Introduction ExperimentsinPlanning ExperimentsinOtherDomains Summary The Joy of Forgetting: Faster Anytime Search via Restarting Silvia Richter GriffithUniversity&NICTA,Australia Jordan T. Thayer & Wheeler Ruml UniversityofNewHampshire,US ICAPS 2010 Introduction ExperimentsinPlanning ExperimentsinOtherDomains Summary Outline 1 Introduction Anytime Weighted A∗ Low h-Bias Restarting Weighted A∗ 2 Experiments in Planning 3 Experiments in Other Domains 4 Summary Introduction AnytimeWeightedA∗ ExperimentsinPlanning Lowh-Bias ExperimentsinOtherDomains RestartingWeightedA∗ Summary Outline 1 Introduction Anytime Weighted A∗ Low h-Bias Restarting Weighted A∗ 2 Experiments in Planning 3 Experiments in Other Domains 4 Summary Introduction AnytimeWeightedA∗ ExperimentsinPlanning Lowh-Bias ExperimentsinOtherDomains RestartingWeightedA∗ Summary Anytime Planning for IPC 2008 IPC 2008 requirement: find best possible plan within 30 minutes. This suggested an anytime approach: Find a solution as quickly as possible (any solution is better than none). (cid:32) greedy best-first search While there is still time, try to improve the solution. (cid:32) weighted A∗ with decreasing weights Interesting finding: A series of independent runs of weighted A∗ seemed to perform better than one continued search. Introduction AnytimeWeightedA∗ ExperimentsinPlanning Lowh-Bias ExperimentsinOtherDomains RestartingWeightedA∗ Summary Continued WA∗ Basic algorithm: 1 Set weight and bound bound = cost of best known solution, initially ∞ 2 Update open list w.r.t. weight if necessary 3 Conduct WA∗ search, using bound for pruning 4 Upon new best solution: report solution, goto 1. Variants used in literature: Anytime A∗ (Zhou & Hansen 2001, 2004) ARA∗ (Likhachev et al. 2003) Introduction AnytimeWeightedA∗ ExperimentsinPlanning Lowh-Bias ExperimentsinOtherDomains RestartingWeightedA∗ Summary Example: Blocksworld Task 11-2 Plan lengths found over time: GBFS + iterated WA∗: 72 50 46 36 34 GBFS + continued WA∗: 72 68 46 38 34 Plan qualities (best length / current length): 1 34 36 0.9 38 q) q*/ 0.8 h uality ( 0.7 46 n lengt q 50 a n 0.6 Pl a Pl 0.5 iterated WA* continued WA* 68 0.4 72 0.1 1 10 Time (s) hff1’’-0--vvvaaaellluuuxepeesssa,,ndwwed==st21a.t5es(reduced weight) glx(cid:32)2er9seseesxedgapaycearcncsnuehodrrlaaeulettdteesiodsstnthgasetrteaefetsuedrsyther from gohma=ulst3e.8xpanhd=for4.o0ptimal path olbbbepuuesttttsswitmmeaaeffctaeaceenlnuscsytrfioiannosltutdpeoitileipnloonegnpnnsegttrlh1asisietstaetlsnsedfhtaevxepalonwdienrgf’r-ivgahltueof S 1380...876 397...867 386...867 497...000 4.0 x x 983...814 387...481 11320...005 x 297...629 286...629 286...629 286...629 617...8985 298...000 1290...000 x x x x 1280...692 176...867 176...867 176...867 176...867 617...8985 176...005 187...005 x x x x x x 1280...692 187...867 176...005 176...005 176...005 718...8985 176...005 x x x x 198...867 187...005 187...005 819...8985 187...005 187...005 x Introduction AnytimeWeightedA∗ ExperimentsinPlanning Lowh-Bias ExperimentsinOtherDomains RestartingWeightedA∗ Summary The Problem: Low-h Bias S g2 g1 hff1’’-0--vvvaaaellluuuxepeesssa,,ndwwed==st21a.t5es(reduced weight) glx(cid:32)2er9seseesxedgapaycearcncsnuehodrrlaaeulettdteesiodsstnthgasetrteaefetsuedrsyther from gomaulst expand for optimal path olbbbepuuesttttsswitmmeaaeffctaeaceenlnuscsytrfioiannosltutdpeoitileipnloonegnpnnsegttrlh1asisietstaetlsnsedfhtaevxepalonwdienrgf’r-ivgahltueof S 1380...876 397...867 386...867 497...000 4.0 x x 983...814 387...481 11320...005 x 297...629 286...629 286...629 286...629 617...8985 298...000 1290...000 x x x x 1280...692 176...867 176...867 176...867 176...867 617...8985 176...005 187...005 x x x x x x 1280...692 187...867 176...005 176...005 176...005 718...8985 176...005 x x x x 198...867 187...005 187...005 819...8985 187...005 187...005 x Introduction AnytimeWeightedA∗ ExperimentsinPlanning Lowh-Bias ExperimentsinOtherDomains RestartingWeightedA∗ Summary The Problem: Low-h Bias h = 3.8 h = 4.0 S g2 g1 hff1’’-0--vvvaaaellluuuxepeesssa,,ndwwed==st21a.t5es(reduced weight) lx(cid:32)2e9ssesxegapacearcncnuehdrraaelettdeesdsstthgasetrteaefetsuedrsyther from gomaulst expand for optimal path lbbbeuuestttsswtmeaaeffcteaceennuscytrfiiannosttdpeoiilepnlonegnpnsegttrlh1asisietstaetlsnsedfhtaevxepalonwdienrgf’r-ivgahltueof S 1380...876 397...867 386...867 497...000 4.0 x x 983...814 387...481 11320...005 x 297...629 286...629 286...629 286...629 617...8985 298...000 1290...000 x x x x 1280...692 176...867 176...867 176...867 176...867 617...8985 176...005 187...005 x x x x x x 1280...692 187...867 176...005 176...005 176...005 718...8985 176...005 x x x x 198...867 187...005 187...005 819...8985 187...005 187...005 x Introduction AnytimeWeightedA∗ ExperimentsinPlanning Lowh-Bias ExperimentsinOtherDomains RestartingWeightedA∗ Summary The Problem: Low-h Bias greedy solution h = 3.8 h = 4.0 optimal solution S g2 g1 ff1’’0--vvaaelluuxpeessa,,ndwwed==st21a.t5es(reduced weight) gx(cid:32)2r9eeesxedgpayearncsnehodrlaeuletdtesiodssntgastrteaeetsedsy hm=ust3e.8xpanhd=for4.o0ptimal path obbbpuuettttswitmmeaefftaeaeenlnscsytfioinnoslutdpoitileipnlonegpnnsegtrl1asisitstaetsnsdhaevxepalonwdienrgf’r-ivgahltueof S 180..76 97..67 86..67 97..00 x x 98..81 87..81 1120..05 x 97..29 86..29 86..29 86..29 67..885 98..00 190..00 x x x x 180..92 76..67 76..67 76..67 76..67 67..885 76..05 87..05 x x x x x x 180..92 87..67 76..05 76..05 76..05 78..885 76..05 x x x x 98..67 87..05 87..05 89..885 87..05 87..05 x Introduction AnytimeWeightedA∗ ExperimentsinPlanning Lowh-Bias ExperimentsinOtherDomains RestartingWeightedA∗ Summary The Problem: Low-h Bias h-values less accurate the further from goal less accurate on the left 3.8 3.8 3.8 S 4.0 4.0 3.4 3.4 3.0 2.6 2.6 2.6 2.6 1.9 2.0 2.0 2.6 1.8 1.8 1.8 1.8 1.9 1.0 1.0 2.6 1.8 1.0 1.0 1.0 1.9 1.0 g2 1.8 1.0 g1 1.0 1.9 1.0 1.0
Description: