ebook img

The Joy of Forgetting: Faster Anytime Search via Restarting PDF

43 Pages·2010·0.33 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Joy of Forgetting: Faster Anytime Search via Restarting

Introduction ExperimentsinPlanning ExperimentsinOtherDomains Summary The Joy of Forgetting: Faster Anytime Search via Restarting Silvia Richter GriffithUniversity&NICTA,Australia Jordan T. Thayer & Wheeler Ruml UniversityofNewHampshire,US ICAPS 2010 Introduction ExperimentsinPlanning ExperimentsinOtherDomains Summary Outline 1 Introduction Anytime Weighted A∗ Low h-Bias Restarting Weighted A∗ 2 Experiments in Planning 3 Experiments in Other Domains 4 Summary Introduction AnytimeWeightedA∗ ExperimentsinPlanning Lowh-Bias ExperimentsinOtherDomains RestartingWeightedA∗ Summary Outline 1 Introduction Anytime Weighted A∗ Low h-Bias Restarting Weighted A∗ 2 Experiments in Planning 3 Experiments in Other Domains 4 Summary Introduction AnytimeWeightedA∗ ExperimentsinPlanning Lowh-Bias ExperimentsinOtherDomains RestartingWeightedA∗ Summary Anytime Planning for IPC 2008 IPC 2008 requirement: find best possible plan within 30 minutes. This suggested an anytime approach: Find a solution as quickly as possible (any solution is better than none). (cid:32) greedy best-first search While there is still time, try to improve the solution. (cid:32) weighted A∗ with decreasing weights Interesting finding: A series of independent runs of weighted A∗ seemed to perform better than one continued search. Introduction AnytimeWeightedA∗ ExperimentsinPlanning Lowh-Bias ExperimentsinOtherDomains RestartingWeightedA∗ Summary Continued WA∗ Basic algorithm: 1 Set weight and bound bound = cost of best known solution, initially ∞ 2 Update open list w.r.t. weight if necessary 3 Conduct WA∗ search, using bound for pruning 4 Upon new best solution: report solution, goto 1. Variants used in literature: Anytime A∗ (Zhou & Hansen 2001, 2004) ARA∗ (Likhachev et al. 2003) Introduction AnytimeWeightedA∗ ExperimentsinPlanning Lowh-Bias ExperimentsinOtherDomains RestartingWeightedA∗ Summary Example: Blocksworld Task 11-2 Plan lengths found over time: GBFS + iterated WA∗: 72 50 46 36 34 GBFS + continued WA∗: 72 68 46 38 34 Plan qualities (best length / current length): 1 34 36 0.9 38 q) q*/ 0.8 h uality ( 0.7 46 n lengt q 50 a n 0.6 Pl a Pl 0.5 iterated WA* continued WA* 68 0.4 72 0.1 1 10 Time (s) hff1’’-0--vvvaaaellluuuxepeesssa,,ndwwed==st21a.t5es(reduced weight) glx(cid:32)2er9seseesxedgapaycearcncsnuehodrrlaaeulettdteesiodsstnthgasetrteaefetsuedrsyther from gohma=ulst3e.8xpanhd=for4.o0ptimal path olbbbepuuesttttsswitmmeaaeffctaeaceenlnuscsytrfioiannosltutdpeoitileipnloonegnpnnsegttrlh1asisietstaetlsnsedfhtaevxepalonwdienrgf’r-ivgahltueof S 1380...876 397...867 386...867 497...000 4.0 x x 983...814 387...481 11320...005 x 297...629 286...629 286...629 286...629 617...8985 298...000 1290...000 x x x x 1280...692 176...867 176...867 176...867 176...867 617...8985 176...005 187...005 x x x x x x 1280...692 187...867 176...005 176...005 176...005 718...8985 176...005 x x x x 198...867 187...005 187...005 819...8985 187...005 187...005 x Introduction AnytimeWeightedA∗ ExperimentsinPlanning Lowh-Bias ExperimentsinOtherDomains RestartingWeightedA∗ Summary The Problem: Low-h Bias S g2 g1 hff1’’-0--vvvaaaellluuuxepeesssa,,ndwwed==st21a.t5es(reduced weight) glx(cid:32)2er9seseesxedgapaycearcncsnuehodrrlaaeulettdteesiodsstnthgasetrteaefetsuedrsyther from gomaulst expand for optimal path olbbbepuuesttttsswitmmeaaeffctaeaceenlnuscsytrfioiannosltutdpeoitileipnloonegnpnnsegttrlh1asisietstaetlsnsedfhtaevxepalonwdienrgf’r-ivgahltueof S 1380...876 397...867 386...867 497...000 4.0 x x 983...814 387...481 11320...005 x 297...629 286...629 286...629 286...629 617...8985 298...000 1290...000 x x x x 1280...692 176...867 176...867 176...867 176...867 617...8985 176...005 187...005 x x x x x x 1280...692 187...867 176...005 176...005 176...005 718...8985 176...005 x x x x 198...867 187...005 187...005 819...8985 187...005 187...005 x Introduction AnytimeWeightedA∗ ExperimentsinPlanning Lowh-Bias ExperimentsinOtherDomains RestartingWeightedA∗ Summary The Problem: Low-h Bias h = 3.8 h = 4.0 S g2 g1 hff1’’-0--vvvaaaellluuuxepeesssa,,ndwwed==st21a.t5es(reduced weight) lx(cid:32)2e9ssesxegapacearcncnuehdrraaelettdeesdsstthgasetrteaefetsuedrsyther from gomaulst expand for optimal path lbbbeuuestttsswtmeaaeffcteaceennuscytrfiiannosttdpeoiilepnlonegnpnsegttrlh1asisietstaetlsnsedfhtaevxepalonwdienrgf’r-ivgahltueof S 1380...876 397...867 386...867 497...000 4.0 x x 983...814 387...481 11320...005 x 297...629 286...629 286...629 286...629 617...8985 298...000 1290...000 x x x x 1280...692 176...867 176...867 176...867 176...867 617...8985 176...005 187...005 x x x x x x 1280...692 187...867 176...005 176...005 176...005 718...8985 176...005 x x x x 198...867 187...005 187...005 819...8985 187...005 187...005 x Introduction AnytimeWeightedA∗ ExperimentsinPlanning Lowh-Bias ExperimentsinOtherDomains RestartingWeightedA∗ Summary The Problem: Low-h Bias greedy solution h = 3.8 h = 4.0 optimal solution S g2 g1 ff1’’0--vvaaelluuxpeessa,,ndwwed==st21a.t5es(reduced weight) gx(cid:32)2r9eeesxedgpayearncsnehodrlaeuletdtesiodssntgastrteaeetsedsy hm=ust3e.8xpanhd=for4.o0ptimal path obbbpuuettttswitmmeaefftaeaeenlnscsytfioinnoslutdpoitileipnlonegpnnsegtrl1asisitstaetsnsdhaevxepalonwdienrgf’r-ivgahltueof S 180..76 97..67 86..67 97..00 x x 98..81 87..81 1120..05 x 97..29 86..29 86..29 86..29 67..885 98..00 190..00 x x x x 180..92 76..67 76..67 76..67 76..67 67..885 76..05 87..05 x x x x x x 180..92 87..67 76..05 76..05 76..05 78..885 76..05 x x x x 98..67 87..05 87..05 89..885 87..05 87..05 x Introduction AnytimeWeightedA∗ ExperimentsinPlanning Lowh-Bias ExperimentsinOtherDomains RestartingWeightedA∗ Summary The Problem: Low-h Bias h-values less accurate the further from goal less accurate on the left 3.8 3.8 3.8 S 4.0 4.0 3.4 3.4 3.0 2.6 2.6 2.6 2.6 1.9 2.0 2.0 2.6 1.8 1.8 1.8 1.8 1.9 1.0 1.0 2.6 1.8 1.0 1.0 1.0 1.9 1.0 g2 1.8 1.0 g1 1.0 1.9 1.0 1.0

Description:
Experiments in Planning. Experiments in Other Domains. Summary. The Joy of Forgetting: Faster Anytime Search via Restarting. Silvia Richter.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.