ebook img

The innermost regions of relativistic jets and their magnetic fields in radio-loud Active Galactic Nuclei PDF

1.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The innermost regions of relativistic jets and their magnetic fields in radio-loud Active Galactic Nuclei

The innermost regions of relativistic jets and their magnetic fields in radio-loud Active Galactic Nuclei 5 1 0 2 n a White Paper in Support of the Mission Concept of the J 2 Large Observatory for X-ray Timing 1 ] E H . h Authors p - o I.Donnarumma1,I.Agudo2,L.Costamante3,F.D’Ammando1,4,G.Giovannini1,4, tr P.Giommi5,M.Giroletti1,P.Grandi1,S.G.Jorstad7,8,A.P.Marscher7, s a M.Orienti1,L.Pacciani1,T.Savolainen6,9,A.Stamerra1,10,F.Tavecchio1, [ E.Torresi1,A.Tramacere11,S.Turriziani12,S.Vercellone1,A.Zech13 1 v 0 7 1 INAF,Italy 8 AstronomicalInstitute,St. PetersburgStateUniver- 7 2 InstitutodeAstrofísicadeAndalucía,Granada,Spain sity,UniversitetskijPr. 28,Petrodvorets,198504St. 2 3 UniversityofPerugia,Perugia,Italy Petersburg,Russia 0 4 UniversitádegliStudidiBologna,Bologna,Italy 9 MaxPlanckInstitutfürRadioastronomie,Bonn,Ger- . 1 5 ASIScienceDataCenter(ASDC),Frascati,Italy many 0 6 AaltoUniversityMetsähoviRadioObservatory,Met- 10ScuolaNormaleSuperiore,PiazzadeiCavalieri,7, 5 sähovintie114,02540Kylmälä,Finland 56126Pisa,Italy 1 7 InstituteforAstrophysicalResearch,BostonUniver- 11ISDC,UniversityofGeneva,Switzerland : v sity,725CommonwealthAvenue,Boston,MA02215, 12UniversityofTorVergata,Rome,Italy Xi USA 13LUTH,UniversitéParis7,Paris,France r a Radio-loudAGNwithLOFT Preamble TheLargeObservatoryforX-rayTiming,LOFT,isdesignedtoperformfastX-raytimingandspectroscopy with uniquely large throughput (Feroci et al., 2014). LOFT focuses on two fundamental questions of ESA’s Cosmic Vision Theme “Matter under extreme conditions”: what is the equation of state of ultra- dense matter in neutron stars? Does matter orbiting close to the event horizon follow the predictions of generalrelativity? ThesegoalsareelaboratedinthemissionYellowBook(http://sci.esa.int/loft/ 53447-loft-yellow-book/)describingtheLOFT missionasproposedinM3,whichcloselyresembles theLOFT missionnowbeingproposedforM4. TheextensiveassessmentstudyofLOFT asESA’sM3missioncandidatedemonstratesthehighlevel ofmaturityandthetechnicalfeasibilityofthemission,aswellasthescientificimportanceofitsunique core science goals. For this reason, the LOFT development has been continued, aiming at the new M4 launch opportunity, for which the M3 science goals have been confirmed. The unprecedentedly large effectivearea,largegrasp,andspectroscopiccapabilitiesofLOFT’sinstrumentsmakethemissioncapable of state-of-the-art science not only for its core science case, but also for many other open questions in astrophysics. LOFT’s primary instrument is the Large Area Detector (LAD), a 8.5m2 instrument operating in the 2–30keVenergyrange,whichwillrevolutionisestudiesofGalacticandextragalacticX-raysourcesdown totheirfundamentaltimescales. ThemissionalsofeaturesaWideFieldMonitor(WFM),whichinthe 2–50keVrangesimultaneouslyobservesmorethanathirdoftheskyatanytime,detectingobjectsdownto mCrabfluxesandprovidingdatawithexcellenttimingandspectralresolution. Additionally,themissionis equippedwithanon-boardalertsystemforthedetectionandrapidbroadcastingtothegroundofcelestial brightandfastoutburstsofX-rays(particularly,Gamma-rayBursts). This paper is one of twelve White Papers that illustrate the unique potential of LOFT as an X-ray observatoryinavarietyofastrophysicalfieldsinadditiontothecorescience. Page2of15 Radio-loudAGNwithLOFT 1 Summary TheLargeAreaDetector(2–50keV,LAD)aboardtheLOFT missionthankstoitsunprecententedareapeaking at8keV( 8.5m2)willhaveagreatpotentialfortheinvestigationofjetpropertiesinradio-loudActiveGalactic ∼ Nuclei(AGN).Activegalacticnuclei(AGN)offerideallaboratoriestoaddressseveralkeyproblemsofmodern astrophysics. LOFT is planned in the same timeframe as other observatories that are opening up the AGN timedomainonshorttimescales,e.g.,theCherenkovTelescopeArray(CTA)atTeVenergiesandtheSquare Kilometer Array (SKA) and Atacama Large Millimeter Array (ALMA) in the radio and (sub-)mm bands, respectively. Inthiscontext,LOFT/LADwillbeabletofollow-upalargenumberofAGNs(upto100sources, seeTable1),whiletheLOFT/WFMcanprovideweeklymonitoring(afewdaysforthebrightest)thankstoits skycoverage. Blazarsarethemostvariablesourcesovertimescalesthatcanbeasshortasminutes. Thisisthecase • oftheHighEnergyPeakedBLLac(HBL)objectsshowingstrongvariabilityinX-rays,whichhighly correlate with that of the TeV emission. The degree of this correlation is still debated, particularly when the flaring activity is followed down to very short time scales. We argue that the LOFT LAD, thanks to its timing capability, will allow us to detect the X-ray counterpart (2–50keV) of the very fast variability observed at TeV energies, shedding light on the nature of the X-TeV connection. We also discuss the potential of LOFT in measuring the change in spectral curvature of the synchrotron spectra in HBLs which will make possible to directly study the mechanism of acceleration of highly energeticelectrons. LOFT timingcapabilitywillbealsopromisinginthestudyofFlatSpectrumRadio Quasars(FSRQs)with2–10keVflux& 2 10 11ergcm 2s 1. Forthiskindofobjects,LOFT willprobe − − − × theinverseComptonemission,whereaslatestgenerationradioand(sub-)mminstrumentswillprovide excellenttimingcapabilitiestostudyshorttime-scalecorrelationswiththesynchrotronspectraldomain. Constraintstothelocationofthehighenergyemissionwillbeprovidedby: a)temporalinvestigationon secondtimescales;b)spectraltrendinvestigationonminutetimescales. Thisrepresentsafurtherlinkwith CTAbecauseoftherapid(unexpected)TeVemissionrecentlydetectedinsomeFSRQs. Inthisrespect, theLOFT/WFMwillprovidenotonlyanexcellenttriggerforbothCTAand(sub-)mmobservatoriesbut alsoalong-termmonitoringforalargesampleofblazars. MisalignedAGNs: WFMlongtermmonitoring(monthlytimescale)ofradiogalaxieshostingefficient • accretion disks (mainly FRIIs) will provide an optimal tool to investigate the disc-jet connection by triggeringbothradioandLADX-rayfollow-ups. LOFT willinvestigatethedisc-jetconnectioninatight linkwithX-raybinaries,whichexhibitthesamebehavior. Recent detections of radio galaxies hosting inefficient accretion flows at high and very high energies (e.g.,IC310)willprovideafurthersampleofradio-loudsourceswellsuitedforfollow-upobservations withLAD.CombiningLADandCTAsimultaneousobservationswillbecrucialinconstrainingtheTeV emittingregion,likelyconnectedwiththeclosesurroundingsofthecentralengine. Radio-LoudNarrow-LineSeyfert1LADobservationswillbeverypromisingnotonlyforstudyingthe • physical mechanisms responsible for the higher energy emission (in γ-rays or at TeV energies) and thentheblazar-likebehavior,butalsofordeterminingtheroleofitsthermalcomponent. Thismeansto investigatethepossiblelinkbetweenaccretionandjetproperties. TheLADcharacteristicswillthereforematchverywellwiththoseofatmosphericCherenkovtelescopessuch astheCTA,aswellasthemm/radioobservatoriessuchasSKAandALMAbecausealltheseobservatoriesare timingexplorers,characterizedbyhugecollectingareasintherespectivebands. Withitshugecollectingarea peakingat8–10keV,theLADwillallowustostudymoreindepththetemporalandspectralevolutioninthe Page3of15 Radio-loudAGNwithLOFT 2–50keVband,forsourceswithfluxesabove2 10 12ergcm 2s 1 (seeFig.1). Inthefollowingsections,we − − − × willfocusonthetemporalandspectralinvestigationinalltheseradio-loudAGNs. 2 Blazars: the standard framework and its challenges Blazars (Urry & Padovani, 1995) are among the most powerful persistent cosmic sources, able to release (apparent)luminositiesexceeding1048ergs 1 overtheentireelectromagneticspectrum,fromtheradiotothe − veryhighenergyγ-rayband. Thisintensenon-thermalemissionisproducedwithinarelativistic(bulkLorentz factorΓ = 10–20)jetpointingtowardtheEarth. Relativisticeffects,incorporatedintheso-calledrelativistic Dopplerfactorδ,leadtothebeamingoftheradiationwithinanarrowconeofsemiaperture 1/Γwithstrong ∼ amplificationoftheapparentluminosityandshorteningofthevariabilitytimescalesinthecasesinwhich(asin blazars)thejetiscloselyalignedtothelineofsight. The spectral energy distribution (SED) of blazars displays two characteristic broad humps, whose peak frequenciesappeartobeanti-correlatedwiththeluminosity(Fossatietal.,2011). Thefirstcomponentresults from synchrotron emission of leptons in the jet. The origin of the second component, peaking in the γ-ray band,ismoredebated. InthemostpopularscenarioitisattributedtotheinverseComptonscatteringbetween thesynchrotron-emittingelectronsandsofttargetphotons,eitherthesynchrotronphotonsthemselvesorthose comingfromtheexternalenvironment. Alternatively,thehigh-energybumpcouldbetheresultofapopulation ofrelativistichadronsinthejet,loosingenergyeitherthroughsynchrotronemissionorphoto-mesonreactions withsofttargetphotonfields(Böettcheretal.,2012). Blazarsoccurintwoflavors. Thoseshowingopticalbroademissionlinesastypicallyobservedinquasarsare calledFlatSpectrumRadioQuasars(FSRQs). Theweakestsourcesingeneraldisplayratherweakorevenabsent emissionlinesandarecollectivelygroupedintheBLLacobjectclass. Thelattersourcesarethoseshowingthe mostextremevariability(withvariationsasfastasfewminutes)andthemostenergeticphotons,withsubstantial emissionabove100GeV. While the standard leptonic scenarios provide in general good descriptions of the blazar SEDs, they face difficultieswhenconfrontedwiththemostextremeHBLs(Cerrutietal.,2014),characterizedbyhigh-energy bumpspeakingabove 1TeV,andwithintermediateobjects(Böettcheretal.,2012),i.e. low-orintermediate- ∼ frequencypeakedBLLacobjects(LBLs/IBLs). Theconventionalscenario(e.g.,Ghisellini&Tavecchio,2009)foreseesasingleportionofthejetdominating theoverallemission,atleastduringhighactivitystates. However,thissimpleideahasbeenrecentlychallenged by the observation of very fast (minutes) variability, which requires the existence of very compact emission sites. ThemostextremeexampleisPKS2155 304,whichexperiencedtwoexceptionalflaresin2006,ontop − of which – with a recorded luminosity of the order of several 1047ergs 1 – events with rise times of 100s − ∼ havebeendetected. Evenassumingthatthesestrongeventsoriginatedinverycompactemissionregions,the physicalconditionsshouldberatherextremeandLorentzfactorsofΓ 50–100seemunavoidable(Begelmanet ∼ al.,2008). Physicalmechanismspossiblytriggeringtheformationofthesecompactemissionregionsinclude magneticreconnectionevents(Giannios,2013)orrelativisticturbulence(Narayan&Piran,2012;Marscher, 2014). Alternatively,narrowbeamsofelectronscanattainultra-relativisticenergiesγ 106 intheblackholevicinity ∼ through processes involving the BH magnetosphere (Rieger & Aharonian, 2008; Ghisellini et al., 2009). In thiscase,itisexpectedthattheemissionshowsuponlyinhighenergyγ-rayregion,givingnosignalsatlower frequencies(thusresemblingthecaseoftheso-called“orphan”flares;differentfromthesimultaneousX-rayand TeVflaringobservedfromPKS2155 304in2006). − Untilnow,ultra-fastvariabilityhasbeenrecordedonlyintheγ-rayband,especiallyatTeVenergies,atwhich the Cherenkov arrays are characterized by gigantic collection areas, required to probe such short timescales. Current instruments do not provide an analogous sensitivity in the key X-ray band, at which the low energy Page4of15 Radio-loudAGNwithLOFT Figure1: LADsensitivitylimitsatdifferentsignaltonoise ratiocorrespondingtoasystematicsof0.25%ontheback- groundknowledge. Frombottomtotop: S/N 3,5,10,150, ∼ 250. componentofTeVemittingBLLacs(theso-calledHBLs)peaksandthusitisnotpossibletostudypotential ultra-fastvariabilityeventsatthesefrequencies. Moreover,sucheventsappeartobequiterare,withadutycycle lessthan1%. Thereforeamonitoringoftheskyisrequiredtocatchtheseevents. FromthisbriefsketchitshouldbeclearhowthefeaturesofLOFT areidealtoaddressthesekeyproblems. In thefollowingwediscussindetailsomecasestudies. 2.1 High energy peaked BL Lac objects 2.1.1 X-ray/TeVconnection HBLsaregoodtargetsfortheLADasitsenergyband(2–50keV)probesthesynchrotronemissionintheregion aboveorclosetothepeakwherethevariabilityisexpectedtobehigher. ThemeasurementoftheTeV/X-raylagalsoconstrainstheemissionprocess: e.g.,synchrotronselfCompton (SSC)timedependentnon-homogenousmodelingpredictsaTeVlagequal,approximately,tothelighttravel time across the emission region, whereas external Compton (EC), under the assumption the main source of variabilityisintherelativisticelectronpopulationofthejet,predictsalmostsimultaneity(Sokolovetal.,2004). Present data do not provide measurements of lags less than a few hundred seconds (Aharonian et al., 2009), whilewithLADthistimescalewillbepushedtoafew/tensofseconds. Thismeansthatfora2–10keVfluxof theorderof10 10ergcm 2s 1,i.e.,thetypicalflaringstateformanyHBLsandaveragestateforsomeofthem, − − − theblazarflaringactivitycouldbefolloweddowntothedecayingtailofthelightcurvewithcomparablebin timeinX-rayandTeVenergybands(Soletal.,2013). WeshowinFig.2howLADobservations(redpoints) willdetectaflarelasting 60s(whichisonehalfoftheshortesttimebinexploredsofarinX-rays), shaped ∼ withafluxriseof20%withrespectto 10 10ergcm 2s 1 over120s. Wedidthesamesimulationsforboth − − − ∼ Chandra and XMM-Newton, adopting a time resolution of 2s. It is worth noticing that the same statistical accuracy of the LAD can be achieved with XMM if a time bin an order of magnitude larger is considered. However,sucharebinningmakeshardtodefinetheflarerisetime. Therefore,LADobservationswillprovidea realstep-forwardintheexplorationoftheX-rayandTeVcorrelation,possiblyunveilingX-raycounterpartsof TeVflaringstructures. Thesetimingcapabilitieswillprovideauniquediagnosticstoconstrainthenewemergingscenarioofmulti- Page5of15 Radio-loudAGNwithLOFT Figure2: LAD (red), XMM (black, pn+MOS1,2) and Chandra (blue, ACIS-I) simulations of an X-ray enhancement of a 20% over a 10 10ergcm 2s 1 in a rise − − − ∼ timeofoneminute(thisisoneoftheshortest timescaleexploredsofarasinthecaseofPKS 2155 304). Eachbinis2swide. − zone(multipleelectronpopulations)SSCmodeling,assuggestedbythedegreeofcorrelationobservedbetween X-raysandTeVemissionsduringtheflaringactivity(Aharonianetal.,2009). Thedetectionofflaringactivityon veryshorttimescaleinX-rayandTeVwillbecrucialintheunderstandingofjetphysicsanditsconnectionwith thecentralengine: extremevariabilityimpliesverycompactregionsallowingustoinvestigatethepropertiesof blackholesandtheirsurroundings. Whilemulti-wavebanddataonflaresprovideverysignificantconstraintsonourcurrentblazarmodels,itisalso importanttoinvestigatethetemporalbehaviourofblazarsduringquiescentstates. Inmulti-zonemodels,where differentemissionregionscouldberesponsibleforthepermanenthigh-energyemissionontheonehandandfor flaresontheother,thoseregionsmightbeidentifiedbydifferentvariabilitypatternsonshorttime-scales. Rapid variabilityinlowstatescouldbeprobedwithLOFT/LADforthemostluminousHBLs,suchasPKS2155 304, − Mrk421andMrk501,whichwillalsofigureamongthemostprominentsourcesforCTA. ForthemostextremeHBLswiththehighestpeakenergies, suchase.g.1ES0229+200or1ES0347 121, − although not the most luminous sources in X-rays, spectral data in the hard X-ray range, and especially informationontemporalbehaviour,willbeaccessiblewithLOFT/LADandwillhelptobettercharacterizethe stillpoorlyunderstooddistributionofrelativisticparticlesinthosesources. Moreover,theWFMwillprovideanexcellenttriggerforCTA(andHESS,MAGIC,VERITAS)observations asmostofthetargetssuitableforTeVobservationarerelativelybrightX-raysources. 2.1.2 Theaccelerationmechanism InthecaseofHBLs,adetailedmeasurementoftheshapeofthesynchrotronspectralcomponentfromOptical/UV tohardX-rayfrequenciesprovidesphysicalinformationabouttheparticleaccelerationprocessinthejetsinceit directlytracestheshapeoftheunderlyingparticledistribution. ThebroadbandspectraldistributionsofseveralHBLsiswelldescribedbyalog-parabolicfit,withthesecond- degreetermmeasuringthecurvatureinthespectrum. Thisisthoughttobeafingerprintofstochasticacceleration (Tramacere et al., 2007). In this scenario, the discrimination between a log-parabolic and power-law cut-off shapeprovidesapowerfultooltodisentangleaccelerationdominatedstates,fromstatesattheequilibrium,or verycloseto,givingsolidconstraintsonthecompetitionbetweenaccelerationandcoolingtimes,andonthe magneticfieldintensity. Wehavesimulatedapurelog-parabolicspectrumpeakinga1.5keV,resemblingthe typical spectrum of a HBL object in a quiescent state. We assumed a 2–10keV flux of 10 10ergcm 2s 1 − − − ∼ over an integration time of 10ks. In Fig. 3 we show the capability of the LAD to discriminate between a Page6of15 Radio-loudAGNwithLOFT 100 100 V−1 V−1 malized counts s ke−1 101 malized counts s ke−1 101 nor nor 4 4 2 2 χ 0 χ 0 −2 −2 −4 −4 2 5 10 20 2 5 10 20 Energy (keV) Energy (keV) Figure3: Left: LAD:log-parabolicspectrumfittedwithapower-lawcutoff(top)andthemodelfitresiduals(bottom). Right: LAD:samemodelfittedwithalog-parabola. log-parabola(rightpanel)andapower-lawcut-offmodel(leftpanel)withahighstatisticalsignificance. Thanks totheunprecedentedLOFT largeareapeakingat8keVanditsbroadenergyrangethisresultprovidesarelevant improvementcomparedtotheperformanceoffocusedX-rayinstrumentsoperatingintheusual0.2–10.0keV range. TheLADwillthereforeexplorethecurvatureoftheX-rayspectrumaround10keVforHBLswithsyncrotron peakat1–2keV.Moreover,thecapabilitytoextractdetailedspectrawithasub-kstemporalintegrationduring thehigherstatestogetherwiththelowenergythresholdof2keVwillcomplementthecurrentunderstanding providedbyX-rayobservatoriessuchasNuSTAR(Harrisonetal.,2013). 2.2 FSRQs: X-γ connection and bulk-Comptonization ContrarytoHBLs,FSRQsareblazarswhoseemissionpeaksatlowenergies,withthesynchrotroncomponent peaking in the radio/IR bands and the inverse Compton (IC) one in the Fermi and AGILE bands (50MeV– 50GeV). As such, they were not expected to significantly emit at VHE (> 0.2TeV). The strong and highly variableemissionrecentlydiscoveredbyTeVtelescopes(e.g.,3C279,4C21.35,PKS1510 089)camethusas − asurprise. Theoriginisstillunclear,buttheLADcanprovidetheanswer. Shorttime-scaletimingstudiestocomparethesynchrotronandICvariabilitypropertiesasthoseoutlinedabove forHBLswillbekeyhere. IftheemissionintheLADspectralrangeisdominatedbyICemission,simultaneous measurementsofthesynchrotronemissionbyultra-sensitiveradioand(sub-)mminstrumentssuchasSKAand ALMA will provide relevant comparisons of the two emission mechanisms. Alternatively, if the strong and highlyvariableTeVemissionisduetoatailofhigh-energyelectrons,theirsynchrotronradiationshouldappear inthehardX-raybandaswell(likeinIntermediateBLLacorHBLobjects),dominatingovertheIConeand completelychangingthespectralslope(fromβ 1.5toβ > 2). Timingiscritical: giventhehighlyvariableTeV ∼ emission(minutes-hours),suchX-rayfeaturescandisappearquicklyandnotbemeasurablebyinstrumentsof smallercollectingareaorpoorpointingflexibility. Inthisrespect,LOFT/LADlargerareawouldprovide1-s binnedlightcurvesforflux 1mCrab( 2 10 11ergcm 2s 1 in2–10keV)and,inaddition,spectraltrend − − − ≥ ∼ × investigationduringtheflaringactivitywillbeperformedonminutetimescale,i.e.,thenon-thermalcontinuum power-lawwillbeconstrainedwithinafewpercent. AfurtherdiagnosticwillbeprovidedbytheLADonthejetcomposition,inconnectionwithGeVflares. If thejetismatter-dominatedandejectedinblobs,thecoldelectronsareexpectedtoCompton-upscatterBroad LineRegion(BLR)photonsyieldingaspectralsignatureasanexcessemissionat (Γ/10)2 keV,whereΓisthe ∼ Page7of15 Radio-loudAGNwithLOFT bulk-motionLorentzfactorofthejet(Sikora&Madejski,2000). Thisfeature,referredasbulk-Comptonization, hasnotbeenseenyet,but1)withvaluesofΓ > 20,thisfeaturecouldactuallypeakaround10keV,andthus couldnotberecognizedsofar;2)ifthejetacceleratesslowly,itcouldbevisibleonlyforfewhours,fromthe timetheblobbecomesrelativistictothetimeitgoesoutsidetheBLR(atadistanceof 1018cmfromthecentral ∼ engine)asreportedbyCelottietal.(2007)(seetheirFig. 1). TheLADwillbeabletodiscoverthisfeaturefor thefirsttime,orputverystrongupperlimitsontheparticlecontentofthejetatitsbase. Acomplementaryandindependentassessmentofthejetcompositionwillbepossiblewithfutureultra-sensitive radioinstrumentssuchasSKAthroughmodelingoffull-polarimetric(linearandcircularpolarization)spectra (Homanetal.,2009;Agudoetal.,2015). Concerningintermediateorquiescentfluxstates,itisgenerallyassumedthatFSRQs,andprobablyalsoLBLs and IBLs, require target photons from external photon fields (such as BLR, accretion disk, dust torus, host galaxy,...) foranECcomponentthatcanaccountforthehigh-energypartoftheirSEDs(e.g.,Böettcheretal., 2012). For the brightest of these objects, LOFT/LAD could help to distinguish such components from SSC emission by their different temporal behaviour and by comparison with the temporal and spectral properties ofthesynchrotronspectrumasobservedbyradiotoIRfacilities,whichwouldbeanimportantsteptowardsa unifiedviewofdifferentblazarclasses. CombiningLADrepointingwithradioand(sub-)mmobservationswithSKA,EVLA,andALMAcanhave alsoastrongimpactontheSEDmodelingandthusonthenatureoftheγ-rayemittingregion,beingthehigher radiofrequencies(30–950GHz)properlyrelatedtotheflaringactivity. Further,longtermmonitoringofFSRQ and LBL-IBLs in all available spectral ranges, including X- and γ-ray timing on weekly/daily time scales, photo-polarimetryifpossible,andmillimeterverylongbaselineinterferometric(VLBI)imaginghasprovento beapowerfultooltoestablishtherelativelocationofthedifferentemittingregionsfromtheradiodomainupto γ-rays(Marscheretal.,2010;Agudoetal.,2011). Inthatregard,WFMwillnotonlyprovidethetriggeringof dedicatedcoordinatedobservationsofparticularlyinterestingevents,butalsoexcellentlongtermX-raylight curvesforbrightblazarssampledontimescalesofuptoonedayorbetter. 3 The LOFT perspective on misaligned AGN TheLOFT capabilitiescanbeexploitedalsotoinvestigateanotherclassofradio-loudsources,theMisaligned AGN(MAGN).WiththetermMAGNwerefertoradiogalaxies(radiogalaxieshavebeenhistoricallyclassified asedge-darkenedFRIandedge-brightenedFRII,onthebasisoftheirextendedmorphologythatchangesover, orunder, acriticalradiopowerat178MHz, P 1025WHz 1s 1;Fanaroff&Riley,1974)andsteep 178MHz − − ∼ spectrumradioquasars,i.e.,radiosourceswiththejetpointedawayfromtheobserver’sline-of-sightoffering a unique opportunity to study the jet phenomenon from a perspective different, but complementary, to that of blazars. MAGN are generally characterized by steep radio spectra (α > 0.5) and resolved and possibly r symmetricalradiostructures. Moreover,giventhelargejetinclinationanglethenon-thermalradiationproduced byMAGNjetsisweaklyDopplerboosted. Radiogalaxieshostingefficientaccretiondisks(mainlyFRIIs),areuniqueextragalacticlaboratorieswherea simultaneousviewoftheaccretionflowandejectionofrelativisticplasmaispossiblethroughmulti-wavelength observations. High-resolutionradioimages,combinedwithhigh-energystudies,allowtofollowthetemporal andspectralevolutionofthejet,whileX-raymonitoringcanprovideinformationontheaccretionprocesses. Uptonowthereareatleasttwobroadlineradiogalaxies,i.e.,3C120and3C111,forwhichsignaturesofa possiblelinkbetweeneventsoccurringinthejetandintheaccretiondiskhavebeenfound(Marscheretal.,2002; Chatterjeeetal.,2009,2011)similarlytothoseobservedinX-raybinarysystems(Mirabel&Rodriguez,1998). Thedisk/jetconnectionisrevealedbyasuddendecreaseintheX-rayfluxesshortlyfollowedbytheappearance of superluminal radio emitting features propagating along the jet. This phenomenon has been interpreted as resulting from an instability in the accretion disk with matter in the inner region partially ejected down the Page8of15 Radio-loudAGNwithLOFT jet(Marscheretal.,2002). Fastdiskwindsrevealedasanabsorptionblue-shiftedfeatureataround7keV,if confirmed, could be also a signature of the ongoing disk/jet perturbation. As this is a random and transient phenomenon, the WFM on-board LOFT is the ideal instrument to perform an accurate X-ray monitoring in ordertocatchtheperturbationexactlyduringitsoccurrence. Thesignofthiscatastrophiceventisadipinthe X-ray light curve. The flux decreases by about a factor of two and the source remains in a low state for few months. TheWFMcantracethetemporalevolutionofpowerfulradiogalaxieswithfluxesinthe2–10keVband above10 11ergcm 2s 1 allowingtodetectadecreaseintheX-rayfluxbyatleastafactoroftwoontime-scale − − − ofmonths. TheWFMcanthentriggeraLADpointingofthetargettostudyindetailthespectralevolutionof thesourceduringtheaccretionmodification(forexample,asuppressionoftheironlineproducedintheinner regionofthediskisexpected). TheWFMdipdetectioncanbeusedtotriggerVLBIobservationsthatcantrace theexpectedejectionofanewemissionfeaturefromtheradiocore. Sincetheejectionsofnewemissionfeatures areconnectedtoflaresatmm-wavelengths(Savolainenetal.,2002),itisalsopossibletocombinetheWFMdip monitoringwithexistinglong-termmm-wavelengthmonitoringprogramslikeMetsähovi37GHzmonitoring (e.g.,Teräsrantaetal.,2004)forstudyingthedisk-jetconnection. In3C120X-rayfluxand37GHzfluxare indeedanticorrelatedwithX-raysleadingasexpected(Chatterjeeetal.,2009). Thisstudycanbeappliedatleast tootherthreenearbybroadlineradiogalaxies,i.e. 3C390.3,3C382,3C445. Radio galaxies hosting inefficient accretion flows (mainly FRIs) are more easily detected at high and very highenergies. FRIsaremorenumerousthanFRIIsintheGeVskyandfourofthemhavebeenalsodetectedat TeVenergieswithcurrentimagingatmosphericCherenkovtelescopes(M87,NGC1275,CentaurusA,IC310). UnlikeFRIIs,theradio-to-TeVspectrumoflowpowerradiogalaxiesisdominatedbynon-thermalemission. Considering that in these sources the Doppler boosting is less important than in blazars, the study of their SED can carry out important information on the jet structure. Indeed, the assumption of a pure, one-zone homogeneous,SynchrotronSelf-Compton(SSC)emissionregionisinadequate(Abdoetal.,2009a,b;Migliori etal.,2011)inthesesource,whileastratifiedjetwithdifferentregionsinteractingeachothercouldbeapossible solution(Georganopoulos&Kazanas,2003;Ghisellinietal.,2005;Böttcheretal.,2010). Hadronicmodels couldbeanotherpossibility. Thesehavebecomeverypopularinthelastyearsbecauseoftheirdirectconnection to Ultra High Energy Cosmic Rays (UHECR) and to the recent discovery of high-energy neutrinos by the IceCube detector (Aartsen et al., 2013). Cosmic rays, accelerated at different sites in AGN, could produce γ-raysandneutrinos(Beckeretal.,2009). AmongAGNs, radiogalaxiesarethemostprominentcandidates (Beckeretal.,2014). EstimatesoftheneutrinofluxinthetworadiogalaxiesCentaurusAandM87havebeen recentlyattempted. InordertoaddressthisissuethestudyandmodelingoftheSEDofFRIradiosources(in differentluminositystates)ismandatory. LOFT isthesatellitethatcanefficientlycovertheX-rayregion. FRIs aregenerallylessbrightthanFRIIsbetween2–10keV.However,withanexposureof10ksormoretheLAD guaranteesa5σdetectionforsourcesasweakasafew10 12ergcm 2s 1. Notethat,threeoutoffourTeVradio − − − galaxieshavefluxesgreaterthan10 12ergcm 2s 1. LOFT canbethenthereferenceX-raysatelliteforfuture − − − multi-wavelengthcampaignsonFRIsledbytheCTAobservatorymonitoringpreferentiallyquiescentstates. At the same time, if a CTA alert is issued, the LOFT capability to rapidly point the flaring target, will offer the uniqueopportunitytofollowthespectral/fluxevolutionofaradiogalaxyinahighluminositystate. 4 The LOFT perspective on radio-loud narrow line Seyfert 1 galaxies ThediscoverybyFermi-LATofvariableγ-rayemissionfromafewradio-loudnarrow-lineSeyfert1s(NLSy1s) revealedthepresenceofapossiblethirdclassofAGNwithrelativisticjets(Abdoetal.,2009;D’Ammandoet al.,2012). ByconsideringthatNLSy1sareusuallythoughttobehostedinspiralgalaxies(e.g.,Deoetal.,2006), thepresenceofarelativisticjetinthesesourcesseemstobeincontrasttotheparadigmthattheformationof thosestructurescouldhappenonlyinellipticalgalaxies(e.g.,Marscher,2009). Moreover,smallermassesofthe centralBHandhigheraccretionratesthanthoseobservedinblazarsandradiogalaxiesareinferredforNLSy1s. Page9of15 Radio-loudAGNwithLOFT Figure4: Chandra0.3–7keVimageoftheFRIIradiogalaxy3C111with3.6cmradiocontoursoverimposed. Inthe insetthemulti-wavelengthlightcurvefrommmtoγ-raysisshown. Thesimultaneityoftheflareisimpressive: thecore luminositywasincreasingfrommillimetertoX-rayfrequenciesexactlywhenthegreatestfluxofγ-rayphotonsoccurred. Thisisaclearindicationofthecospatialityoftheevent. Theoutburstofphotonsisdirectlyconnectedtotheejectionofa newradioknot(thetimeoftheejectionisindicatedbytheblackarrow). InthiscontextthedetectionofNLSy1sinγ-raysposesintriguingquestionsaboutthenatureoftheseobjects,the onsetofproductionofrelativisticjets,themechanismsofhigh-energyproduction,andthejet-discconnection. Strongγ-rayflareswereobservedfromPMNJ0948+0022(Foschinietal.,2011;D’Ammandoetal.,2015), SBS0846+513(D’Ammandoetal.,2013),and1H0323+342(Carpenteretal.,2013),withanisotropicγ-ray luminosityof1048ergs 1,comparabletothatofthebrightFSRQs,andfluxvariabilityonadailytimescaleor − shorter. Follow-upobservationsofNLSy1sduringflaringactivitywiththeLOFT/LADwillbeimportantfor investigatingrapidfluxandspectralchangesoccurringinX-rays. Thiswillbefundamentalforconstrainingsize andlocationofthehigh-energyemittingregion(alsoinconjunctionwithCTA)andthepossiblepresenceduring thosehighactivitystatesoftwodifferentemittingcomponents(e.g. SSC,externalComptonfromBLRand/or dusttorus)inthebroadenergyrangecoveredbyLAD,characterizingindetailtheSEDofthesesources. Furthermore,1H0323+342isthebrightestNLSy1(1–2 10 11ergcm 2s 1 in2–10keV)inX-raysamong − − − × the5sourcesdetectedbyFermi-LATsofar,andtheonlyoneincludedinthe70-monthSwift-BATcatalogueas wellassignificantlydetectedbyINTEGRAL(Baumgartneretal.,2013;Panessaetal.,2011). Thereforeitis theidealtargetforinvestigatingthedisc-jetconnectionintheγ-rayNLSy1. ThesumoftheX-rayspectraof 1H0323+342collectedbySwift-XRTshowedthehintforthepresenceofanironKαline(Paliyaetal.,2014). Thankstothehigh-qualityspectrumcollectedbytheLADwewillbeabletoconfirmthedetectionoftheiron Kαline,andtestwithhighaccuracythereflectionmodelappliedtotheX-rayspectrumthankstoitsbroader energyrange,thusremovingthedegeneracyoftheparameters. Thiswillallowustoconstrainthepropertiesof theaccretionflow. Inparticular,wewillbeabletoobtainverygoodconstraintsonthespinoftheblackhole. Thisinformationcanbeusedforprobingtheinneraccretiondisc,aregionstrictlyrelatedtothejetformation andlaunching. IfthehighspinoftheblackholeclaimedbyPaliyaetal.(2014)isconfirmedbythehigh-quality Page10of15

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.