Mon.Not.R.Astron.Soc.000,000–000(0000) Printed4February2008 (MNLATEXstylefilev2.2) The infrared jet in Centaurus A: multiwavelength constraints on emission mechanisms and particle acceleration 1 2 3 M.J. Hardcastle , R.P. Kraft and D.M. Worrall 1SchoolofPhysics,AstronomyandMathematics,UniversityofHertfordshire,CollegeLane,Hatfield,HertfordshireAL109AB 6 2Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA 0 3DepartmentofPhysics,UniversityofBristol,TyndallAvenue,BristolBS81TL 0 2 n 4February2008 a J 4 ABSTRACT 2 WereportonSpitzerandGeminiobservationsofthejetofCentaurusAintheinfrared,which wecombinewithradio,ultravioletandX-raydata.Spitzerdetectsjetemissionfromabout2 2 arcminfromthenucleus,becomingparticularlybrightafterthejetflarepointat∼3.4arcmin. v WhereX-rayandinfraredemissionareseentogetherthebroad-banddatastronglysupporta 1 synchrotronoriginfortheX-rays.Thejetflarepointismarkedbyabroad,diffuseregionof 2 X-rayswhichmaybeassociatedwithashock:wediscusspossiblephysicalmechanismsfor 4 this.TheinfraredjetpersistsaftertheflarepointregionalthoughX-rayemissionisabsent;itis 1 0 plausiblethathereweareseeingtheeffectsofparticleaccelerationfollowedbydownstream 6 advection with synchrotron losses. Gemini data probe the inner regions of the jet, putting 0 limitsonthemid-infraredfluxofjetknots. / h Keywords: galaxies:active–galaxies:individual:CentaurusA–galaxies:jets p - o r t s 1 INTRODUCTION trastswiththesituationinotherwell-studiedlow-powerjets,such a asM87(e.g.Perlmanetal.2001)or3C66B(Hardcastleetal.2001) : v CentaurusAistheclosestradiogalaxy(weadoptD = 3.4Mpc, inwhichdataintheinfrared,opticalandultravioletsupportasyn- Xi Israel 1998) aswell asthe closest activegalaxy and largeellipti- chrotronoriginandprovideconstraintsonparticleaccelerationand cal. Its proximity makes it a vital laboratory for AGN studies of energy-productionprocesses. r a allkinds.Itsnucleusshowsbothheavilyobscuredandunobscured However,recentSpitzerobservationshavedetectedthejetof X-ray components (Evans et al. 2004), making it one of the few CenAinthemid-infrared(Brookesetal.2006),whileGALEXde- low-power radiogalaxiestoshow X-rayevidence for theobscur- tectsitintheultraviolet(Neffetal.2003).Inthisletterwecombine ing torus of canonical unification models (Evans et al. 2006). Its thesedatawithnewandarchivalradioandX-rayobservationsand X-ray jet, one of the first to be discovered (Schreier et al. 1979) discusstheirimplicationsforparticleaccelerationprocesses.Inad- has been studied in great detail with Chandra (Kraft et al. 2000, dition,weuseobservationsofthenuclearregionswithGeminiat 2002;Hardcastleetal.2003,hereafterH03;Kataokaetal.2006). 10µmtoplaceconstraintsonthepropertiesofthenucleusandthe Becauseofthehighspatialresolution(1arcsec=17pc)compared innerjet. tothatavailableformoretypicalX-rayjetsinmorepowerfulFRI Exceptwhereotherwisestated,spectralindicesαaretheen- sources,observationsofthejetprovideevidenceforbothlocalized ergyindices,definedinthesensethatflux∝ν−α. anddiffuseparticleaccelerationprocesses.Finally,CenA’sSWra- diolobe,inexpanding throughtheISMofthehostgalaxy,drives whatiscurrentlytheonlyclearexampleofahighMach number, 2 OBSERVATIONS attachedbowshocktobeobservedinX-raysaroundaradiogalaxy (Kraftetal.2003). 2.1 Spitzerdata CenA’smaindisadvantageasasubjectforbroad-bandstud- TheSpitzerdataweused,describedinmoredetailbyBrookeset iesisthestrongdustlane,whichobscurestheinnerregionsofthe al. (2006), are taken from the public archive, and consist of two source in the optical to ultraviolet. Partly as a result of this, and datasets,aset of IRACobservations taken on2004 Feb10 anda partlybecausethejetisrelativelyweakcomparedtotheemission set of MIPS observations taken on 2004 Aug 06. Several sets of fromstars,therehaveuntilrecentlybeennocleardetectionsofsyn- MIPSobservations areavailableinthearchive:theonewechose chrotronemissionfromthejetatfrequenciesbetweenradioandX- to use (AOR 4940288) covers a wide area around the centre of ray, although several claims of optical and infrared emission that CenA.ThedatausedwerethePost-BasicCalibratedData(PBCD) mayberelatedtothejetormaterialaroundithavebeenmade(e.g. filesavailablefromthearchive.Theseincludeanautomated,flux- Brodieetal.1983, Joyetal.1991,Leeuwetal.2002). Thiscon- calibratedmosaic(‘MAIC’file)ofthenumerous individual maps 2 M.J. Hardcastleetal. thatgotomakeupanobservation.ThePBCDfilesarestatedinthe instrumentdatahandbooks(http://ssc.spitzer.caltech.edu/irac/dh/; http://ssc.spitzer.caltech.edu/mips/dh/)tobesuitableatthetimeof -42 56 writingforbasicscientificanalysisforallIRACchannelsandfor the24-µmchannel(channel1)oftheMIPSdata.Thelowangular resolution and calibration issues of the longer-wavelength MIPS 57 channelsmeantthatthesewerenotsuitableforouranalysisinany case.IRACchannel1(3.6µm)wastoodominatedbystarlightfrom the host galaxy and from foreground objects to be useful in our aIRnaAlyCsicsh.aAncnceolsr,diantg4ly.5,,th5e.8daatnadw8e.0uµsema,raenfdrofmromtheMthIrPeSeraetm2a4inµimng; N (J2000) 58 O Brookes et al. (2006) show a selection of images in these bands. TI A eWxeclcuadrirnigedpoouinttapsoerutrucreespfhrootmomseoturryc,eusainndgbaalcokcgarlobuancdkgrreoguionndsa,ntdo ECLIN 59 D measurefluxdensitiesfromcomponentsofthejet.Ourphotometry isconsistentwiththeindependentanalysisofBrookesetal. -43 00 2.2 Geminidata ThenuclearregionsofCenAwereobservedwiththeT-ReCSin- 01 strumentonGeminiSouthatN-band(10µm)on2004Mar06and 2004Mar11-12.Weobtainedtheseobservationsinanattemptto detectthebrightradioandX-raycomponentsoftheinnerjet,and 13 25 50 45 40 35 30 sotheT-ReCSfieldofview(28.8×21.6arcsec)wasalignedalong RIGHT ASCENSION (J2000) the jet, with the active nucleus in one corner. The standard nod Figure1.TheCenAjetat24µm,usingalogarithmictransferfunction, andchopmodewasusedforbackgroundsubtraction,andthebase- withoverlaidcontoursfroma6-arcsecresolution4.9-GHzradiomap.Black linecalibrationwasusedforphotometryandpoint-spreadfunction isthebackgroundlevelof32.8MJysr−1 andthepeakis724MJysr−1. (PSF)determination,usingobservationsofstandardstars.Intotal Thelowestcontourisat0.01Jybeam−1;contoursincreasebyafactor2. theon-sourceexposuretimewasaround2.1h. Theflarepoint(peaksurfacebrightness33.4MJysr−1)ismarkedwithan arrowandtheregionsusedforfluxmeasurementareshownasredboxes. 2.3 VLAdata 2.5 Chandradata The 8.4-GHz VLA data that we have described in earlier papers (Kraft et al. 2002, H03) were not ideal for comparison with the Forthehigh-energyconstraintsonthespectrumofthejetweused large-scale Spitzer jet because of the VLA’s small primary beam twoChandradatasetstakenusingtheACIS-Sinstrument:theob- atthiswavelength.Wethereforere-reducedthedatadescribedby servationtakenon2002 Sep03(obsid2978) whichwastakenas Clarkeetal.(1992)at1.5and4.9GHz.Thesearewellmatchedto partoftheHRCguaranteedtimeprogramme,andtheobservation theangular scalesandresolutionof theSpitzerdata.Forsmaller- takenon2003Sep14(obsid3965)whichwastakenbyusinguest scale mapping we used our existing 8.4-GHz data. VLA data observer time. These two observations are well matched in posi- fromdifferentconfigurationswerecalibratedandcombinedwithin tion on the instrument and roll angle. The data were reprocessed AIPS,andaprimarybeamcorrectionwasappliedtoallimages. and filtered using CIAO 3.2.2 and CALDB 3.1 (applying new bad pixel files, removing afterglow detection, and removing the 0.5- arcsecpixelrandomization)andwerebothalignedtotheradiocore 2.4 GALEXdata position. After filtering they had livetimes of 44592 and 49518 s respectively, giving a total effective on-source time of 94.1 ks. The GALEX data we use were taken from the archive Spectrawereextractedfromregionsmatchedtothoseusedatother (http://galex.stsci.edu/GR1/) and were derived from observa- wavelengths,withlocalbackgroundsubtraction,usingtheacisspec tions made on 2003 Jun 07 as part of the Nearby Galaxies toolwithinCIAOandappropriateresponsematricesweregenerated Survey, as reported by Neff et al. (2003); Brookes et al. (2006) withmkacisrmf.SpectralfittingwasdonewithinXSPEC11.3. show an image. Two broad bandpasses are available, with mean wavelengths of 153 and 231 nm. We use the background- subtracted intensity map, with units of (corrected) counts s−1, for our measurements. Photometry was carried out in the 3 RESULTS same way as for the Spitzer data, using ground-based calibration 3.1 Thelarge-scalejet (http://galexgi.gsfc.nasa.gov/Documents/ERO data description 2.htm), correcting for a Galactic E(B −V) of 0.114 mag using the ex- Inthe24-µmdataextendedemissionfromthejetisclearlydetected tinction curves of Cardelli, Clayton & Mathis (1989), which fromabout2arcmin(Fig.1)andextendsatleastuntiltheendofthe give correction factors of 0.94 mag at both mean wavelengths. clearlydefinedradiojet.(Twostronginfraredpointsourcesinthe Since the photometric zero point is not yet well defined and the lobetotheNWofthejetareprobablyunrelatedtoit.)Thebrightest extinctioncorrectionvariessignificantlyoverthebandpasses,there regionoftheinfraredjet,andthepartmostclearlydetectedagainst are potentially large systematic errors in the conversion between thehigherbackgroundintheshorter-wavelengthIRACimages,oc- GALEXcountrateandfluxdensity. cursataregionwheretheradiojetbecomesabruptlybrighter,and Infraredjetin Cen A 3 Table1.Fluxdensitiesfromregionsofthelarge-scale jet:seeFig.1forregions.Errorsarenominal3percentcalibration errors(radio),errorsbasedon calibrationandbackgrounduncertainties(infraredandultraviolet)orstatisticalerrors(X-ray). Region Fluxdensity 1.4GHz 4.9GHz 8.4GHz 24µm 8.0µm 5.4µm 4.5µm 231nm 153nm 1keV (Jy) (Jy) (Jy) (mJy) (mJy) (mJy) (mJy) (µJy) (µJy) (nJy) Inner 3.25±0.10 1.67±0.05 1.0±0.03 9.0±1.8 – 2.4±0.7 – 80±12 – 27.2±0.3 Middle 9.73±0.30 5.21±0.16 3.79±0.11 15.9±3.1 6.0±1.8 4.9±1.4 3.8±1.1 180±25 70±18 16±0.5 Outer 20.2±0.6 10.1±0.3 – 24.3±4.9 4.2±1.3 5.2±1.6 4.0±1.2 – – <3 startstobendnorthwards,at∼ 3.4arcminfromthenucleus.Here directaperturephotometrywithbackgroundsubtraction,excluding werefertothisasthe‘flarepoint’(nottobeconfusedwiththein- pointsources.Tofirstorder,thetworegionswithdetectionsinall nerjetflarepointataround14arcsecfromthenucleus:seeH03). wavebandsareroughlyconsistentwiththetypeofmodelwehave UltravioletemissionisdetectedintheGALEXdatabothfromthis fittedelsewhere (e.g. Hardcastle et al. 2001) inwhich the energy flarepointandfromregionsofthejetclosertothenucleus. spectrum of all theelectrons intheregion isabroken power law withanon-standardbreakconnectingtheradioandX-rayandre- Fig.2showsthattheflarepointismarkedbyaregionofrela- producing the X-ray photon indices; in this case the break must tivelystrongX-rayemissionwhichbeginsabout0.2arcmincloser occuratenergieslowerthanthosecorrespondingtotheinfraredre- to the nucleus than the flare point and continues for about 1 ar- gion(Fig. 4).However, indetail, thebest-fittinginfrared spectral cmin.ThereafteralmostnoX-rayemissionisseenfromthejet,but indices(0.89±0.25and0.84±0.18fortheinnerandmiddlere- theinfraredemissioncontinues.TheX-rayregionaroundtheflare gionsrespectively)aresomewhatflatterthanwouldbeexpectedin point(whichwedenoteregionG,followingthenotationofFeigel- this model, and the ultraviolet data points lie significantly above sonetal.1981)isresolvedintoseveralcompactknotsandextended it,closertoalinearextrapolationfromtheinfrared.Inthemiddle emission.Thecompactknotsareallclosertothenucleusthanthe region, in particular, where the GALEX fluxes are probably most flarepoint,butthebrightestdiffuseemissioniscoincidentwiththe reliable,thedataappeartorequirea‘bump’abovethebest-fitting flarepoint,althoughthepeakradioandinfraredsurfacebrightness lineinwhichthespectrumsteepensandthenflattens,whichwould (atabout3.5arcmin)isoffsetfromthepeakX-raysurfacebright- implyamorecomplexelectronpopulationthanourmodelallows ness.ThisisillustratedbyFig.3,whichshowsaprofilealongthe for.Theouter region, inwhichnosignificantultravioletor X-ray jetinradio, infrared andX-ray. Thefact that theinfraredsurface emission is detected, can also be fitted with a simple model, but brightnessbeginstorisearoundknotG1mightimplythatthatthe in this case either the change of the electron spectral index, ∆p, threeknotsareinvolvedinhigh-energyparticleacceleration,rather mustbegreaterortheremustbeacutoffintheelectronspectrum thanbeingunrelatedtothejet.Therearenodetectedradiocoun- betweentheinfra-redandX-rayregions;theX-rayupperlimitpre- terpartstotheseknots,butwedonothavesensitivehigh-resolution cludesfittingthisregionwithamodelidenticaltothatusedinthe radiodataatthisdistancefromthenucleus.TheX-rayspectraof othertworegions(Fig.4).Thebest-fittingpowerlawspectralindex theknotsareallwellfittedwithpowerlawswithGalacticabsorp- tion(N = 7×1020 cm−2)andhavesteepspectra(withphoton totheinfrareddataaloneis1.13±0.19fortheouterregion,which H indicesof1.84±0.16,2.01±0.16,and2.02±0.23respectively). wouldbeconsistentwithalarger∆p,thoughtheerrorsarelarge. However, theirfluxdensitiesarelow(∼ 2nJyeach) andsothey Insuchamodeltheremaybelow-levelX-rayemissionfromthis regionthatwouldbedetectableindeeperobservations. wouldnotcontributesignificantlytothefluxintheinfraredifthese Noobviousjet-relatedinfraredemissionisseenonthecoun- spectrawereextrapolatedbacktothosefrequencies. terjetsideofthesource.ThecounterjetradioandX-rayknotsdis- Intheabsenceofcounterpartstotheknotsatotherwavebands, cussedbyH03areatsmalldistancesfromthenucleus,wherethe weexcludetheminwhatfollows,andaskthequestion:istheover- infraredbackgroundfromthehostgalaxyishigh. allspectrumoftheextendedemissionconsistentwithasynchrotron model?Toinvestigatethis,weextractedfluxdensitiesfromthree matched regions of the jet around the flare point at all available frequencies,excludingpointsourcesand,inthecaseoftheX-ray, the compact knots labelled on Fig.2, and measuring background 3.2 Thesmall-scalejet fromadjacentoff-sourcebackgroundregions.TheX-rayemission intheseregionsisdominatedbytheextendedemissionandsothe The Gemini observations do not detect any component of the jet exclusionoftheknotsmakeslittledifferencetoourresults.Fig.1 within 24 arcsec of the nucleus. Using the baseline photometric showstheextractionregions,whichwecalltheinner,middleand calibrationweestimatethatanupperlimitonanycompactjet-like outer regions, and the results are tabulated in Table 1. The high componentis1mJyat10µm.Theobservationsarelesssensitive background and low signal intheinner jet means that wecannot thanwouldhavebeenpredicted,presumablybecauseofthebright measure reliablefluxes for theinner jetat 8 and 4.5µm. For the emissionfromthedustlane.Theupperlimitallowsustosetalower X-ray data, we fitted power laws with Galactic absorption to the limit on the spectral index between radio and infrared, given the tworegionsinwhichsignificantcountsweredetectedtodetermine knotradiofluxesmeasuredpreviously(H03),ofα > 0.5,consis- a 1-keV flux density (finding photon indices of 2.29±0.05 and tentwiththeαRI measuredfor thelarge-scalejet,∼ 0.75. Since 2.44 ±0.07 for the inner and middle regions respectively), and the knots in the inner region generally have steep X-ray spectral the upper limit to the flux density in the outer region was deter- indices, it seems likely that their spectrum, like that of the outer mined assuming a spectrum similar to that of the middle jet re- jet,turnsoverbeforetheinfraredregion.Sub-mmobservationsare gion. Atotherwavelengths thefluxdensitiesweredetermined by requiredtotestthis. 4 M.J. Hardcastleetal. Figure2.UnsmoothedChandragreyscaleimageofthejetofCenAinthe0.5-5.0keVbands.OverlaidarethecontoursfromFig.1.Pixelsarethestandard Chandrapixels,0.492arcseconaside.Greenboxesshow(fromrighttoleft)theboundariesofinner,middleandouterextractionregions. Figure4.Thespectraoftheinner,middleandouterregionsofthejet.Tri- Figure3.Theprofileofthepartofthejetneartheflarepoint.Thex-axis anglesdenotetheinnerregion,filledcirclesthemiddleregion,andstarsthe showslinear distance fromthenucleus alongthejet. Redindicates radio emission (from a 4.9-GHz map with 6.2×2.0 arcsec resolution, beam outerregion.Thesolidlineisthebest-fittingreferencesynchrotronmodel tothemiddleregion,asdescribedinthetext.Whereerrorbarsarenotvisi- elongatedN-S),greenindicates24-µminfrared,andblueindicates0.5-5.0 bletheyaresmallerthansymbols.TheX-rayupperlimitismarkedwithan keVX-rays.ThepositionsoftheX-rayknotsF2,G1,G2,G3andoftheflare arrow. pointaremarkedwithvertical lines.Theextraction regionfortheprofile wasarectangle42arcsecinthetransversedirection:eachpointrepresentsa 0.9-arcsecslice.InfraredandX-raydatawerebackground-subtractedusing FWHM of 0.27 arcsec. Some of the apparent extension with re- adjacentidenticalregions.RepresentativePoissonerrorsareplottedonthe specttothePSFmaybetheresultofthelongerobservation,with X-raypoints. morechop/nodcycles,usedforthenucleus,butwecanconserva- tivelysaythatthesizeofthenucleusat10µmis <∼0.27arcsec,or 3.3 Thenucleus <∼4.5pc,consistentwiththemeasurement of0.17±0.02arcsec byKarovskaetal.ThetorusinCenAmustthusbecompact. Cen A’s nucleus has been observed at wavelengths around N- band by several other groups (Krabbe, Bo¨ker & Maiolino 2001; Karovskaetal.2003; Siebenmorgen, Kru¨gel&Spoon2004). We 4 DISCUSSION:THEORIGINOFTHEFLAREPOINT estimatethebackground-subtracted 10-µmfluxdensityofthenu- cleusinourGeminiobservationsas1.1Jy,witha10percentpho- TheSpitzerobservationsconfirmthatthebroad-bandspectrumof tometriccalibrationerror.Thisissignificantlyhigherthanseenin the large-scale Cen A jet can be described with a synchrotron someearlierobservations,thoughconsistentwiththe1.5±0.4Jy model,asinotherFRIsources,althoughthedetailedspectralshape reportedbyKarovskaetal.fromdatatakenin2002May,andmay almost certainly requires a multi-component model for the syn- indicate variability on timescales of years. Variability has earlier chrotron emission. However, the infrared detection points up the beenclaimedatshorterinfraredwavelengths(Turneretal.1992). importance of the region wehavecalled theflarepoint. Boththe Comparing825-sindividualobservationsfrom2004Mar06with radio and infrared brighten by a factor ∼ 3 here (Fig. 3) while the short, 43-s observation of the standard star HD 110458, we thereislittleor no X-rayemission after the extended component find that the nucleus appears slightly resolved, with a Gaussian ofregionG.TheshortsynchrotronlifetimeofX-ray-emittingelec- Infraredjetin Cen A 5 trons means that X-ray emission must always be associated with Qualitatively, the bulk deceleration at the flare point in ei- high-energyparticleacceleration:butcouldthelackofX-raysafter ther of these scenarios is also consistent with the observed onset regionGimplythatthisregion,whichisroughlycoincident with of bending of the jet there. However, if the jet really has a high theentryofthejetintothelobe,representsthe‘lastgasp’ofpar- bulkspeed, as required toavoidin situparticleacceleration after ticle acceleration in Cen A’s jet? In a field strength of 3 nT, the theflarepoint,itsdensitymustbelow.Forexample,ifweassume equipartitionvalueforthispartofthejet,theelectronenergyloss thatthejetisbentbytherampressureofhotexternalmaterialmov- timescale(E/(dE/dt))is2×104 yearsforelectronsemittingat ingatthesoundspeed,then,applyingEuler’sequation(e.g.Eilek 4.5µm,and4×104yearsforelectronsemittingat24µm.Thepro- etal.1984)andusingtheparametersofKraftetal.(2003),thejet jecteddistancefromtheendoftheX-rayemissionattheflarepoint densitymustbe10−4timestheexternaldensityifthespeedis0.2c. totheendofthejet,whereonlyradioand24-µmemissionisde- Thisisstillafactor5abovetheminimumpossibleeffectivejetden- tected,isroughly2.5kpc,implyingalighttraveltimeof∼8×103 sity(fromtheminimum-energycondition,assumingthatthejetisa years.Thus,forparticleaccelerationtobeabsentinthisregion,we purelepton/magneticfieldplasma),butifanyentrainmentofbary- requirejetspeedsof(0.2/sinθ)c,whereθistheangletotheline onicmaterialtakesplaceintheinnerjet,orifthereisasignificant ofsight.Asspeedsintheinnerjetare >∼0.5c,andtheangletothe departure fromequipartion, thejet willbe heavier, inwhich case lineofsightmayberelativelylarge(seediscussioninH03)thisis relativisticbulkspeedsatthebendwouldbeunrealistic.Inthatsit- notimpossible,sothatitcouldindeedbethecasethatsignificant uation,thepost-shockjetspeedwouldhavetobeslower,andsome high-energyparticleaccelerationceasesattheflarepoint. continuinginsituparticleaccelerationwouldberequiredtoexplain This motivates us to ask a further question: what is the na- theextendedinfraredjet. tureoftheextendedX-rayemissionattheflarepoint?Mostofthe X-rays(Fig.3)come fromaregion only10arcsec, or 170 pc,in size. This is still larger than the expected travel distance for 1- ACKNOWLEDGEMENTS keV-emitting electrons (at most 100 pc) and in fact extended X- WearegratefultoCharlesLawrenceandMairiBrookesfordiscus- ray emission isseen on scales up to around 30 arcsec, making it sionoftheirresultsonCenApriortopublication.MJHthanksthe difficulttosustainamodelinwhichtheparticleaccelerationhere RoyalSocietyforaresearchfellowship. takes place at a single point if the magnetic fieldstrength has its equipartition value, although only modest decreases in the mag- netic field strength, by a factor of a few, would be necessary to makeaone-shotaccelerationmodelviable,sincethelosstimescale REFERENCES goesasB−3/2.Morepuzzlinginthispictureistheoffsetbetween Brodie,J.P.,Ko¨nigl,A.,Bowyer,S.,1983,ApJ,273,154 thepeakX-ray,radioandinfraredsurfacebrightnessesseeninFig. Brookes,M.H.,Lawrence,C.R.,Stern,D.,Werner,M.,2006,ApJsubmit- 3.Itisalsonotclearwhatthephysicalrelationshipisbetweenthe ted diffuseX-rayemissionattheflarepointandtheX-rayknotsG1–3. Cardelli,J.A.,Clayton,G.C.,Mathis,J.S.,1989,ApJ,345,245 In fact there is a striking similarity in the X-ray, albeit on larger Clarke,D.A.,Burns,J.O.,Norman,M.L.,1992,ApJ,395,444 scales, betweentheflarepoint andother regionsintheinner part Eilek,J.A.,Burns,J.O.,O’Dea,C.P.,Owen,F.N.,1984,ApJ,278,37 ofthejetwhereweseecompactX-rayfeaturesfollowedbydiffuse Evans,D.A.,Kraft,R.P.,Worrall,D.M.,Hardcastle, M.J.,Jones,C.,For- X-rayemission,suchastheregionaroundknotBX2(H03). man,W.R.,Murray,S.S.,2004,ApJ,612,786 Evans,D.A.,Worrall,D.M.,Hardcastle,M.J.,Kraft,R.P.,Birkinshaw,M., InH03wearguedthattheknotsintheinnerjetwererelated 2006,ApJinpress,astro-ph/0512600 toshocksasaresultofinteractionsbetweenthejetfluidandsmall- Feigelson,E.D.,Schreier,E.J.,Delaville,J.P.,Giacconni,R.,Grindlay,J.E., scaleobstaclesinthejet.Theflarepointisdifferentinthatitap- Lightman,A.P.,1981,ApJ,251,31 pears to affect the whole jet. It would be tempting, since the ex- Gopal-Krishna,Saripalli,L.,1984,A&A,141,61 tendedemissionisassociatedwiththeentryofthejetintothehigh- Hardcastle,M.J.,Birkinshaw,M.,Worrall,D.M.,2001,MNRAS,326,1499 surface-brightness regions of the NE lobe, to suggest that weare Hardcastle,M.J.,Worrall,D.M.,Kraft,R.P.,Forman,W.R.,Jones,C.,Mur- seeing an extended reconfinement shock, inwhich case the simi- ray,S.S.,2003,ApJ,593,169[H03] larityof thelength of theX-rayemittingregion andthewidthof Israel,F.P.,1998,A&A8237 the radio jet implies a Mach number ∼ 2. The roughly tapering Joy,M.,Harvey,P.M.,Tollestrup,E.V.,Sellgren,K.,McGregor,P.J.,Hy- land,A.R.,1991,ApJ,366,82 shapeofthedownstreamX-rayemissionisconsistentwiththisidea Kataoka, J.,Stawarz, L.,Aharonian, F.,Takahara, F.,Ostrowski,M.,Ed- (Sanders 1983) if only the inward-propagating shock accelerates wards,P.G.,2006,ApJinpress,astro-ph/0510661 particlestohighenergies.Theideathatthejetdeceleratesrapidly Krabbe,A.,Bo¨ker,T.,Maiolino,R.,2001,ApJ,557,626 andsignificantlyattheflarepointisconsistentwiththeobservation Kraft,R.P.,etal.,2000,ApJ,531,L9 thatitbecomesbothbroaderandbrighteratthisposition.Thede- Kraft,R.P.,Forman,W.R.,Jones,C.,Murray,S.S.,Hardcastle,M.J.,Wor- tailsoftheshockstructurewouldthendependonthevelocitystruc- rall,D.M.,2002,ApJ,569,54 tureofthejet,anditmaybethatadetailedmodeltakingthisinto Kraft,R.P.,Va´zquez,S.,Forman,W.R.,Jones,C.,Murray,S.S.,Hardcastle, accountcouldreproducetheoffsetsbetweentheemissionpeaksat M.J.,Worrall,D.M.,Churazov,E.,2003,ApJ,592,129 differentfrequencies.Analternativemodelisthatthejetinteracts Leeuw, L.L.,Hawarden, T.G.,Matthews, H.E.,Robson, E.I.,Eckart, A., attheflarepointwithsomelarge-scaleexternalfeaturethatisable 2002,ApJ,565,131 Neff,S.G.,Schiminovich,D.,Martin,C.D.,2003,AAS20396.07 to affect the whole jet. Gopal-Krishna and Saripalli (1984) have Perlman, E.S., Biretta, J.A., Sparks, W.B., Macchetto, F.D., Leahy, J.P., pointedoutthecoincidencebetweentheradioandX-rayflarepoint 2001,ApJ,551,206 andanoptical‘shell’,seenindeepimages,whichtheyconsiderto Sanders,R.H.,1983,ApJ,266,73 bearemnant ofacannibalized galaxy. Aseriesof shockscaused Schreier, E.J., Feigelson, E., Delvaille, J., Giacconi, R., Grindlay, J., by such aninteraction would beequally consistent withwhat we Schwartz,D.A.,Fabian,A.C.,1979,ApJ,234,L39 observe,iftheycanbedistributedovertheentireregionofX-ray Siebenmorgen,R.,Kru¨gel,E.,Spoon,H.W.W.,2004,A&A,414,123 emissionor,again,ifthemagneticfieldissub-equipartition. Turner,P.C.,Forrest,W.J.,Pipher,J.L.,Shure,M.A.,1992,ApJ,393,648