12 12 Abell2399 329.38949 −7.79424 0.0583 5.3±0.7 0.45 39 33 All – – – – – 79 73 some of the specific questions about ETGs in clusters mentioned coveredbythebluearmofAAOmega.Wethereforeanalyseonly D o w above.Thispaperfocussesononeaspectofthis,investigatingthe thebluearmSAMIdata. n kinematicmorphology–densityrelationinthethreeclusters.This loa d workalmostdoublesthenumberofclusterspreviouslyexamined e d inthisway. 2.1.1 TheSAMIPilotSurveyETGs fro andThHr0ou=gh7o0uktmwse−a1dMopptc−a1.cosmology with (cid:4)m=0.3, (cid:4)(cid:5) = 0.7 TSAheMoIbPseilrovtaStiuornvseyp,reasesmntaeldlear,nmdoarnealtyarsgeedteidnpthreiscuwrsoorrktofotrhmeftuhlel m http s SAMI Galaxy Survey. The SAMI Pilot Survey was focused on ://a observationsofgalaxiesinclusterenvironments. c a 2 OBSERVATIONS AND DATA Aparentsampleofclusterswasidentifiedfromthecatalogueof de We use data from SAMI on the AAT, along with archival data Wangetal.(2011),constrainedtohavez<0.06andtobeobservable mic attheAAT (i.e.Dec. <10◦).Galaxies werethenincludedinthe .o from the Sloan Digital Sky Survey (SDSS) and the Chandra and u XMM–Newtontelescopes. sample if they were within 1◦ radius of the cluster centre and a p.c redshiftrangeof0.025<z<0.085andhadMr <−20.25.This om selectionincludesforegroundandbackgroundobjectsinthegalaxy /m n sampleforeachcluster.Sevenclusterswereincludedintheparent ra 2.1 SAMIData s sampleandthreeofthesewereobserved:Abell85,168and2399. /a SAMI(Croometal.2012)isamulti-objectintegralfieldspectro- Table1givessomedetailsabouteachofthethreeclusters. rtic le graph mounted at the prime focus of the AAT. SAMI’s 13 IFUs FortheSAMIPilotSurveyatotalof14galaxyfieldswereob- /4 4 (called hexabundles, Bland-Hawthorn et al. 2011; Bryant et al. servedon10nightsacrosstwoseparaterunsin2012Septemberand 3 2011, 2014) are deployable across the 1◦ diameter field of view October.Duetohardwareproblemswhichhavesincebeensolved, /1/4 provided by the AAT triplet corrector. Each hexabundle subtends weusedonlyninehexabundlesperfield,observingeightgalaxies 85 ∼15arcsecindiameteronthesky,andcomprises61individualfi- andonecalibrationstarineach.Weobservedatotalof112galax- /14 8 breseachwithacorediameterof1.6arcsec.Thecircularfibresare ies. However, data for six of the galaxies proved to be unusable 7 5 arrangedinacircularpattern,soinevitablythespatialcoverageof duetoastrometricerrorsduringtheSeptember2012 run.Thefinal 24 ahexabundleisnotcontiguous.However,theSAMIhexabundles observedsamplecontains106galaxies,ofallmorphologicaltypes, by have a high fill factor, with a mean of 73 percent. As well as 13 inthreeclusterfields. gu e hexabundles, SAMI also has 26 individual sky fibres, deployable For this work, we are primarily interested in the ETGs so be- s acrossthefieldofview.Thisenablesaccurateskysubtractionfor fore performing our analysis we morphologically classified each t on allIFUobservationswithouttheneedtoobserveseparateblanksky galaxybyeye.Thepurposeofthisstepisnottogeneratedetailed 10 frames.SinceanindividualSAMIfibreundersamplestheseeingat classificationsbutonlytorejectspiralandirregulargalaxiesfrom M a SidingSpring(1.9–3.0arcsecduringourobservations)weadopta oursample.Forthatreason,ourclassificationsystemcontainsonly rc h ditheringstrategytoregainspatialresolutioninourfinalcombined twocategories,ETGsandLTGs.WedefineanETGtobeagalaxy 2 0 datacubes. whichhasasmoothandsymmetriclightprofileanddoesnotexhibit 23 From the AAT prime focus unit, SAMI’s 819 fibres (includ- spiral structure. We attempt to match the ATLAS3D classification ing both the hexabundle fibres and the dedicated sky fibres) feed criteriaasmuchaspossible,butthisisinevitablyimperfectsince the double-beamed AAOmega spectrograph (Sharp et al. 2006). oursampleismuchmoredistant.WeusedSDSSDR8r-bandim- AAOmega is a fully configurable spectrograph with multiple ages,consultingSDSScolour(gri)imagesinborderlinecases.All dichroicsanddiffractiongratingstochoosefrom.Thestandardcon- galaxies with obvious spiral arms were excluded but if a galaxy figurationforSAMIusesthe580Vgratinginthebluearm,giving wasborderlineitwasincludedinthesample.Thisyielded79ETGs R ∼ 1700 over the wavelength range 3700–5700 Å. This config- and27LTGsinoursampleof106galaxies.Wefocusonlyonthe uration was chosen to cover a broad range of important stellar ETGsinthispaper,andwilldealwiththeLTGsinFogartyetal.,in absorptionfeatures,includingtheCaII H+K,Hβ andMgblinesin preparation(hereafterPaperI). galaxiesuptoaredshiftof0.1.IntheredarmSAMIusesthe1000R ThefinalsampleofETGsincludesfivegalaxieswhicharenot grating,givingR∼4500overthewavelengthrange6250–7350Å. cluster members, but foreground or background interlopers. The This configuration was chosen to allow high-resolution observa- criteria by which we allocate cluster members is discussed in tionsoftheHα and[NII] emissionlinecomplex.Forthiswork Section 3.3. The five non-members in our sample are included weareprimarilyinterestedinfittingthestellarabsorptionfeatures in our analysis, but left out of any cluster-related statistics or MNRAS443,485–503(2014) 488 L.M.R.Fogartyetal. measurements. This leaves us with a sample of 74 cluster mem- spectraarealsopropagatedthroughthisprocess.Thisprocessyields berETGs.ThedistributionoftheETGsbyclusterissummarized two data cubes for each galaxy, one each for the blue and red inTable1. spectrographarms,alongwithtwocorrespondingvariancecubes. Itisimportanttonotethatthisresamplingschemegeneratesdata and variance cubes in which individual spaxels are not indepen- 2.1.2 SAMIdatareduction dent.Theindividualvariancespectragivethecorrectuncertainties ThedatareductionprocedurefortheSAMIGalaxySurveyisde- forindividualdataspectra,butsincelightfromasingleobserved scribedindetailintwoforthcomingpapersAllenetal.,inprepara- spectrum may contribute to more than one output spectrum, the tionandSharpetal.,inpreparation.ThedatafromtheSAMIPilot uncertaintiesinadjacentoutputspaxelsarecorrelated.Thishasim- Survey are similar but not identical to the SAMI Galaxy Survey plications when measuring uncertainties on integrated properties data.Wefollowthesamedatareductionprocedureforbothcam- (such as λ ) or when calculating the true variance on composite R paigns except when performing telluric correction (which is not spectraformedbysummingtwoormoredifferentspaxels.Inasin- relevant for this work, which is confined to the blue SAMI data glewavelengthslice,eachspaxeliscorrelatedwithsomenumber cubes) and with one minor difference when combining dithers to ofitsnearestneighbours.Thestrengthofthiscorrelationdepends D createthefinaldatacubes.Theprocedureisdescribedindetailin onthepositionoftheoriginalfibresinrelationtotheoutputspaxel o w the two papers mentioned above and is therefore described only grid.Thecorrelationinformationforeachspaxelisrecordedfora n lo brieflybelow. 5×5gridofitssurroundingspaxelsonly.Thisinformationiscar- a d AllSAMIdataarereducedfromrawfilestorow-stackedspec- riedforeachspaxelineachwavelengthslice,yieldingathirdsetof ed trum(RSS)formatusingthe2DFDR datareductionpackage(Sharp ‘cubes’(thesehavetwoextradimensionscoveringthe5×5grid) fro m &Birchall2010).2DFDR wasinitiallywrittentoprocessdatafrom of correlation information for each galaxy. These cubes must be h the2dFspectrographandhasbeenupdatedtoprocessallAAOmega multipliedbythevarianceinthespaxel(s)ofinteresttoreconstruct ttp s data, including SAMI data. 2DFDR performs bias subtraction and the true variance. For example, consider the case where we wish ://a pixel-to-pixelflat-fieldingbeforeextractingindividualfibrespectra to sum the spectra in two neighbouring spaxels and estimate the c a fromarawframe.Theextractedspectraarethenwavelengthcal- trueuncertainlyintheresultingspectrum.Wemustfirstisolatethe de ibrated,skysubtractedandcorrectedforfibre-to-fibrethroughput spaxelsofinterestinbothrelevant5×5correlationfactorgrids, mic variations,beforebeingreformattedintoanRSSfile,consistingof multiplybytheappropriatevariancespectraandthensumtheresult .o u all819extractedSAMIspectra.Varianceinformationisalsoprop- inordertoreconstructthecomplete,truevariancespectrum(includ- p.c o agatedby2DFDR sooutputfibrespectraeachhavecorresponding ingthecovariancebetweencontributingspaxels)appropriatetothe m variancespectra.AftertheRSSfilesareproducedanobservation newcompositespectrum. /m n ofaspectrophotometricstandardstarisusedforfluxcalibration.A Themethodweusetoaccountforthiseffectwhenwecalculate ra sfieepldariasteusceadlibtoractioornrescttarf,orobteslelruvreicdaabtstohreptsiaomn.eFtoimrteheasStAheMgIaPlailxoyt theuncertaintyinλRisdetailedinSection5. s/artic le Surveythecalibrationstarhadlow-qualitydataandsothesedata /4 2.2 Archivaldata 4 were treated differently to the data in the SAMI Galaxy Survey. 3 /1 However,thisisnotrelevanttotheresultspresentedinthispaper 2.2.1 X-rayimaging /4 asthetelluriccorrectionaffectstheredarmdatacubesonlyandso 85 adescriptionisomittedhere. BothAbell85and168haveextensiveX-raydataavailableinthe /14 8 SincetheSAMIhexabundleshavenon-uniformspatialcoverage, Chandra archives. The data for Abell 85 consists of nine point- 7 5 all galaxy fields are observed multiple times with a small dither ingsusingtheACIS-Ichiparray:one∼38ksexposurecentredon 24 betweenexposures.Thepurposeofthisobservingstrategyistofillin theBCG(ObsID904;Kempner,Sarazin&Ricker2002)andeight by thegapsbetweenfibresandregainspatialresolution.FortheSAMI ∼10ksexposuresintheperipheralclusterregions(ObsIDs4881, gu e GalaxySurveyafixedseven-pointhexagonalditherpatternwithan 4882,4883,4884,4885,4886,4887,4888;Sivakoffetal.2008). s offsetof60percentofacorediameterbetweendithersisused(see For Abell 168, there are two ACIS-I Chandra observations with t on Sharpetal.,inpreparationfordetails).However,duringtheSAMI ∼37 and ∼40ks exposures (ObsIDs 3203 and 3204; Hallman & 10 Pilot Survey the dither pattern was not set and the step between Markevitch 2004). The Chandra data were reprocessed using the M a dithers was larger. This impacts the chosen ‘drizzle’ parameters CHANDRA_REPROscriptwithintheCIAOsoftwarepackage(ver- rch applied to this data set which do not match those chosen for the sion4.4;Fruscioneetal.2006).Thescriptappliesthelatestcali- 2 0 SAMIGalaxySurvey. brationstothedata(CALDB4.5.1),createsanobservation-specific 23 Oncetheflux-calibratedRSSframes(containingbothdataand badpixelfilebyidentifyinghotpixelsandeventsassociatedwith variancespectra)foreachditherareinhand,thesearecombinedto cosmicrays(utilizingVFAINTobservationmodewhereavailable), formdataandvariancecubesforeachgalaxyintheobservedfield. andfilterstheeventlisttoincludeonlyeventswithASCAgrades0, ThisstepisperformedusingcustomPYTHONcodedevelopedbythe 2,3,4,and6.TheDEFLAREscriptisthenusedtoidentifyperiods SAMIGalaxySurveyteamandthereaderisreferredtoSharpetal., contaminated by background flares. No significant contamination inpreparationforadetaileddiscussionofhowthisisachieved.In was found in either data set. For the imaging analyses, exposure short,theroundSAMIfibres(1.6arcsecdiameter)areresampled mapswhichaccountfortheeffectsofvignetting,quantumefficiency on to a regular grid of square output spaxels using an algorithm (QE),QEnon-uniformity,badpixels,dithering,andeffectivearea similartoDrizzle(Fruchter&Hook2002).Thefibresareshrunk wereproducedusingstandardCIAOprocedures.2Theenergydepen- by some user-chosen drop factor and ‘drizzled’ on to the regular denceoftheeffectiveareaisaccountedforbycomputingaweighted outputgrid.FortheSAMIPilotSurveythedropfactoris0.75and instrument map with the SHERPA make instmap weights script theoutputspaxelsare0.5arcseconeachside.Allditherpositionsare resampledinthiswayandcombinedateachwavelengthslice,with a correction for differential atmospheric refraction. The variance 2cxc.harvard.edu/ciao/threads/expmap_acis_multi/ MNRAS443,485–503(2014) SAMIkinematicmorphology–density relation 489 D o w Figure1. ThestellarkinematicmapsforJ004001.68−095252.5,amemberofAbell85.ThemapswerederivedusingpPXF(Cappellari&Emsellem2004) n lo usingthe985MILESstellartemplates(Sa´nchez-Bla´zquezetal.2006)asreferencespectra.Thetoprowshows,fromlefttoright,summedfluxinarbitrary a units,Vinkms−1andσ inkms−1.Thebottomrowshows,lefttoright,S/Nmeasuredacross200wavelengthslicesofthedatacube,uncertaintyonVin de d kms−1anduncertaintyinσ inkms−1.TheblackcontoursindicatemeasuredfluxfromtheSAMIcube,i.e.thatshowninthetop-leftpanel.Eachpanelis fro 10arcseconaside.Theivorycolouredellipserepresentsoneeffectiveradius. m h ttp usinganabsorbedMEKALspectralmodelwithtemperature,abun- classify our sample. The r-band postage stamps are also used to s dance and neutral hydrogen density appropriate for each clus- derive photometric parameters, such as effective radius, for each ://a c a ter. Background subtraction was performed using the blank sky object.TheprocedurefollowedisdescribedinSection3.2. d e backgrounds3,4 which were processed in the same manner as the Inaddition,three-colourmosaicswerecreatedfromSDSSDR7 m ic observations.Theblankskybackgroundswerereprojectedtomatch griimagesofeachclusterusingMONTAGE.Themosaicscoverthe .o u thetangentpointoftheobservations,andwerenormalizedtomatch centralpartsofeachclusterandarepresentedinSection6. p .c the9–12keVcountsintheobservations.Thisyieldedclean,cali- o m bratedX-rayimagesforAbell85and168. /m Abell 2399 has three archival XMM–Newton observations 3 DERIVED PARAMETERS nra (ObsIDs0201902801,0404910701and0654440101).Here,weuse s /a onlythe2010June(0654440101)observationasithasthelongest 3.1 Stellarkinematics rtic exposure(∼93ks).TherawdataareprocessedfollowingtheXMM– le We fit stellar kinematic fields for each of our 79 ETGs using the /4 NewtonExtendedSourceAnalysisSoftware(XMM-ESAS)package5 penalizedpixel-fittingroutine,pPXF,createdbyCappellari&Em- 43 (seealsoSnowdenetal.2008)withintheScienceAnalysisSystem /1 (SAS).6ThetasksemchainandepchainarerunontheMetalOxide stoellfietmst(e2l0la0r4t)e.mpPpXlaFteusspeescatrpaencoalnivzoedlvmedaxwimithumanliakpeplirhoopordiamteeltihnoed- /485 Semi-conductor(MOS)andPNdatatoproduceeventlistsfilteredof of-sightvelocitydistribution(LOSVD)toobservedgalaxyspectra. /14 badpixelsandwiththelatestcalibrationsapplied.Thepn-filterand 8 TheLOSVDisparametrizedbyatruncatedGauss–Hermiteexpan- 7 5 mos-filtertasksareusedtoidentifyandremoveperiodsofincreased sion,allowinghigherordersoftheLOSVDtobefit,beyondvelocity 24 backgroundduetoflareactivity.Thedataweremoderatelyaffected (V)andvelocitydispersion(σ).HerewefitfourLOSVDmoments: by bthyeflMaOreSs1a,nMdOthSe2calenadnPeNdedxepteocstuorres,triemsepsecatrieve5ly4.,I6m0aagnedsa2n6dkesxpfoo-r V,σ,h3andh4,thoughinpracticeweuseonlythefirsttwoofthese gue forouranalysis.Weusethe985MILES(Sa´nchez-Bla´zquezetal. s suremapsweregeneratedbythemos-spectraandpn-spectratasks 2006)stellartemplatesasreferencespectra. t on usingthecleanedeventlistsinthe0.4–1.25keVand2.0–7.2keV For each of our galaxies the procedure is as follows. First a 10 bands(toavoidthestronginstrumentallines).Correspondingmaps highsignal-to-noiseratio(S/N)spectrumisextractedfromtheblue M a ofthequiescentparticlebackgroundwereproducedwiththemos- data cube in a 2 arcsec circular aperture centred on the galaxy. rc backandpn-backtasks.Thesebackgroundmapsarerecasttothe The pPXF routine is run on this spectrum to find the best-fitting h 2 source image coordinates using the rot-img-det-sky task. Source, templates for that galaxy. This reduced set of templates are then 023 backgroundandexposureimagesforallbandsanddetectorswere fit to individual spaxels within the data cube, with the weights combinedwiththecombtask,yieldingafinalX-rayimageofAbell giventoeachtemplateallowedtovary.Anadditionalfourth-order 2399.TheresultingX-rayimagesarediscussedinSection6. polynomial was fitted with the templates in order to account for anyresidualfluxcalibrationerrorsinourSAMIdata.Onlyspaxels 2.2.2 SDSSopticalimaging for which the S/N was greater than 5 per spectral pixel were fit. ThisproducesmapsofV,σ,h andh foreachgalaxy,alongwith 3 4 AsdiscussedinSection2.1.1,weuseSDSSDR8r-bandpostage maps of the uncertainties on these quantities. The uncertainties stamps and gri colour images of each galaxy to morphologically calculatedfromthepPXFfitsarecorrectforindividualspaxelsbut arecorrelatedwithadjacentspaxels,aneffectwhichimpactsany integratedparametersderivedfromthekinematicmaps. 3cxc.harvard.edu/contrib/maxim/acisbg/ 4cxc.harvard.edu/caldb/downloads/Release_notes/supporting/ An example set of kinematic maps for J004001.68−095252.5, README_ACIS_BKGRND_GROUPF.txt amemberofAbell85,areshowninFig.1.Thetopthreepanels 5ftp://xmm.esac.esa.int/pub/xmm-esas/xmm-esas.pdf show the flux, V and σ maps generated by pPXF. The bottom- 6http://xmm.esac.esa.int/sas/ leftpanelshowsanS/Nmapandthebottom-centreandright-hand MNRAS443,485–503(2014) 490 L.M.R.Fogartyetal. panelsshowtheuncertaintiesonVandσ,respectively(eachpanelis (cid:10)v , which is taken to be the velocity dispersion within the thresh 10arcseconaside).Kinematicmapsforallgalaxiesinthesample, annularbinofinterest.Thislocalvelocitydispersionisestimated includingthe27LTGs,willbepresentedinPaperI. fromthemedianabsolutedeviationwhichisarobust,outlierresis- tantmeasureofthescaleofadistribution(Beers,Flynn&Gebhardt 1990).Galaxieswhichhavegapvaluesexceeding(cid:10)v ,aswell 3.2 Photometricfitting thresh ashaving|v |>σ ,whereσ istheclustervelocitydispersion, pec v v We derive several photometric parameters for each galaxy in our marktheouterlimitsoftheclusterintheannularradialbinofin- sampleusingtheSDSSDR8r-bandimages.Fortheanalysispre- terest. Galaxies with larger velocities are removed as interlopers. sentedhereweareparticularlyinterestedinaccuratevaluesforthe Theprocedureisiterateduntilthenumberofmembersstabilizes. effectiveradius,R ,andtheellipticity((cid:9))andpositionangle(PA) Galaxiesidentifiedasnon-membersusingthismethodareshown e foreachgalaxy. inFig.2asblackopensquares. UsingtheapproachdescribedinCappellarietal.(2007)wecon- Inafewcases,structurewhichisnearbyinredshift,butisun- structaMultiGaussianExpansion(MGE)model(Emsellem,Mon- likelytobewithinthecluster,causestheshifting-gappermethodto net&Bacon1994)ofthesurfacebrightnessprofilefromtheSDSS fail(e.g.,inFig.2,∼2.8MpcfromtheBCGinA2399).Toaddress D image of each galaxy. The surface brightness profile is described this,weusetheadaptivelysmootheddistributionofgalaxiesinv – o pec w as the sum of a set of two-dimensional Gaussians with varying radiusspacetolocatetheclustercaustics(Diaferioetal.1999).The n lo normalization,widthandaxialratio.Thisformalismisextremely caustics,shownasgreensolidlinesinFig.2,tracetheescapeveloc- a d flexibleandprovidesagooddescriptionofthesurfacebrightness ityoftheclusterasafunctionofcluster-centricradiusand,therefore, ed profilesofawidevarietyofgalaxymorphologies(Scottetal.2013). robustlyidentifytheboundaryinvpec radiusspacebetweenbona- from FromtheMGEmodelwedeterminetheeffectiveradiusfollowing fide cluster members and line-of-sight interlopers (e.g. Serra & h themethodofCappellarietal.(2009).TheMGEmodeliscircular- Diaferio2013;Owersetal.2013).Twomeasuresoftheuncertainty ttp s ipzreeds,ersveitntigngthtehepeaaxkiaslurraftaiocesobfriegahcthneGssauosfseiaanchcocmompopnoennetntto,t1hewnhtihlee odansthh–edocattuesdtilcinbeoiunnFdiagr.y2,arisetmheeaasnuarleydti.caTlhaeppfirrostx,imshaotwionnatostahebl1uσe ://ac a radiuswhichenclosesexactlyhalfthetotalluminosityofthemodel uncertaintyandismeasuredasdescribedbyDiaferioetal.(1999). de m isdeterminedbyinterpolatingoveragridofradialvalues. Thesecond,shownasreddashedlinesinFig.2showsthe68thper- ic WedetermineellipticityandPAprofilesdirectlyfromtheSDSS centilelimitsderivedfromadistributionofcausticmeasurements .o u imagesusingtheIDLroutinefind_galaxy.pro(Krajnovic´etal.2011). determinedfrom1000boostrapresamplingsoftheclustermember p.c o The ellipticity and PA at a given radius are determined from the phase-spacedistribution.Onlygalaxieswhichliewithintheouter m second moments of the luminosity distribution of all connected 68thpercentilelimitareretainedinthefinalclustermembersam- /m n pixels above a given flux level. For example, (cid:9)e and PAe are the ple.Thosegalaxiesrejectedusingthismethodareshownasblack ras values of the ellipticity and PA determined at the isophote that opencirclesinFig.2.Usingthesample√ofspectroscopicallycon- /a enclosesanareaequaltoπRe2. firmed cluster members within R200 (cid:6) (3)σv/10H(z), the virial rticle masseslistedinTable1weredeterminedusingthemethodoutlined /4 4 inOwersetal.(2009). 3 3.3 Clustermembership /1 /4 Tclousstteurdsyinthoeurdsiasmtripbluet,iwonemofukstineenmsuarteicwmeohrapvheoalnogaicecsurfaotretdheetetrhmreie- 3.4 Galaxyenvironment 85/14 8 nationofclustermembershipforall79ETGs.Ifwedonotreliably In any discussion of the influence or importance of galaxy en- 7 5 determinewhichgalaxiesareclustermemberswewillbiasouranal- vironment one must first think carefully about the meaning and 24 ysisbyincludingline-of-sightinterlopers.Thethreeclustersfrom quantificationof‘environment’.Hereweconsidertwotypesof‘en- by theSAMIPilotSurveyareincludedintheSAMIClusterRedshift vironment’.FollowingHoughtonetal.(2013)wedefinetheGHE gu e Survey(Owersetal.,inpreparation).Thesurveywascarriedout torefertotheglobalenvironmentofagalaxy–i.e.doesitresidein s usingthe2dF/AAOmegamulti-objectfibrespectrograph,capable acluster,group,orinthefield?Anotherconsiderationhereisthe t on of targeting ∼392 galaxies in one exposure. The survey provides overallmassanddensityofindividualclusterswhencomparedto 10 deeper spectroscopy and therefore greater completeness than that oneanother. M a availablefromSDSS.Therefore,weusethecataloguederivedfrom WealsousetheLPEasperHoughtonetal.(2013)tomeanthe rc h theSAMIClusterRedshiftSurveytodetermineclustermembership localprojectedsurfacedensityatthepositionofagalaxy. Inthis 2 0 foroursample. paper,wewillfocusmoreonthismeasureofenvironment,sincethe 23 Theallocationofclustermembersisaniterativeprocesswhich GHEforallofourgalaxiesissimilar–theyallresideinclusters, willbedescribedindetailinaforthcomingpaper(Owersetal.,in albeitoneswithdifferingoverallclusterproperties. preparation).Briefly,aninitialcullofnon-membersisachievedby These two definitions are helpful when considering the overall rejecting those galaxies which have |v | < 5000km s−1, where positionofindividualgalaxies.Asanexample,dogalaxieswiththe pec v isthepeculiarvelocitymeasuredwithrespecttotheredshift samemeasuredprojectedenvironment(i.e.LPE)behavethesame pec oftheBCG.Followingthisinitialrejection,theprocessentersan regardless of whether they are central in a group GHE or on the iterative phase where a modified version of the ‘shifting-gapper’ outskirtsofaclusterGHE?Thisquestionisbeyondthescopeofthis method(Faddaetal.1996;Owersetal.2009)isusedtorefinethe paperbutitconciselyillustratestheneedtothinkof‘environment’ membershipselection.Thegalaxiesaresortedbyprojecteddistance inseveralcomplexandpossiblyinterdependentways. fromtheBCGandsplitintoannularradialbins.Thewidthofthe annularbinsissetsuchthateachbincontains40-50galaxies.Within 3.4.1 Localpointenvironmentmeasurements eachradialbin,thegalaxiesaresortedbyv ,andthevelocitygap, pec (cid:10)v , between consecutive galaxies is determined. The distribu- Wederiveavalueforthenearest-neighboursurfacedensities((cid:11) ) pec N tionof(cid:10)v issearchedforvalueswhichexceedathresholdvalue, forallgalaxiesintheSDSSStripe82observationsthatcoverthese pec MNRAS443,485–503(2014) SAMIkinematicmorphology–density relation 491 clusters. The surface density is defined using the projected co- movingdistancetotheNthnearestneighbour(d )withvelocity= N ±2000kms−1withinavolumelimiteddensity-definingpopulation: (cid:11)N =N/πdN2.Thedensity-definingpopulationhasabsoluteSDSS Petrosian magnitudes M < M − Qz, k-corrected to z = 0, r r,limit whereM =−19.0magandQdefinestheexpectedevolution r,limit of M as a function of redshift (Q = 0.87; Loveday et al. 2012). r WethencalculatedensitiesforN=3,5and10.Toaidcomparison with ATLAS3D we have used the same N, velocity and absolute magnitudelimits. 4 KINEMATIC CLASSIFICATION D We wish to classify our sample of 79 ETGs as SR/FR. In this ow section, we examine several methods of kinematic classification, nlo a bothquantitativeandqualitative. d e d fro m h 4.1 Apertureeffects ttp s dTeorqivueadntkiitnateimvealtyicclmasaspisfy.λouringaalpaxroiexsywfoerfitrhsetlmumeaisnuorseitλyR-wfreoimghoteudr ://aca R d specificstellarangularmomentumforeachgalaxywithinafiducial em radiusandisdefinedasfollows(Emsellemetal.2007): ic .o u λR ≡ (cid:9)R√(cid:9)RV|2V+|(cid:10)σ2(cid:10) = (cid:11)iN=(cid:11)0FiN=iR0Fi(cid:2)iRVi|iV2i+| σi2, (1) p.com/m n whereFi,Ri,Vi,σi aretheflux,radius,velocityandvelocitydis- ras persionoftheithofNspaxelsincludedinthesum. /a ReI,dfeoarllayl,lw7e9wEoTuGldsliikneotuormseaamspulree.λARlwthiothuignhthoeurefsfaemctpivleercaodvieurss, rticle/4 a range in angular size, the majority of galaxies have 2arcsec≤ 43 Re≤7arcsec and fit comfortably within the SAMI hexabundles /1/4 withsufficientspatialresolution.Forthese70objectswecalculate 85 λRTwhiethsiinxRlae.rgest galaxies in the sample have R >7 arcsec and /1487 e 5 RoSvueer/vr2fielyilnssthatemeaSpdAl.eEM,mthIsahetelilxteaimsbrueantrdealfle.os(r.2Fa0og0ra7lt)ahxeshyseotwoobecjdhe,acnutsgsiewnigetsmthcleeaasSssuAifirUecRaλtORioNant 24 by gu basedonλ betweenR /2andR . es ConverseRly, three gaelaxies in oeur sample are quite small, such t on IthnatthRiseccaosev,earsmoenalysuorenmeeonrttowfoλinwdeitpheinndRentwreilslobluetiboinaseeldemtoelnotws. 10 M R e a values.Thisisbecauseavelocitygradientacrossasingleresolution rc h elementwillbeunresolvedandmeasuredasdispersion.Toavoid 2 0 thiseffect,wemeasureλR within2Re forthethreegalaxieswith 23 R <2arcsec.Unlikemeasurementsofλ withinR /2andR ,the e R e e propertiesofthisparameterhavenotbeenfullyinvestigatedatlarge Figure2. Thephase-spacedistributionofgalaxiesineachofthethreeclus- radii. However, the compact galaxies in our sample display very tersintheSAMIPilotSurvey.Thefilledcirclesshowthespectroscopically orderlyvelocitymapsandgoodS/Nouttolargeradii.Theyareall confirmedclustermembers.Theblackopensquaresshowthenon-members veryclearFRswithnoambiguityintheirclassifications,sowefeel identifiedbytheshifting-gappermethod.Theblackopencirclesshowthe justifiedinextendingtheλ measurementsoftheseobjectsto2R . R e non-membersidentifiedasbeingbeyondthelimitsdefinedbythevelocity Despitethefactthatweusethreefiducialradiiforoursample, caustics(greensolidline).Thereddashedlineshowsthe68thpercentile Fig. 3 clearly demonstrates that for our purposes this does not uncertaintiesonthecaustics.Thebluedot–dashedlineshowsthestandard influence our classifications. The galaxies with λ measurements analyticestimateoftheuncertaintyinthecausticmeasurement.Thelarger R withinasmaller(R /2)andlarger(2R )radiithanoriginallyused blueandredcircularpoints(bothopenandclosed)aretheETGsobservedin e e theSAMIPilotSurvey,withcoloursindicatingtheirkinematicclassification todefinetheclassificationsystemareallunambiguouslypositioned (seeSection4).TheverticaldashedblacklinesshowR200andthevertical inλR−(cid:9)space.Thatistosaytheyfallawayfromthedividingline reddottedlinesshowtheSAMIfieldofview. andthereisnodoubtthatthesystemadoptedhereworkswellfor thissample. MNRAS443,485–503(2014) 492 L.M.R.Fogartyetal. D o w n lo a d e d Figure3. λR plottedagainst(cid:9)forall79ETGsintheSAMIPilotSurveysample.Theleft-handpanelshowsthosegalaxiesclassifiedatRe/2,themiddle from showsthoseclassifiedatReandtheright-handpanelshowsthoseclassifiedat2Re.InallpanelstheblacklineshowsthedivisionbetweenFRsandSRsas h definedbyequation(2).ThebluepointsareFRsandtheredareSRs.ThesquareturquoisecolouredpointinthecentrepanelisJ215634.45−075217.5.This ttp s isadoublesigmagalaxy(notatrueSR)andisdiscussedinSection4.3. ://a c a d e 4.2 ClassificationusingλR mic .o Themeasuredflux,Vandσmapsareusedtocalculateλ parameter u R p attheappropriatefiducialradiusforeachgalaxy.Thecalculation .co usestheR ,(cid:9) andPAmeasurementsfromtheMGEfitsdescribed m e /m inSection3.2.The(cid:9)andPAvaluesusedarethosemeasuredatthe n correctfiducialradiusforeachgalaxy.Theresultsarepresentedin ras /a TabTloedAis1c.riminatebetweenFRsandSRsweusetheλR−(cid:9) space. rticle SincewehaveusedthreefiducialradiitomeasureλRforoursample, /44 3 weneedthreedifferentcriteriatodivideFRsandSRs.Weusethe /1 criteriondefinedbyEmsellemetal.(2011),whichisdependenton /4 8 5 ellipticity: /1 √ 48 λR <k (cid:9), (2) 75 2 4 wgahlaexreyλaRnadntdhe(cid:9)avraelumeeoafsukreidswdeitpheinndtehnetsoanmethfiedcuhcoiaicleraodfiufisdinuctihael by gu e radiusforaparticulargalaxy.Assumingalinearscalingfromthe s aavndaldoup2etsRko,=frke0sa.pt2eR6c5et/i,v2kela=yn.d0R.3e10puabnldish0e.3d6i3nfEomrvsealllueemsoetfakl.a(t2R01e/12),,wRee FlJi2nig1eu5s6rie3n4d4.i.4c5aTt−eh0eF7Rr5as2d1iaa7nl.dp5r,thotefihelreedsdoolufibnλleResfsionigrdmaiclalat7ge9aSlEaRxTsyG.dTsihisnecuobsulsarecsdkamilninpSeleeh.ciTtgihohenlibg4lh.u3tes. t on 10 M e a Fig.3showsλR−(cid:9)forall79ETGsintheSAMIPilotSurvey.The The x-axis shows galaxy radius in units of effective radius, Re, clearly rch threepanelscorrespondtothethreefiducialradiiusedtomeasureλ illustratingthedifferingspatialcoverageofourdata. 2 R 0 and(cid:9).Theleft-handpanelshowsthegalaxiesclassifiedatRe/2,the 23 centrepanelshowsthoseclassifiedatR andtheright-handpanel e showsthoseclassifiedat2R .Inallthreepanelstheblacksolidline e marksthedivisionbetweenFRsandSRs,suchthatSRsliebelow slowincreaseinλ .Thelattercouldbecausedbyincreasednoise R thelineandFRsaboveit.Thus,thebluepointsareclassifiedasFRs athigherradiiwhichcanbiasmeasurementsofλ tolargervalues. R andtheredasSRs. Inoursamplearangeofprofileshapescanbeseen,withnoclear Wealsocalculateresolvedradialprofilesofλ foreachgalaxy. gap between the two populations of objects. The SRs tend have R TheseareshowninFig.4whereFRsareshowninblueandSRs shallowerslopesthantheFRsbutthereissomeclearoverlapinthe inred,asclassifiedusingtheλR−(cid:9) space.Ofcourse,sinceλR is twoclassesofobjects.TheoverlapiscausedbythefactthatλRisa aprojectedparameter,andtheradialprofiledoesnotincludeany projectedquantityandthereforeinformationabouttheellipticityof information about the ellipticity of the galaxies, these profiles do individualgalaxiesisneededtofullyclassifythemasSRsorFRs. notgivethewholepicture.However,theoverallshapesofprofiles Galaxiesinthisoverlapregionmayhavesimilarvaluesforλ at R can be helpful as a check on other methods of classification. We aparticularradiusbutdifferencesinellipticitywillmeantheycan expect that for FRs λ will increase rapidly with radius, perhaps havedifferentkinematicclassifications.Thisillustratestheneedto R withaplateauatlargeradii.ForSRsweexpectadecreaseoravery considermorethanonemethodofkinematicclassificationofETGs. MNRAS443,485–503(2014) SAMIkinematicmorphology–density relation 493 Figure5. ThederivedstellarkinematicsforJ215634.45−075217.5,withpanelsasperthetoprowinFig.1.Eachpanelis10arcseconaside.Thisgalaxyisa doublesigmagalaxy,thoughttoconsistoftworoughlyequalmasscounter-rotatingdiscs.Thecharacteristicdouble-peakedσ map(right-handpanel)betrays thetruenatureofthisgalaxy. 4.3 Visualclassifications 5 ERROR ANALYSIS D WealsoclassifygalaxiesasFRsandSRsbasedonvisualinspec- AsdiscussedinSection2.1.2,SAMIdatacubesaregeneratedfrom o w tionofthekinematicfields.Severalauthorsexaminedthekinematic raw, dithered, fibre spectra using a drizzle-like algorithm (Sharp n lo mapsforall79ETGsinthesample.Thiswasdoneinisolationand etal.,inpreparation).Thisresultsindatacubesinwhichthespaxels ad withoutpriorknowledgeoftheλR−(cid:9)classifications.Thekinematic arenotindependent:boththedataandnoiseareinasinglespaxel ed mapsinspectedwereidenticaltothoseinthetoprowofFig.1.The are correlated with surrounding spaxels. The variance in a single fro m errormapswerenotprovided.Thevisualclassificationswerecar- spaxel is, by definition, correct for that spaxel. However, blindly h ried out using a scheme of five classes designed to incorporate combiningspectraandtheircorrespondingvariancespectraneglects ttp s some uncertainty. The classifications were: definite FR, probable thecovariancebetweenspaxelsandresultsinanoverestimateofthe ://a FR,unknown,probableSR,definiteSR.Theresultswerecollated S/Nforthecombinedspectrum.Thiscomplicatestheerroranalysis c a d andcomparedafterallauthorscompletedtheirindividualclassifi- for integrated parameters derived from higher order SAMI data e m cations.Formostgalaxiesalloramajorityofauthorsagreeonthe products, such as kinematic maps. In this section, we discuss in ic visual classification. In most of these cases the visual and λR−(cid:9) detailhowwedealwiththisproblem,particularlywithrespectto .ou classificationsalsoagree. ourcalculationofλRandtheassociateduncertainty. p.c IncaseswherethevisualandλR−(cid:9)classificationsdonotagree om thegalaxyinquestionisusuallyclosetothedividinglineinλR−(cid:9) 5.1 Scaledkinematicuncertainties /mn space.Forourstatisticalanalysis,weadopttheλR−(cid:9)classification ra s inallsuchcases,ofwhichthereareonlyahandful.However,there WeusepPXF(Cappellari&Emsellem2004)toderivethestellar /a aresomegalaxiesofinterestforwhichitisusefultodiscussboth kinematicsfortheSAMIPilotSurveygalaxies(seeSection3.1and rtic the quantitative λR−(cid:9) classifications and the contradicting visual Paper I). This produces spatially resolved maps of flux, V and σ le/4 4 classification.OnesuchgalaxyisdiscussedinSection6.4. along with corresponding uncertainty maps. As discussed above, 3 There is one clear misclassification using the λR−(cid:9) di- the error on any individual spaxel in these maps is correct (see /1/4 agram which is resolved using the visual classifications. Sharpetal.,inpreparationformoredetails),butcombiningthese 85 J215634.45−075217.5isclassifiedasanSRbutinhabitsaregion errors directly is invalid since this neglects covariance between /14 8 of the λR−(cid:9) not typically populated by true SRs. The kinemat- spaxels. When calculating uncertainties on integrated properties 75 ischsowfonrtihnisblgaaclkaxiynaFrieg.sh4o.wItnisinvFisiuga.l5lyacnldasistsifireaddiaaslλanR pFrRofifloerias dneerigivhebdoufrroinmgtshpeasxeemls.apswemustaccountforcovariancebetween 24 by variety of reasons. It is a very oblate system, with an ellipticity Toachievethiswewishtoscaletheuncertaintiesonflux,Vandσ gu e of 0.504, the velocity map shows more than one set of alternat- bysomeappropriatefactorthataccountsforthemissingcovariance s ingregionsofapproachingandrecedingvelocityandthevelocity whencombiningspaxels.Toestimatetheappropriatescalingfactor t on dispersionmapexhibitstwopeaksoneithersideofacentraldepres- weusethecovariance‘cube’createdbytheSAMIcubingcode(see 10 sion.Thesekinematicfeaturesareindicativeofaso-calleddouble Section2.1.2).Foreachspaxelineachwavelengthslicethiscube M a sigmagalaxy,initiallydiscoveredbyKrajnovic´etal.(2011)inthe containsa5×5gridofvaluesshowinghowcorrelatedthespaxel rc h ATLAS3D sample. They are called double sigma galaxies due to iswithitsneighbouringspaxels.Thecentralvalueinthis5×5grid 2 0 thetwocharacteristicspeaksinthevelocitydispersionmap.These correspondstothespaxelitselfandthereforealwayshasavalueof 23 galaxiesarethoughttoconsistoftworoughlyequal-masscounter- 1. The sum over this grid shows how correlated the pixel is with rotatingdiscs(Emsellemetal.2011)andarethereforenottrueSRs. allofitsneighbours.Thistotalcorrelationvalue,whenmultiplied Thestructureoftheirstellarkinematicfields,beingcomplex,mimic bythecorrectvariancevalue,isthesimplestwaytoaccountforthe thelowλ ofSRs.Fortherestofouranalysiswerejectthisgalaxy trueuncertainty(varianceandcovariance)inasinglespaxel,when R fromoursample,butshowitspositioninplotsforcompleteness. combiningthatspaxelwithallofitsneighbours. Amapofthesevaluescanbegeneratedateachwavelengthslice, creatingafullcubeoftotalcorrelationmaps.Thecubecanthenbe averagedacrossawavelengthrangeofinterest.Theleft-handpanel 4.4 Overallclassifications of Fig. 6 shows the total correlation map for one of the galaxies For the remainder of this paper, we will use the λR−(cid:9) kinematic inoursample,averagedacross200wavelengthslicesinthecentre classificationsforallgalaxies.Thismeansthatinoursampleof78 ofthedatacube.Thetotalcorrelationfactorcanvaryquitesharply galaxies(exceptJ215634.45−075217.5whichwenowrejectfrom fromspaxeltospaxel.Thisisexplainedbythewayweresampleour oursample)wefind13SRsand65FRs.Ofthese11SRsand62 data.Insomecasesanoutputspaxelwillfallontheouteredgeofthe FRsareclustermembers. footprintofaninputfibre.Thisspaxelmayreceivelittleornoflux MNRAS443,485–503(2014) 494 L.M.R.Fogartyetal. D o w n Figure6. Theleft-handpanelshowsthetotalcorrelationmapforJ004001.68−095252.5averagedacross200wavelengthslicesofthetotaldatacubewiththe lo a blueellipserepresentingtheeffectiveradiusofthegalaxyinquestion.Theaxesareinpixelswitheachpixel0.5arcseconasideandsothemapis25arcsec de oringhat-shiadned.Tphaneecletnhtereunacnedrtraiignhtite-hsaonndσp.anelshowthetrendofthekinematicuncertaintieswithS/N.ThecentrepanelshowstheuncertaintiesonVandthe d fro m h fromotheradjacentfibresandwillthereforebestronglycorrelated ttp s with its neighbouring spaxels, leading to a high total correlation ://a c factor. In other cases, an output spaxel may fall in the centre of a d thefootprintofaninputfibre.Mostofthefluxintheinputfibreis em contributedtothatspaxelandsoitisonlyweaklycorrelatedwith ic .o adjacentspaxels,yieldingalowtotalcorrelationfactor. u p Toscaletheuncertaintiesonthefluxthemediantotalcorrelation .c o factor, F , is computed within the fiducial radius at which λ is m measuredc.ThismethodoverestimatesthetruevalueofFcbysoRme /mn negligibleamountasitincludescorrelationbetweenspaxelsonthe ras eTdhgisegoefntheeraatpeseratusriengalnedfnacetaorresstuniteaibglhebfoourrsscjaulsitnogutthseidveatrhiaenacpeeirntutrhee. /article fluxatthesamewavelengthslice(s)atwhichthecorrelationfactor /4 4 wasmeasured.Wemeasurethefluxover200wavelengthslicesand 3/1 thereforetakethemedianof200wavelengthslicestocalculatethe /4 8 correlation factor. The square root of Fc can be used to scale the 5/1 uncertainties(sigma)onthefluxmeasurements. 48 ToscaletheuncertaintiesonVandσwefirstconsidertherelation 75 2 bheigtwheveanluthesesoefquSa/NntiotineesaenxdpethcetsSt/hNeinunecaecrhtasipnatxieesl.oFnorVreaansdonσabtloy uFsiginugraeM7.oAntecoCmarploarcisaolcnuolafttihoen.uTnhceerbtaluinetipeosinotnsλshRodwerFivResdaanndatlhyeticreadllyshaonwd 4 by g scalelinearlywithS/N.However,forlowerS/Nthisrelationbreaks SRs.Theturquoisesquarerepresentsthedoublesigmagalaxydiscussedin ue s down, with a trend towards increasingly large uncertainties. The Section4.3.Thesolidblacklineillustratesaone-to-onecorrelationandthe t o centre and right-hand panels in Fig. 6 illustrates this. The centre dashedblacklineisafittothepoints.Theanalyticuncertaintiesareon n 1 panelshowstheuncertaintiesonVinthespaxelsusedtocalculate average25percentlargerthantheMCuncertaintiesandtheformervalues 0 M tλhReassaamfeunpclotitofnorofthSe/Nunicnetrhtaoisnetisepsaoxnelσs..TInheearicghhct-ahsaen,dthpeagnreelesnholiwnes areadoptedfortheremainderofouranalysis. arch 2 indicatesalinearfittothepoints.Itisclearthatthelinearfitsdo 0 notdescribethedataperfectly,andinfactasecond-orderfitmay their appendix A [unlike Houghton et al. (2013) we neglect the 23 covariance between V and σ, which is very small]. The resulting doabetterjob.However,thelinearfitdescribesthemajorityofthe analyticuncertaintiesonλ areshowninTableA1,inthecolumn data points well enough, so we adopt linear scaling between the R marked(cid:10)λ . flux uncertainties and the kinematic uncertainties. The reason for R In addition to the analytic calculation, we calculate the uncer- this is to enable us to scale the kinematic uncertainties using the taintyinλ usingaMonteCarlo(MC)approach.Weusethescaled samefactorasthefluxuncertainties,simplifyingourcalculationof R theuncertaintiesonλ .Thuswescaleallthreeuncertaintymaps uncertaintymapsforeachparametertogenerate1000instancesof (flux,V,andσ)usingtRhesquarerootofF . theflux,V,andσmaps,calculatingλRforeachiteration.Thespread c intheresultsisameasureoftheuncertaintyinλ .Theresulting R uncertaintyvaluesforeachgalaxyarepresentedinTableA1inthe columnmarked(cid:10)λ (MC).Fig.7showsthecomparisonbetween 5.2 Uncertaintiesonλ R R the analytic and MC uncertainties on λ . There is a systematic R We use the scaled uncertainty maps for flux, V and σ to calcu- difference between the two measurements such that the analytic late the uncertainty in λ for each galaxy in two ways. First, we uncertaintiesareanaverageof25percentlargerthantheMCun- R use the analytic method described by Houghton et al. (2013) in certainties,thoughthediscrepancyissmallerforsmalleruncertainty MNRAS443,485–503(2014)

Description:
We examine the kinematic morphology of early-type galaxies (ETGs) in three galaxy clusters. Abell 85, 168 and 2399. Using data from the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.