ebook img

The K2-ESPRINT Project VI: K2-105 b, a Hot-Neptune around a Metal-rich G-dwarf PDF

1.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The K2-ESPRINT Project VI: K2-105 b, a Hot-Neptune around a Metal-rich G-dwarf

Publ.Astron.Soc.Japan(2014)00(0),1–11 1 doi:10.1093/pasj/xxx000 The K2-ESPRINT Project VI: K2-105 b, a Hot-Neptune around a Metal-rich G-dwarf Norio NARITA1,2,3, Teruyuki HIRANO,4, Akihiko FUKUI5, Yasunori HORI2,3, 7 Fei DAI6, Liang YU6, John LIVINGSTON1, Tsuguru RYU3,7, Grzegorz 1 NOWAK8,9, Masayuki KUZUHARA2,3,4, Yoichi TAKEDA3, Simon ALBRECHT10, 0 2 Tomoyuki KUDO11, Nobuhiko KUSAKABE2,3, Enric PALLE8, Ignasi RIBAS12, n Motohide TAMURA1,2,3, Vincent VAN EYLEN13 and Joshua N. WINN14 a J 1DepartmentofAstronomy,TheUniversityofTokyo,7-3-1Hongo,Bunkyo-ku,Tokyo 5 113-0033,Japan 2AstrobiologyCenter,NINS,2-21-1Osawa,Mitaka,Tokyo181-8588,Japan ] P 3NationalAstronomicalObservatoryofJapan,NINS,2-21-1Osawa,Mitaka,Tokyo181-8588, E Japan h. 4DepartmentofEarthandPlanetary Sciences,TokyoInstituteofTechnology,2-12-1 p Ookayama,Meguro-ku,Tokyo152-8551,Japan o- 5OkayamaAstrophysicalObservatory,NationalAstronomicalObservatoryofJapan,NINS, r Asakuchi,Okayama719-0232,Japan t s 6DepartmentofPhysics,andKavliInstituteforAstrophysicsandSpaceResearch, a [ MassachusettsInstituteofTechnology,Cambridge,MA02139,USA 7SOKENDAI(TheGraduateUniversityforAdvancedStudies),2-21-1Osawa,Mitaka,Tokyo 1 181-8588,Japan v 4 8InstitutodeAstrof´ısicadeCanarias(IAC),38205LaLaguna,Tenerife,Spain 9 9DepartamentodeAstrof´ısica,UniversidaddeLaLaguna(ULL),38206LaLaguna,Tenerife, 2 Spain 1 0 10StellarAstrophysicsCentre,DepartmentofPhysicsandAstronomy,AarhusUniversity,Ny . Munkegade120,DK-8000AarhusC,Denmark 1 0 11SubaruTelescope,NationalAstronomicalObservatoryofJapan,650NorthAohokuPlace, 7 Hilo,HI96720,USA 1 12InstitutdeCie`nciesdel’Espai(CSIC-IEEC),CarrerdeCanMagrans,CampusUAB,08193 : v Bellaterra,Spain i X 13LeidenObservatory,LeidenUniversity,2333CALeiden,Netherlands r 14DepartmentofAstrophysicalSciences,PrincetonUniversity,Princeton,NJ08544 a E-mail:[email protected] ∗ Received2016December2;Accepted2016December29 Abstract WereportontheconfirmationthatthecandidatetransitsobservedforthestarEPIC211525389 areduetoashort-periodNeptune-sizedplanet. Thehoststar,locatedinK2campaignfield5, isametal-rich([Fe/H]=0.26±0.05)G-dwarf(Teff=5430±70Kandlogg=4.48±0.09),based onobservationswiththeHighDispersionSpectrograph(HDS)ontheSubaru8.2mtelescope. High-spatial resolution AO imaging with HiCIAO on the Subaru telescope excludes faint com- panionsnearthehoststar,andthefalsepositiveprobability ofthistargetisfoundtobe<10−6 (cid:13)c 2014.AstronomicalSocietyofJapan. 2 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 using the open source vespa code. A joint analysis of transit light curves from K2 and addi- tional ground-based multi-color transitphotometry with MuSCAT on theOkayama1.88m tele- scopegivestheorbitalperiodofP =8.266902±0.000070daysandconsistenttransitdepthsof R /R ∼0.035 or (R /R )2 ∼0.0012. The transit depth corresponds to a planetary radius of p ⋆ p ⋆ R =3.59+0.44 R , indicating that EPIC 211525389 b is a short-period Neptune-sized planet. p −0.39 ⊕ Radial velocities of the host star, obtained with the Subaru HDS, lead to a 3σ upper limit of 90M (0.00027M ) on the mass of EPIC 211525389 b, confirming its planetary nature. We ⊕ ⊙ expectthisplanet,newlynamedK2-105b,tobethesubjectoffuturestudiestocharacterizeits mass,atmosphere,spin-orbit(mis)alignment,aswellasinvestigatethepossibilityofadditional planetsinthesystem. Keywords:planetsandsatellites: individual(K2-105b=EPIC211525389b)—stars: individual(TYC 807-1019-1=EPIC211525389)—techniques: spectroscopic—techniques: highangularresolution— techniques:photometric—techniques:radialvelocities 1 Introduction inghotNeptunearoundametal-richG-dwarfEPIC211525389 (TYC 807-1019-1) in K2 campaign field 5. The host star is Transiting planets are especially valuable targets in exoplanet studies due to the fact that both their radius and mass can relatively bright (mKp =11.69 mag) with colors of B−V = 0.79 and V −J = 1.38, and is located at the distance of be determined. Thanks to previous ground-based and space- ∼230 pc according to GAIA parallax (see §3.1). This target based transit surveys, thousands of transiting exoplanets have was identified as an interesting candidate planet host by the been discovered. The K2mission (Howell et al. 2014) is cur- international collaboration ESPRINT, Equipo de Seguimiento rently continuing the legacy of Kepler in providing dozens of de Planetas Rocosos Intepretando sus Transitos, (Sanchis- interesting transiting exoplanet candidates in each of its suc- Ojeda et al. 2015; Van Eylen et al. 2016a; Van Eylen et al. cessive ∼ 80 day observing campaigns in the ecliptic plane. 2016b;Hiranoetal.2016a;Hiranoetal.2016b;Daietal.2016). Since 2014, K2 has discovered more than 100 new transiting Althoughthestarwasalsoreportedtobeacandidateplanethost exoplanets by several follow-up teams (e.g., Crossfield et al. by Pope et al. (2016) and Barros et al. (2016), we have con- 2015; Sanchis-Ojeda et al. 2015; Lillo-Box et al. 2016; Mann firmedthe planetary nature of this object for the firsttime via etal.2016;Crossfieldetal.2016). highdispersionspectroscopy,high-contrastAOimaging,addi- The large number of confirmed transiting exoplanets pro- tionalground-basedtransitphotometry,andradialvelocity(RV) vide us a unique opportunity to investigate their distribution measurements.TheplanetisnewlynamedasK2-105b. in parameter space, such as the Period-Radius (P-R) relation, the Period-Mass (P-M) relation, and the Mass-Radius (M-R) relation. While the M-R relation is useful to investigate the compositionandexistenceofvolatile-richatmosphere(Zeng& Therestofthispaperisorganizedasfollows. Observations Sasselov 2013), P-R and P-M relations are suggested to pro- of K2, high dispersion spectroscopy, AO imaging, and ad- vide possible insights into planet formation and the migration ditional transit photometry as well as our reduction methods ofshort-periodplanets (Beauge´ &Nesvorny´ 2013; Adibekyan are described in §2.1–2.4. We present stellar parameters of etal.2013;Helledetal.2016;Mazehetal.2016). EPIC211525389(hereafterK2-105)fromhighdispersionspec- In this regard, short-period Neptune-sized planets are es- troscopy in §3.1, a contrast curve around the host star from pecially interesting, since such planets occupy a region of AO imaging in §3.2, a joint transit analysis with light curves parameter space which corresponds to the proposed dearth from K2 and ground-based multi-color transit photometry in of short-period super-Neptune/sub-Jovian planets. Moreover, §3.3, and RVs and a corresponding upper limit on the mass since transiting exoplanets allow us to investigate their atmo- of EPIC 211525389 b (hereafter K2-105 b) in §3.4. We con- spheres via transmission spectroscopy, to measure spin-orbit firmtheplanetarynatureofK2-105bbasedonthemassupper (mis)alignmentsviatheRossiter-McLaughlineffectordoppler limit and a statistical analysis using the vespa code (Morton tomography,andtoprobepossiblepresenceofouterplanetsvia 2012; Morton 2015) in §4.1. We report an improved transit transit timing variations, they will incubate further follow-up ephemeris and a hint of a possible transit timing variation for sciencecasesandprovideadditionalcluestouncoverformation K2-105bin§4.2. Wediscusstheimportanceofadiscoveryof andmigrationmechanismsofshort-periodplanets. anewshort-periodhot-Neptunefromatheoreticalpointofview In this paper, we report the confirmation of a new transit- in§4.3.Finally,wesummarizeourfindingsin§5. PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 3 !"" " non-linearitycorrection,biassubtraction,flatfielding,scattered light subtraction, aperture extraction, and wavelength calibra- !"""# tionusingTh-Arlines,resultinginacalibratedone-dimensional !"""" spectrum. WealsotookHDSspectrawith thesamesetupand x with the iodine cell to monitor RVs of K2-105 on 2015 Nov e flu "!$$$# 26-28,2016Feb2,and2016Oct12-14(UT). v ati "!$$$" el R 2.3 Subaru8.2mTelescope/HICIAO&AO188 "!$$%# High contrast, high spatial resolution images of K2-105 were "!$$%" takenintheHbandwithHiCIAO(Tamuraetal.2006)incom- bination with AO188 (188 element curvature sensor adaptive &&)" &&(" &&%" &’"" opticssystem: Hayanoetal.2008)ontheSubarutelescopeon BJD - 2454900 2015December30(UT).ThefieldofviewofHiCIAOisabout Fig.1.K2lightcurveofK2-105processedbytheESPRINTpipeline. Red 20′′×20′′. Weusedthetargetitselfasanaturalguidestarfor barsindicatepositionsoftransits. AO188,producingthetypicalAO-correctedfull-width-at-half- maximum (FWHM) of ∼0′.′06. All of our observations were 2 Observations andReductions carried out in siderial tracking mode. We acquired 10 object frameswithanindividualexposuretimeof5s,usinga9.74%- 2.1 K2PhotometrywiththeESPRINTpipeline transmittance neutral density (ND) filterthat avoids saturation K2-105wasobservedinK2campaignfield5from2015April ofthetargetstar. Thoseunsaturated frameswereusedtocali- 27 to July 10. We obtained the K2 data from the Mikulski bratethecontrast limit aroundthe target. Inaddition, weper- Archive for Space Telescopes (MAST). We found small vari- formedtheobservations without theNDfilterandtook60ob- ability in the raw light curve with the amplitude of ∼ 0.4 % ject frames with 15 s exposure, enabling us to search for the and the period of ∼ 24 days, possibly related with the stel- faintsourcesaroundthetarget. Thetotalexposuretimewas15 lar rotation. We processed it with the ESPRINT pipeline min(50s)without(with)theNDfilter. (Sanchis-Ojeda et al. 2015) to create a detrended light curve TheACORNSpipeline(seeBrandtetal.2013)wasusedto (see Figure 1). In brief, we identified the candidate planet reduce the HiCIAO data as follows. First we remove a char- EPIC211525389 bwithaBox-Least-Squaresroutine(Kova´cs acteristicstripebiaspattern(Suzukietal.2010), andthenbad et al. 2002; Jenkins et al. 2010) using the optimal frequency pixel and flat-field correction are performed. In order to cor- sampling described by Ofir (2014). The transit-like dimming rectHiCIAO’sfielddistortion,wecompareHiCIAOdataofthe occurredevery∼8.2672478dayswithadepthof∼0.1%. No M5globularclustertakenduringthesamerunwiththearchival odd-even differencewas observed inthedimming andno sig- M5images taken byAdvanced CameraforSurveys(ACS)on nificant evidence of secondary eclipses were seen, suggesting Hubble Space Telescope, basedon thesameway as explained thatthesignalislikelytobecausedbyatransitingplanet. We inBrandtetal.2013. Finally,theplatescaleiscorrectedtobe thusaddedthisobjectasoneofourfollow-uptargets. 9.5maspixel 1. − 2.2 Subaru8.2mTelescope/HDS 2.4 Okayama188cmTelescope/MuSCAT We observed K2-105 with the High Dispersion Spectrograph Weobtainedsimultaneousmulti-bandtransitphotometryofthe (HDS: Noguchi et al. 2002) on the Subaru 8.2m telescope lo- targeton2016February10(UT)usingMuSCAT(Naritaetal. catedatthesummitofMaunaKea,Hawaii. Weemployed the 2015b) onthe188cmtelescope attheOkayamaAstrophysical std-I2a setup covering 4940A˚ – 7590A˚ with the Image Slicer ObservatoryinJapan.Theskyconditionduringourobservation #2 (R ∼ 80,000: Tajitsu et al. 2012). We took a template wasfreeofcloudsandmoonlight(2-day-oldmoon),butslightly spectrum without an iodine cell on 2015 November 28 (UT). hazyduetoyellowdust. MuSCAThasthecapabilityofsimul- Thetotal exposure timewas 1,500 sand thetypical signal-to- taneousthree-bandimagingwithSloanGen2filters(g2′,r2′,and noiseratioaround6000A˚ was∼60. ThestandardIRAF1 pro- zs,2)andthreeCCDcameras,eachhaving6.′1×6.′1FOV,with ceduresforHDSwereapplied,includingoverscansubtraction, apixelscaleofabout0.′′358. Theexposuretimewassetto60 s for g2′ and zs,2 bands, and 20 s for r2′ band. We defocused 1The Image Reduction and Analysis Facility (IRAF) is distributed by the telescope such that the FWHM of the stellar point spread the National Optical Astronomy Observatory, which is operated by the AssociationofUniversitiesforResearchinAstronomy(AURA)underaco- function(PSF)waskeptaround24(g2′),29(r2′),and32(zs,2) operativeagreementwiththeNationalScienceFoundation. pixels, respectively. The observations were conducted during 4 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 JD2457428.95-2457429.20. Table1.StellarParametersofK2-105 Parameter Value The observed images are dark-subtracted, flat-fielded, and (StellarParameters)a correctedfornon-linearity, separatelyforeachCCD.Aperture RA(J2000.0) 08:21:40.871 photometry is performed for the target and two brighter com- Dec(J2000.0) +13:29:51.08 parisonstarsinthefieldofview(TYC807-1069-1hereafterC1, andTYC807-1165-1hereafterC2)usingacustomizedpipeline mKp [mag] 11.687 (Fukuietal.2011).Theapertureradiusforeachbandischosen mg′ [mag]b 12.244±0.001 as24(g2′),26(r2′),and28(zs,2)pixelsrespectivelysothatthe mr′ [mag]b 11.656±0.001 apparentroot-mean-square(RMS)forafractionallightcurveof mi′ [mag]b 11.484±0.001 C1/C2isminimized.Wecheckforpossiblesystematicvariabil- mz′ [mag]b 11.419±0.015 ityofthetargetandcomparisonstarsbymakingthefractional mJ [mag] 10.541±0.02 light curves of each combination. We find that the fractional mH [mag] 10.173±0.03 lightcurvesofC1/C2inr2′ andzs,2bandssmoothlychangeina mKs [mag] 10.091±0.02 linearmannerwiththedeviationfromalinearapproximationof B−V [mag] 0.79±0.05 ∼0.1%. Ontheotherhand,thefractionallightcurveofC1/C2 V −J [mag] 1.38±0.05 ing2′ bandshowsastrangesystematicvariationwiththeampli- (SpectroscopicParameters) tude of∼0.4%. Although wesuspect thesystematic variation Teff [K] 5434±35(stat.)±40(sys.) iscausedbystrong2nd-orderextinctionofEarth’satmosphere, logg[dex] 4.477±0.085 wedecidenottouseg2′ bandlightcurveinthesubsequentanal- [Fe/H][dex] 0.26±0.05 ysis, since we cannot correct the variation with the observed ξ[kms−1] 0.21±0.44 data. ThetotalfluxofC1+C2 is usedasacomparison fluxto vsini[kms−1] 1.76±0.86 the target. We also find that the peak count and total flux of (DerivedParameters) thetargetsuddenlydroppedafterJD2457429.17, eventhough M⋆[M ] 1.01±0.07 ⊙ the FWHM did not change, suggesting the sky transparency R⋆[R ] 0.95+00..1110 changedsignificantlyatthattime. Wethusconfineusabledata ρ⋆[ρ ⊙] 1.19−+00..4342 toaroundJD2457428.95-2457429.17inthesubsequentanal- ρ⋆[g⊙cm−3] 1.68−+00..6425 ysistoavoidsystematicerrors. Distance[pc]c 220−±30 Distance[pc]d 233+29 23 − Age[Gyr] ≥0.6 3 Analysesand Results aBasedontheEPIC,SDSS,UCAC4,and2MASSCatalogs.bBasedontheSDSS PSFmagnitude. cBasedonthe2MASSapparentmagnitudeandtheestimated 3.1 SpectroscopicParameters absolutemagnitudesforthestellarparameters. dBasedontheparallaxreported Weperform aline-by-line analysis forthe HDS spectrum fol- byGAIADataRelease1. lowingthemethoddescribedinTakedaetal.(2002)andTakeda etal.(2005).BymeasuringtheequivalentwidthsofFeIandFe ingATLAS9model(aplane-parallelstellaratmospheremodel IIlinesbetween5000A˚ and7400A˚,weestimatethestellaref- inLTE;Kurucz1993)assumingtheabovederivedatmospheric fectivetemperatureTeff,thesurfacegravitylogg,themetallic- parameters,andconvolvethemodelspectrumwiththerotation ity[Fe/H],andthemicroturbulentvelocityξfromtheexcitation plusmacroturbulence kernel(Gray2005) andtheinstrumental andionization equilibria. Basedontheestimatedatmospheric profile of Subaru/HDS. Taking account of the intrinsic uncer- parameters, we estimate the mass, radius, and density of the tainty in the macroturbulent velocity (Hirano et al. 2012), we host star using the empirical relations derived by Torres et al. estimatevsinitobe1.76±0.86kms−1. (2010)fromdetachedbinaries.Notethattheempiricalrelations The distance of the host star is estimated as 220±30 pc haveuncertainties of6%and3%forthemassandradius,re- bycomparingtheabsolutemagnitudesbasedontheDartmouth spectively, and these uncertainties aretaken into account. We isochrones (Dotter et al. 2008) for the above stellar parame- also take into account the fact that the effective temperature ters with the apparent magnitudes in JHKs bands from the derived from the excitation/ionization may have a systematic 2MASS point source catalog (Skrutskie et al. 2006). In ad- error of about 40 K (see details in Bruntt et al. 2010; Hirano dition, recently GAIA Data Release 1 (Gaia Collaboration etal.2014). Theestimatedmassandradiusareingoodagree- 2016; Lindegren et al. 2016) reported the parallax of K2-105 ment with those based on the Yonsei-Yale stellar-evolutionary as4.288±0.467mas,correspondingtothedistanceof233+29 23 − model(Yietal.2001),whichweusetosetalowerlimitonthe pc. These two estimates arein excellent agreement, implying ageofthehoststarof0.6Gyr. Toderivethestellar rotational thespectroscopically-derivedstellarparametersarereasonable. velocity vsini, we generate the stellar intrinsic spectrum us- Derived stellar parameters and their errorsaresummarized PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 5 The combined saturated image is convolved with the FWHM ofthecombinedunsaturatedimage,andthestandarddeviations ofcountsinannulisegmentedfromthecenterofthetargetare calculated. Aperturephotometryforthecombinedunsaturated image is done tocompute thefluxcount of thetarget perunit of time. By comparing the flux of the target to the standard deviations of counts in annuli, we create a 5σ contrast curve asafunctionoftheseparationinarcsec. Thecombinedimage ofthesaturatedframesandthe5σ contrastcurveareshownin Figures2and3. Consequently,wedonotfindanyevidenceof contaminants whichcouldmimicthetransitsignalaroundK2- 105atthelevelshowninthecontrastcurve. 3.3 JointTransitLightCurveAnalysis Fig.2.Acombined imagearound K2-105. Theimageisgiveninthelog Wesimultaneously fitK2and MuSCAT transitlight curves as color scale. The central region around K2-105 is saturated. Thisfigure showsa5”×5”portion.NorthisupandEastisleft. follows. TheK2lightcurveshowninFigure1isseparatedintonine transitsegments,eachcontainingafull-transit(namely,before, 100 0 during, and after a transit). Note that there is another transit EPIC211525389 atthebeginning ofK2observation, butweexcludethistransit 10-1 2 sincethedatabeforethetransitarenotavailable. Eachsegment t includes the data within ∼ 9 hours from the apparent transit mi 4 center. Wecomputethestandarddeviationoftheout-of-transit ast li10-2 6 mag K2 data, excluding data in the transit segments and apparent tr H outliers (with the excursion larger than 0.001 from the unity). on10-3 ∆Weadoptthestandarddeviationoftheout-of-transitdataasan c 8 σ estimateoftheuncertaintyforeachK2fluxvalue.ForK2transit 5 10-4 10 light curves, we adopt a linear function in time as a baseline model, 10-50 1 2 3 4 5 6 7 812 Fbase(t)=k0+ktt, separation [arcsec] Fig.3.A5σcontrastlimitcurvearoundK2-105. where k0 is the normalization factor and kt is the coefficient for the time. Other parameters for the K2 transit light curves in Table 1. As aresult, we find that the host star K2-105 is a arethemid-transittimeforeachtransitsegment(Tc(E),where metal-richG-dwarf. This resultis, however, inconsistent with E=0–8),andtheplanet-to-starradiusratioRp/R⋆fortheK2 Huber et al. (2016), who reported EPIC 211525389 to be a bandpass(Kp). For the MuSCAT transit light curves, we adopt a novel metal-poor giant based on reduced proper motion and colors. parametrization for thebaseline model to take account forthe Such discrepancies are not uncommon, given the difficulty of 2nd-order extinction introduced byFukui etal.(2016b). As a metallicitydeterminationbasedonlyonbroadbandphotometry. brief introduction, the parametrization uses the apparent mag- Thespectroscopicdeterminationismorereliable. nitudeofthecomparisonstar(s)insteadoftheairmass,andthe baselinefunctionisexpressedinmagnitudesasfollows, 3.2 ExcludingFaintContaminants mt,base(t)=k0+ktt+kcmc(t), Wecomputeoffsetsbetweenthecentralstar’scentroidsineach frame obtained with and without the ND filter. The reduced wheremtandmc aretheapparentmagnitudeofthetargetand images of saturated and unsaturated frames are then offset- comparisonstar(s),kcisthecoefficientfortheatmosphericex- corrected,sky-level-subtracted, andcombinedtoproducefinal tinction. This parametrization allows us to correct both the deep-integrationimages. Noadditionalpointsourcewhichcan airmass extinction and the 2nd-order extinction caused by the mimic the observed transit signal is detected in the final im- different spectral types of comparison stars. See Fukui et al. age. Hence we compute the detection limit for such sources. (2016b)forthemathematicalderivation ofthismethod. Other 6 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 Fig.4.Leftpanel:Thephase-folded,baseline-correctedK2transitlightcurve.BluedotsplottheK2data.Ablacksolidlinerepresentsthebest-fittransitmodel thatisintegratedovertheK2cadence(∼29.4minutes).Residualsfromthebest-fitmodelareplottedwithaverticaloffsetof−0.01.Middleandrightpanels: Sameastheleftpanel,butthebaseline-correctedMuSCATtransitlightcurvesforther2′ band(middle)andthezs,2band(right),respectively.Reddotsshow theMuSCATdata. parameters for the MuSCAT transit light curves are the mid- Table2.SummaryofpriorsfortheMCMCanalysis. transittimefortheMuSCATobservation(Tc(34))andRp/R⋆ Parameter Prior Explanation forMuSCATr2′ andzs,2bands. P [days] 8.2672478 Fixed Finally, the common planetary transit parameters are the a/R⋆ 18.4±2.5 Addedinthepenaltyfunction scaledsemi-majoraxisa/R⋆ andtheimpactparameterb. We w1,Kp [0.197,0.359] Uniformprior placeanaprioriconstraintona/Rstobe18.4±2.5,basedon w1,r′ [0.180,0.329] Uniformprior 2 spectroscopicallyderivedM⋆,R⋆,andthesemi-majoraxises- w1,Kp [-0.028,0.191] Uniformprior timatedbyKepler’sthirdlaw. Weassumeanorbitalperiodof w2,Kp 0.466±0.009 Gaussianprior P =8.2672478 days, which wederivefromtheK2transits at w2,r′ 0.472±0.009 Gaussianprior 2 the time of identification of the candidate. Although we later w2,Kp 0.375±0.011 Gaussianprior deriveanimprovedorbitalperiod,thedifferencehasnoimpact onfitting results, sinceweallow allTc(E)tobefreeparame- ThepriorsfortheMCMCanalysisaresummarizedinTable2. ters. Before creating MCMC chains, we first optimize free pa- To estimate the values of the freeparameters and their un- rameters for each light curve, using the AMOEBA algorithm certainties,weuseacode(Naritaetal.2007)thatusesthean- (Pressetal.1992).Thepenaltyfunctionisgivenby acluyrtvicemfoormdeul.laTghiveeannablyytOichttraanestiatlf.o(r2m0u0l9a)ifsoerqtuhievatlreanntsittolitghhatt χ2=XX(fobs,t−σ2fmodel,t)2 givenbyMandel&Agol(2002)whenusingthequadraticlimb- K2 t f,t darkening law. We adopt a methodology for applying priors + (mobs,t−mmodel,t)2 +(a/R⋆−18.4)2, X X σ2 2.52 on limb-darkening described in Fukui et al. (2016a). To re- MuSCAT t m,t duceacorrelationbetween thequadraticlimb-darkening coef- wherefobs,tandσf,taretherelativefluxesofthetargetineach ficients u1 and u2, and to appropriately estimate uncertainties K2 transit segment and their errors, and mobs,t and σm,t are for other parameters, we use acombination formof the limb- the magnitude of the target in rs′ and zx,2 bands and their er- darkeningparametrizationw1=u1cos(φ)−u2sin(φ)andw2= rors. The model functions fmodel,t and mmodel,t are combi- u1sin(φ)+u2cos(φ),whichwasintroducedbyPa´l(2008).We nations of the baseline model and the analytic transit formula adoptφ=40◦thatisrecommendedbyPa´l(2008)andHowarth mentioned above. Wenote that thetransitmodel is integrated (2011).Wereferthetablesofquadraticlimb-darkeningparam- overtheK2cadence(∼29.4minutes)forfmodel,t.Inaddition, eters by Claret et al. (2013) and compute allowed w1 and w2 thetime stamps of alldata areconverted tothe BJDTDB sys- valuesforthestellarparameterspresentedinTable1. Weem- temusingthecodebyEastmanetal.(2010).Ifthereducedχ2is ployuniformpriorsforw1between[0.197,0.359]forKpband, largerthanunity, werescalethephotometricerrorsofthedata [0.180, 0.329] for MuSCAT r2′ band, and [-0.028, 0.191] for such that the reduced χ2 for each light curve becomes unity. MuSCAT zs,2 band, respectively. For w2, we adopt Gaussian Wethen estimatetheleveloftime-correlatednoise(a.k.a. red priorsas0.466±0.009forKpband,0.472±0.009forMuSCAT noise: Pontetal.2006)foreachlightcurve,bycalculatingthe r2′ band,and0.375±0.011forMuSCATzs,2band,respectively. βfactorintroducedbyWinnetal.(2008). Theβfactorisused PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 7 to take into account the time-correlated noise and to properly Table3.PlanetaryParametersofK2-105b compensatethepossibleunderestimateofderiveduncertainties Parameter Value fromanalysesoftransitphotometry. Forthepurpose,wecom- (MCMCParameters) putetheresidualsforeachlightcurveandaveragetheresiduals a/R⋆ 17.96+02..9314 intoM binsofN points. Wethencalculatetheactualstandard b 0.328+−0.249 0.225 deviationofthebinneddataσN,obsandtheidealstandarddevi- Rp/R⋆[Kpband] 0.03472−+00..0000103637 wathioenrewσit1hiosutthaensytatnimdaer-dcodrerveilaattieodnnoofistheeσrNe,siiddeualal=sf√oσrN1uqnbiMnMn−e1d, RRpp//RR⋆⋆[[rz2s′,2babnadn]d] 00..0033464541−+−+0000....00000000434548245811 data. To account for increased uncertainties due to the time- Tc(0)[BJD-2450000] 7147.9896−0+00..0000434711 correlated noise, we compute β =σN,obs/σN,ideal for various Tc(1)[BJD-2450000] 7156.25371−+00..0000220069 N.Ifβissignificantlyhigherthanunity,itimpliesthepresence Tc(2)[BJD-2450000] 7164.52415−+00..0000222214 ofthe time-correlatednoise. Consequently, wefindnosignif- Tc(3)[BJD-2450000] 7172.79050−+00..0000211939 − icanttime-correlatednoiseinK2lightcurves,whileMuSCAT Tc(4)[BJD-2450000] 7181.06464±0.00244 light curves show significant time-correlated noise, especially Tc(5)[BJD-2450000] 7189.32677+00..0000220122 in the r2′ band. We adopt β = 1.56409 for the r2′ band and Tc(6)[BJD-2450000] 7197.59274−+00..0000228974 β=1.08181forthezs,2band,whicharethemedianvaluesof Tc(7)[BJD-2450000] 7205.86050−+00..0000210917 βforN=5–20binningcasesineachband,andfurtherrescale Tc(8)[BJD-2450000] 7214.12742−+00..0000339423 the errors of the light curves by multiplying them by their β Tc(34)[BJD-2450000] 7429.06529−+00..0000114527 factors. K[ms−1] 9.4±5.8(<−26.8∗) (DerivedParameters) Finally, we employ the Markov Chain Monte Carlo (MCMC)code(Naritaetal.2013;Fukuietal.2016a)tocom- P [days] 8.266902±0.000070 putetheposteriordistributionsforthefreeparameters.Wecre- Tc(0)†[BJD-2450000] 7147.99107±0.00117 ate3chainsof12,000,000points,anddiscardthefirst2,000,000 Rp[R ]† 3.59+00..4349 pointsfromeachchainas“burn-in”.Thejumpsizesofparame- Rp[R⊕Jup]‡ 0.369−+00..003394 tersineachMCMCstepareadjustedsuchthatacceptanceratios i[◦] 88.95−+01..7037 become ∼23%, which is considered as an optimal acceptance T14[days] 0.14426+−00..0000222043 − ratioforefficientconvergenceofMCMC(seee.g.,Ford2005). Mp[M ] 30±19(<90∗) ⊕ Table3presentsthemedianvaluesanduncertainties,which ∗Anupperlimitat99.865percentile(3σ)level.†Thisistheoriginforthetransit are defined by the 15.87 and 84.13 percentile levels of the ephemeris.‡BasedonRp/R⋆inKpband. merged posterior distributions. The baseline corrected tran- sit light curves (in flux) are plotted in Figure 4. We find long-termradialvelocitydrift. that Rp/R⋆ for all three bands are consistent with one an- To model the observed RVs, we adopt an RV model, other and that the MuSCAT light curves areconsistent with a vmodel = −Ksinφ+γ, where K, φ, γ are the RV semi- flat-bottomed transit. To derive the orbital ephemeris we fit amplitude, theorbitalphaserelativetothemid-transit,andthe a linear model to the mid-transit times, yielding a period of offset RV relative to the template spectrum. We fix the or- P = 8.2669016±0.0000581 days and a time of first transit bital period P to 8.2669016 days and the origin of the tran- of Tc(0)=2457147.99107±0.00098 (BJDTDB), with χ2 of sitephemerisTc(0)to2457147.99107 (BJDTDB)asderivedin 11.499for8degreesoffreedom. Notethatinthisfitweadopt §3.3.WedonotconsidertheRossiter-McLaughlineffect,since the larger-side uncertainty if uncertainties of respective mid- thereisnoRVdataduringatransit. Wealsoneglecttheeccen- transittimesareasymmetric.Tobeconservative,werescalethe tricitye,sinceitisindeterminablewiththecurrentRVs. uncertainties ofP andTc(0)byp11.499/8,andtherescaled We first optimize K and γ using the AMOEBA algorithm uncertainties arepresented inTable3. This refinedephemeris (Press et al. 1992), and create an MCMC chain of 500,000 willbeusefulforfuturetransitobservationsofK2-105b. points starting from the optimal parameters. The acceptance ratio is set to ∼23%. The phased RVs and the best-fit RV model are shown in Figure 6. The median values and uncer- 3.4 Subaru/HDSRadialVelocitiesandaMass tainties of the free parameters are presented in Table 3. We UpperLimit also present a 3σ upper limit (99.865 percentile level) of K We employ the RV pipeline for the Subaru HDS described in inTable3. Consequently, theRVsemi-amplitude is 9.4±5.8 Satoetal.(2002)toextracttherelativeRVswithrespecttothe ms−1,whichcorrespondsto30±19M forthemassofK2- ⊕ templateiodine-freespectrum. ThederivedRVsarepresented 105 b. At this point, the current RVs are not sufficient to de- inTable4andplottedinFigure5.Wedonotfindanysignificant terminetheRVsemi-amplitudeandthemassofK2-105bpre- 8 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 Table4.RadialvelocitiesofK2-105takenwithSubaru/HDS. #" BJD Value[ms 1] Error[ms 1] TDB − − 2457352.95525 11.33 8.92 $" 1) 2457353.96869 5.08 7.25 -s m 2457354.98800 4.45 7.14 " y ( 2457420.93976 -23.06 8.42 t ci 2457420.94741 -12.43 9.14 o $" el 2457674.12841 7.07 7.38 v al #" 2457675.13374 -6.44 7.45 di a 2457676.11418 3.23 7.80 R !" lations,constraintsoncontaminantsfromhighresolutionimag- !&" ’"" ’&" &"" &&" %"" %&" BJD - 2457000 ing contrast curves, physical properties of the host star from spectroscopically-derived parametersandbroadbandphotome- Fig.5.Relative radial velocities (blue points) of K2-105 taken with the try,andcomparisonsoftheshapeofthephase-foldedK2light SubaruHDS. curvetoalargenumberofrealisticfalsepositivescenarios. We input our results presented in the last section to vespa and find the final FPP for this target to be extremely low (< !" 10−6), which strongly indicates aplanetary nature fortheori- -1m s) #" tghienfoaflstheepoobsisteivrveesdcetrnaanrsiiotssiagcncaolusn.tWedeftohrerbeyfovreesrpuale(oi.uet.ahllieor-f city ( " aercclihpiscianlgtrbipinlearsieyss)t.ems,eclipsingbinaries,blendedbackground o el al v #" Weconclude thatK2-105 bis abona fideplanet, basedon di the mass constraint presented in §3.4 and the extremely low a R !" FPP. "$% "$! "$" "$! "$% 4.2 TheNewTransitEphemerisandaHintofTransit Phase TimingVariation We have derived the new transit ephemeris for K2-105 b as Fig.6.Radialvelocities(bluepoints)phasedbytheorbitalperiodgivenin Table3andthebest-fitRVmodel(redline). P =8.266902±0.000070daysandTc(0)=2457147.99107± 0.00117 in BJDTDB. This is indeed the first reliable transit ephemeris for K2-105 b, since Pope et al. (2016) and Barros cisely.Nevertheless,wecanputaconstraintonK<26.8ms−1 et al. (2016), who reported EPIC211525389 b as acandidate at the 3σ level, which corresponds to a mass upper limit of planet, presented a transit ephemeris without any uncertainty. 90M or0.00027M .Thisupperlimitensuresthatthemassof ⊕ ⊙ Usingthetransitephemeriswehavederivedfromourobserva- K2-105biswithin aplanetarymass,excluding thepossibility tions, transits of K2-105 b in 2017 can be predicted with un- ofaneclipsingbinaryscenarioforthissystem. certainties of only about 10 minutes, which will facilitate the schedulingoffuturetransitobservations. 4 Discussions We check the possible presence of transit timing variation (TTV) for the transits of K2-105 b. Figure 7 plots residu- 4.1 ConfirmationofthePlanetaryNatureof als of the observed mid-transit times from the current transit K2-105b ephemeris. While if only K2 transits are taken into account, Tofurthervalidatetheplanetarynatureofthetransitsignal,we a linear fit to the mid-transit times gives P = 8.2675710± usetheopen-sourcePythoncodevespa(Morton2012;Morton 0.0003569 days and Tc(0) = 2457147.98853 ±0.00164 in 2015), which employs a robust statistical framework to cal- BJDTDB,withχ2of7.884for7degree-of-freedom.Thetransit culate the False Positive Probability (FPP) of the transit sig- fortheMuSCATrunoccurredabout30minearlierthanthepre- nal. It does this by taking into account a variety of factors: diction fromtheK2-onlytransits, although thedifferenceisat the size of the photometric aperture of K2, the source den- the2σlevel. Thediscrepancyisstatisticallynotsignificant,but sity along the line of sight as determined from galaxy simu- itmaysuggestthatanadditional non-transiting planet existas PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 9 ! 17 16 15 14 e) "! R)⊕ 1123 ut s( 11 Jupiter u min #! radi 109 Saturn C ( etary 78 FGK---tttyyypppeee - ! an 6 M-type O Pl 5 EPIC211525389b 4 Neptune 3 2 $#! 1 Earth 0 ! #! "! ! 1 10 Orbitalperiod(day) Epoch Fig.8.Period-radius relation ofconfirmed transiting exoplanets withP ≤ 50days around F-type (M⋆ = 1.04−1.4M⊙), G-type (M⋆ = 0.8− Fig.7.Residualsoftheobservedmid-transittimesfromthecurrentbest-fit 1.04M⊙), K-type (M⋆ = 0.45−0.8M⊙), and M-type stars (M⋆ = transitephemeris. Theredlinerepresentsthebest-fittransitephemerisfor 0.08−0.45M⊙)asof2016August;thedatacomefromhttp://exoplanet.eu. thetransitsfromK2only.WenotethatthetransitephemerisfromK2hasan Planetsforwhichtheradiusuncertaintyexceeds20%oftheirrepresentative uncertaintyof∼17minutesattheepochof34.Thusthediscrepancyisstill valuesareexcluded. withinthe2σlevel. isthecaseforK2-19b&c(e.g.,Armstrongetal.2015;Narita than30M⊕.K2-105borbitsatap=0.081±0.006AUarounda G-dwarfwiththemassof1.01±0.07M .AccordingtoOwen etal.2015a). Alternatively, stellaractivities suchasstarspots ⊙ & Wu (2013), K2-105 b can retain its atmosphere under an mayplay arole inthe apparent discrepancy (seee.g., Oshagh intense stellar X-rayand EUV irradiation during an estimated et al. 2013). To confirm the presence of TTVs for K2-105 b, stellarageofolderthan0.6Gyr,ifthecoremassisgreaterthan furthertransitmonitoringisneeded. ∼6M . ⊕ IfK2-105bisagasdwarf,howdiditform? Therearetwo 4.3 K2-105bintheContextofPeriod-Radiusand possibleformationscenarios,namely,in-situgasaccretiononto Mass-RadiusRelation a massive core (Ikoma & Hori 2012; Lee et al. 2014; Ormel Occurrence rates of planets derived from RV surveys and the etal.2015)orinwardmigrationofaNeptune-likeplanet(e.g., Keplerindicatethatshort-periodNeptune-sizedplanetssuchas Bodenheimer &Lissauer2014). However, wecannotruleout K2-105 b are only rarely found in planetary systems around both stories becauseof anunknown massof K2-105 b. Thus, solar-typestars(e.g.,Howardetal.2012;Petiguraetal.2013). massdeterminationfromfollow-upRVobservationswillbein- Figure8showsanorbitalperiod–radius distribution oftransit- dispensable for constraining the formation history and quanti- ing planets with P ≤50days. We see a clear lack of planets fyingtheeffectofphoto-evaporation. withradiiof∼3.5−10R aroundsolar-typestars,albeitinter- In addition, close-in Neptune-sized planets as represented estingly, nohotJupiterw⊕ithradiusof>∼10R isseenaround byK2-105bwouldbesuggestiveofuncoveringhowtheSolar ⊕ starswithM⋆≤0.45M . Thesefeatures,alsopointedoutby Systemwasborn.ThereisnoK2-105b-likeplanetintheSolar ⊙ previous studies (e.g., Mazeh et al. 2016; Matsakos & Ko¨nigl System, instead the two ice giants orbit beyond ∼20AU. As 2016),mayreflectasizeboundarybetweenafailedcoreanda onepossibility, thismightbecausedbythepresenceofJupiter gas giant, which corresponds to a critical core mass that trig- andSaturnorbitingwithintheorbitsofthetwoicegiants,act- gersgasaccretioninarunawayfashion,ormasslossviaphoto- ingasabarrieragainstinwardmigratingcores. Long-termRV evaporation. Thelattercasecanbeausefulindicatortoevaluate monitoringofK2-105toconstrainthepossibilityofoutergiant theefficiencyofatmosphericescapeduetoastellarirradiation planetsshouldbehelpfulinunderstandingtheorbitalevolutions orinjectionofhigh-energyparticles.Thus,thediscoveryofK2- ofNeptune-likeplanetsandtheSolarSystem. Therefore,long- 105bcanbeaninterestingbenchmarktodisentangletheorigin termRVmonitoringofthissystemwouldbealsoencouraged. ofNeptune-sizedplanetsclosetocentralstars. Figure 9 shows theoretical mass-radius relations for three 5 Summary typesofplanetsandtransitingexoplanetswithknownmass.We findthatK2-105bisnotabarerockyplanet but likely hasan We have confirmed the planetary nature of K2-105 b, using atmosphere(<10%ofitstotalmass)ifitstotalmassissmaller transitphotometry fromtheK2mission, highdispersion spec- 10 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 vital forunderstanding the formationand migration history of thisplanetarysystem. 4.0 EPIC211525389b )⊕ 3.5 6 Funding R ( us 3.0 This work was supported by Japan Society for Promotion di a of Science (JSPS) KAKENHI Grant Numbers JP25247026, r ary 2.5 JP16K17660, 25-8826, JP16K17671, and JP15H02063. This net workwasalsosupportedbytheAstrobiologyCenterProjectof Pla 2.0 H2O NationalInstitutesofNaturalSciences(NINS)(GrantNumbers Fe AB271009,AB281012andJY280092).I.R.acknowledgessup- 1.5 MgSiO3 portbytheSpanishMinistryofEconomyandCompetitiveness 1.0 (MINECO)throughgrantESP2014-57495-C2-2-R. 1 10 Planetarymass(M⊕) Fig.9.Mass-radius relationofconfirmed transiting exoplanets asof2016 Acknowledgments September; the data come from http://exoplanet.eu. Planets with uncer- taintiesinmassandradiusover20%oftheirrepresentativevaluesarenot WeacknowledgeRobertoSanchis-Ojeda,whoestablishedtheESPRINT shownhere.Theoreticalmodelsofiron,water,andsilicateplanetsarebased collaboration. WethanksupportsbyAkitoTajitsuandHikaruNagumo onZeng&Sasselov(2013).WeadoptthepossiblerangeofK2-105b’smass forourSubaruHDSobservation,JunHashimotoforSubaruHiCIAOob- derivedfromRVmeasurementsbytheSubaruHDS,Mp=30±19M⊕and servation, andTimothyBrandtforHiCIAO datareduction. Thispaper itsradiusofRp=3.59+−00..4349R⊕. isbasedondatacollectedattheSubarutelescopeandOkayama188cm telescope,whichareoperatedbytheNationalAstronomicalObservatory of Japan. The data analysis was in part carried out on common use troscopy and RVs from Subaru/HDS, high-contrast AO imag- dataanalysiscomputersystemattheAstronomyDataCenter, ADC,of ing from Subaru/HiCIAO, and ground-based transit photome- the National Astronomical Observatory of Japan. PyFITSand PyRAF try from Okayama/MuSCAT. The host star K2-105 is located were useful for our data reductions. PyFITS and PyRAF are prod- in K2 campaign field 5, and estimated to be a metal-rich G- ucts of the Space Telescope Science Institute, which is operated by AURA for NASA. Our analysis is also based on observations made dwarf.AlthoughfurtherRVmonitoringisrequiredtoprecisely with the NASA/ESA Hubble Space Telescope, and obtained from the determine the mass of K2-105 b, the Subaru HDS RVs put a Hubble Legacy Archive, which is a collaboration between the Space stringentconstraintonthemassofK2-105baslessthan90M TelescopeScienceInstitute,theSpaceTelescopeEuropeanCoordinating ⊕ or 0.00027M at the 3σ level, ensuring that the mass of K2- Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre ⊙ 105biswellwithin theplanetary massrange. Ourjoint anal- (CADC/NRC/CSA).ThisworkhasmadeuseofdatafromtheEuropean Space Agency (ESA) mission Gaia (http://www.cosmos.esa.int/gaia), ysisofthetransitdatafromK2andMuSCATyieldsanorbital processedbytheGaiaDataProcessingandAnalysisConsortium(DPAC, periodofP =8.266902±0.000070daysandanoriginofmid- http://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the transittimeTc(0)=2457147.99107±0.00117inBJDTDB.The DPAChasbeenprovidedbynationalinstitutions,inparticulartheinstitu- transitephemerisisaccurateenoughtopredicttransittimesof tionsparticipatingintheGaiaMultilateralAgreement. Weacknowledge K2-105 b with uncertainties of less than 20 minutes for the theverysignificantculturalroleandreverencethatthesummitofMauna next few years. We have found that the transit observed with KeahasalwayshadwithintheindigenouspeopleinHawai’i. theOkayama/MuSCAT occurredabout30minutesearlierthan thepredictionfromtheK2-onlytransits. Althoughthediscrep- References ancyfromthepredictionisstatisticallymarginalatthe2σlevel, Adibekyan,V.Z.,etal.2013,A&A,560,A51 this may suggest that additional long period or non-transiting Armstrong,D.J.,etal.2015,A&A,582,A33 planet(s)existinthesystem,whichincreasestheneedforfur- Barros, S.C.C.,Demangeon, O.,&Deleuil, M.2016, ArXive-prints, thertransitandRVmeasurementsofthissystem. arXiv:1607.02339 ThetransitdepthofK2-105b,Rp/R⋆∼0.035,corresponds Beauge´,C.,&Nesvorny´,D.2013,ApJ,763,12 to a planetary radius of Rp =3.59+00..4349 R . Thus K2-105 b Bodenheimer,P.,&Lissauer,J.J.2014,ApJ,791,103 isashort-periodNeptune-sizedplan−et. As⊕K2-105bisatran- Brandt,T.D.,etal.2013,ApJ,764,183 siting planet around a relatively bright host star, it is a favor- Bruntt,H.,etal.2010,MNRAS,405,1907 Claret,A.,Hauschildt,P.H.,&Witte,S.2013,A&A,552,A16 ableandimportanttargetforcharacterizationofitsmassviaRV Crossfield,I.J.M.,etal.2015,ApJ,804,10 measurements, its atmosphere via transmission spectroscopy, Crossfield,I.J.M.,etal.2016,ApJS,226,7 spin-orbit(mis)alignmentviatheRossiter-McLaughlineffector Dai,F.,etal.2016,ApJ,823,115 doppler tomography, andthepresenceof additional planet via Dotter, A., Chaboyer, B., Jevremovic´, D., Kostov, V., Baron, E., & TTVs and/or RVtrends. Suchfurther characterization will be Ferguson,J.W.2008,ApJS,178,89

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.