ebook img

The infrared jet in Centaurus A: multiwavelength constraints on emission mechanisms and particle acceleration PDF

0.37 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The infrared jet in Centaurus A: multiwavelength constraints on emission mechanisms and particle acceleration

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed4February2008 (MNLATEXstylefilev2.2) The infrared jet in Centaurus A: multiwavelength constraints on emission mechanisms and particle acceleration 1 2 3 M.J. Hardcastle , R.P. Kraft and D.M. Worrall 1SchoolofPhysics,AstronomyandMathematics,UniversityofHertfordshire,CollegeLane,Hatfield,HertfordshireAL109AB 6 2Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA 0 3DepartmentofPhysics,UniversityofBristol,TyndallAvenue,BristolBS81TL 0 2 n 4February2008 a J 4 ABSTRACT 2 WereportonSpitzerandGeminiobservationsofthejetofCentaurusAintheinfrared,which wecombinewithradio,ultravioletandX-raydata.Spitzerdetectsjetemissionfromabout2 2 arcminfromthenucleus,becomingparticularlybrightafterthejetflarepointat∼3.4arcmin. v WhereX-rayandinfraredemissionareseentogetherthebroad-banddatastronglysupporta 1 synchrotronoriginfortheX-rays.Thejetflarepointismarkedbyabroad,diffuseregionof 2 X-rayswhichmaybeassociatedwithashock:wediscusspossiblephysicalmechanismsfor 4 this.TheinfraredjetpersistsaftertheflarepointregionalthoughX-rayemissionisabsent;itis 1 0 plausiblethathereweareseeingtheeffectsofparticleaccelerationfollowedbydownstream 6 advection with synchrotron losses. Gemini data probe the inner regions of the jet, putting 0 limitsonthemid-infraredfluxofjetknots. / h Keywords: galaxies:active–galaxies:individual:CentaurusA–galaxies:jets p - o r t s 1 INTRODUCTION trastswiththesituationinotherwell-studiedlow-powerjets,such a asM87(e.g.Perlmanetal.2001)or3C66B(Hardcastleetal.2001) : v CentaurusAistheclosestradiogalaxy(weadoptD = 3.4Mpc, inwhichdataintheinfrared,opticalandultravioletsupportasyn- Xi Israel 1998) aswell asthe closest activegalaxy and largeellipti- chrotronoriginandprovideconstraintsonparticleaccelerationand cal. Its proximity makes it a vital laboratory for AGN studies of energy-productionprocesses. r a allkinds.Itsnucleusshowsbothheavilyobscuredandunobscured However,recentSpitzerobservationshavedetectedthejetof X-ray components (Evans et al. 2004), making it one of the few CenAinthemid-infrared(Brookesetal.2006),whileGALEXde- low-power radiogalaxiestoshow X-rayevidence for theobscur- tectsitintheultraviolet(Neffetal.2003).Inthisletterwecombine ing torus of canonical unification models (Evans et al. 2006). Its thesedatawithnewandarchivalradioandX-rayobservationsand X-ray jet, one of the first to be discovered (Schreier et al. 1979) discusstheirimplicationsforparticleaccelerationprocesses.Inad- has been studied in great detail with Chandra (Kraft et al. 2000, dition,weuseobservationsofthenuclearregionswithGeminiat 2002;Hardcastleetal.2003,hereafterH03;Kataokaetal.2006). 10µmtoplaceconstraintsonthepropertiesofthenucleusandthe Becauseofthehighspatialresolution(1arcsec=17pc)compared innerjet. tothatavailableformoretypicalX-rayjetsinmorepowerfulFRI Exceptwhereotherwisestated,spectralindicesαaretheen- sources,observationsofthejetprovideevidenceforbothlocalized ergyindices,definedinthesensethatflux∝ν−α. anddiffuseparticleaccelerationprocesses.Finally,CenA’sSWra- diolobe,inexpanding throughtheISMofthehostgalaxy,drives whatiscurrentlytheonlyclearexampleofahighMach number, 2 OBSERVATIONS attachedbowshocktobeobservedinX-raysaroundaradiogalaxy (Kraftetal.2003). 2.1 Spitzerdata CenA’smaindisadvantageasasubjectforbroad-bandstud- TheSpitzerdataweused,describedinmoredetailbyBrookeset iesisthestrongdustlane,whichobscurestheinnerregionsofthe al. (2006), are taken from the public archive, and consist of two source in the optical to ultraviolet. Partly as a result of this, and datasets,aset of IRACobservations taken on2004 Feb10 anda partlybecausethejetisrelativelyweakcomparedtotheemission set of MIPS observations taken on 2004 Aug 06. Several sets of fromstars,therehaveuntilrecentlybeennocleardetectionsofsyn- MIPSobservations areavailableinthearchive:theonewechose chrotronemissionfromthejetatfrequenciesbetweenradioandX- to use (AOR 4940288) covers a wide area around the centre of ray, although several claims of optical and infrared emission that CenA.ThedatausedwerethePost-BasicCalibratedData(PBCD) mayberelatedtothejetormaterialaroundithavebeenmade(e.g. filesavailablefromthearchive.Theseincludeanautomated,flux- Brodieetal.1983, Joyetal.1991,Leeuwetal.2002). Thiscon- calibratedmosaic(‘MAIC’file)ofthenumerous individual maps 2 M.J. Hardcastleetal. thatgotomakeupanobservation.ThePBCDfilesarestatedinthe instrumentdatahandbooks(http://ssc.spitzer.caltech.edu/irac/dh/; http://ssc.spitzer.caltech.edu/mips/dh/)tobesuitableatthetimeof -42 56 writingforbasicscientificanalysisforallIRACchannelsandfor the24-µmchannel(channel1)oftheMIPSdata.Thelowangular resolution and calibration issues of the longer-wavelength MIPS 57 channelsmeantthatthesewerenotsuitableforouranalysisinany case.IRACchannel1(3.6µm)wastoodominatedbystarlightfrom the host galaxy and from foreground objects to be useful in our aIRnaAlyCsicsh.aAncnceolsr,diantg4ly.5,,th5e.8daatnadw8e.0uµsema,raenfdrofmromtheMthIrPeSeraetm2a4inµimng; N (J2000) 58 O Brookes et al. (2006) show a selection of images in these bands. TI A eWxeclcuadrirnigedpoouinttapsoerutrucreespfhrootmomseoturryc,eusainndgbaalcokcgarlobuancdkgrreoguionndsa,ntdo ECLIN 59 D measurefluxdensitiesfromcomponentsofthejet.Ourphotometry isconsistentwiththeindependentanalysisofBrookesetal. -43 00 2.2 Geminidata ThenuclearregionsofCenAwereobservedwiththeT-ReCSin- 01 strumentonGeminiSouthatN-band(10µm)on2004Mar06and 2004Mar11-12.Weobtainedtheseobservationsinanattemptto detectthebrightradioandX-raycomponentsoftheinnerjet,and 13 25 50 45 40 35 30 sotheT-ReCSfieldofview(28.8×21.6arcsec)wasalignedalong RIGHT ASCENSION (J2000) the jet, with the active nucleus in one corner. The standard nod Figure1.TheCenAjetat24µm,usingalogarithmictransferfunction, andchopmodewasusedforbackgroundsubtraction,andthebase- withoverlaidcontoursfroma6-arcsecresolution4.9-GHzradiomap.Black linecalibrationwasusedforphotometryandpoint-spreadfunction isthebackgroundlevelof32.8MJysr−1 andthepeakis724MJysr−1. (PSF)determination,usingobservationsofstandardstars.Intotal Thelowestcontourisat0.01Jybeam−1;contoursincreasebyafactor2. theon-sourceexposuretimewasaround2.1h. Theflarepoint(peaksurfacebrightness33.4MJysr−1)ismarkedwithan arrowandtheregionsusedforfluxmeasurementareshownasredboxes. 2.3 VLAdata 2.5 Chandradata The 8.4-GHz VLA data that we have described in earlier papers (Kraft et al. 2002, H03) were not ideal for comparison with the Forthehigh-energyconstraintsonthespectrumofthejetweused large-scale Spitzer jet because of the VLA’s small primary beam twoChandradatasetstakenusingtheACIS-Sinstrument:theob- atthiswavelength.Wethereforere-reducedthedatadescribedby servationtakenon2002 Sep03(obsid2978) whichwastakenas Clarkeetal.(1992)at1.5and4.9GHz.Thesearewellmatchedto partoftheHRCguaranteedtimeprogramme,andtheobservation theangular scalesandresolutionof theSpitzerdata.Forsmaller- takenon2003Sep14(obsid3965)whichwastakenbyusinguest scale mapping we used our existing 8.4-GHz data. VLA data observer time. These two observations are well matched in posi- fromdifferentconfigurationswerecalibratedandcombinedwithin tion on the instrument and roll angle. The data were reprocessed AIPS,andaprimarybeamcorrectionwasappliedtoallimages. and filtered using CIAO 3.2.2 and CALDB 3.1 (applying new bad pixel files, removing afterglow detection, and removing the 0.5- arcsecpixelrandomization)andwerebothalignedtotheradiocore 2.4 GALEXdata position. After filtering they had livetimes of 44592 and 49518 s respectively, giving a total effective on-source time of 94.1 ks. The GALEX data we use were taken from the archive Spectrawereextractedfromregionsmatchedtothoseusedatother (http://galex.stsci.edu/GR1/) and were derived from observa- wavelengths,withlocalbackgroundsubtraction,usingtheacisspec tions made on 2003 Jun 07 as part of the Nearby Galaxies toolwithinCIAOandappropriateresponsematricesweregenerated Survey, as reported by Neff et al. (2003); Brookes et al. (2006) withmkacisrmf.SpectralfittingwasdonewithinXSPEC11.3. show an image. Two broad bandpasses are available, with mean wavelengths of 153 and 231 nm. We use the background- subtracted intensity map, with units of (corrected) counts s−1, for our measurements. Photometry was carried out in the 3 RESULTS same way as for the Spitzer data, using ground-based calibration 3.1 Thelarge-scalejet (http://galexgi.gsfc.nasa.gov/Documents/ERO data description 2.htm), correcting for a Galactic E(B −V) of 0.114 mag using the ex- Inthe24-µmdataextendedemissionfromthejetisclearlydetected tinction curves of Cardelli, Clayton & Mathis (1989), which fromabout2arcmin(Fig.1)andextendsatleastuntiltheendofthe give correction factors of 0.94 mag at both mean wavelengths. clearlydefinedradiojet.(Twostronginfraredpointsourcesinthe Since the photometric zero point is not yet well defined and the lobetotheNWofthejetareprobablyunrelatedtoit.)Thebrightest extinctioncorrectionvariessignificantlyoverthebandpasses,there regionoftheinfraredjet,andthepartmostclearlydetectedagainst are potentially large systematic errors in the conversion between thehigherbackgroundintheshorter-wavelengthIRACimages,oc- GALEXcountrateandfluxdensity. cursataregionwheretheradiojetbecomesabruptlybrighter,and Infraredjetin Cen A 3 Table1.Fluxdensitiesfromregionsofthelarge-scale jet:seeFig.1forregions.Errorsarenominal3percentcalibration errors(radio),errorsbasedon calibrationandbackgrounduncertainties(infraredandultraviolet)orstatisticalerrors(X-ray). Region Fluxdensity 1.4GHz 4.9GHz 8.4GHz 24µm 8.0µm 5.4µm 4.5µm 231nm 153nm 1keV (Jy) (Jy) (Jy) (mJy) (mJy) (mJy) (mJy) (µJy) (µJy) (nJy) Inner 3.25±0.10 1.67±0.05 1.0±0.03 9.0±1.8 – 2.4±0.7 – 80±12 – 27.2±0.3 Middle 9.73±0.30 5.21±0.16 3.79±0.11 15.9±3.1 6.0±1.8 4.9±1.4 3.8±1.1 180±25 70±18 16±0.5 Outer 20.2±0.6 10.1±0.3 – 24.3±4.9 4.2±1.3 5.2±1.6 4.0±1.2 – – <3 startstobendnorthwards,at∼ 3.4arcminfromthenucleus.Here directaperturephotometrywithbackgroundsubtraction,excluding werefertothisasthe‘flarepoint’(nottobeconfusedwiththein- pointsources.Tofirstorder,thetworegionswithdetectionsinall nerjetflarepointataround14arcsecfromthenucleus:seeH03). wavebandsareroughlyconsistentwiththetypeofmodelwehave UltravioletemissionisdetectedintheGALEXdatabothfromthis fittedelsewhere (e.g. Hardcastle et al. 2001) inwhich the energy flarepointandfromregionsofthejetclosertothenucleus. spectrum of all theelectrons intheregion isabroken power law withanon-standardbreakconnectingtheradioandX-rayandre- Fig.2showsthattheflarepointismarkedbyaregionofrela- producing the X-ray photon indices; in this case the break must tivelystrongX-rayemissionwhichbeginsabout0.2arcmincloser occuratenergieslowerthanthosecorrespondingtotheinfraredre- to the nucleus than the flare point and continues for about 1 ar- gion(Fig. 4).However, indetail, thebest-fittinginfrared spectral cmin.ThereafteralmostnoX-rayemissionisseenfromthejet,but indices(0.89±0.25and0.84±0.18fortheinnerandmiddlere- theinfraredemissioncontinues.TheX-rayregionaroundtheflare gionsrespectively)aresomewhatflatterthanwouldbeexpectedin point(whichwedenoteregionG,followingthenotationofFeigel- this model, and the ultraviolet data points lie significantly above sonetal.1981)isresolvedintoseveralcompactknotsandextended it,closertoalinearextrapolationfromtheinfrared.Inthemiddle emission.Thecompactknotsareallclosertothenucleusthanthe region, in particular, where the GALEX fluxes are probably most flarepoint,butthebrightestdiffuseemissioniscoincidentwiththe reliable,thedataappeartorequirea‘bump’abovethebest-fitting flarepoint,althoughthepeakradioandinfraredsurfacebrightness lineinwhichthespectrumsteepensandthenflattens,whichwould (atabout3.5arcmin)isoffsetfromthepeakX-raysurfacebright- implyamorecomplexelectronpopulationthanourmodelallows ness.ThisisillustratedbyFig.3,whichshowsaprofilealongthe for.Theouter region, inwhichnosignificantultravioletor X-ray jetinradio, infrared andX-ray. Thefact that theinfraredsurface emission is detected, can also be fitted with a simple model, but brightnessbeginstorisearoundknotG1mightimplythatthatthe in this case either the change of the electron spectral index, ∆p, threeknotsareinvolvedinhigh-energyparticleacceleration,rather mustbegreaterortheremustbeacutoffintheelectronspectrum thanbeingunrelatedtothejet.Therearenodetectedradiocoun- betweentheinfra-redandX-rayregions;theX-rayupperlimitpre- terpartstotheseknots,butwedonothavesensitivehigh-resolution cludesfittingthisregionwithamodelidenticaltothatusedinthe radiodataatthisdistancefromthenucleus.TheX-rayspectraof othertworegions(Fig.4).Thebest-fittingpowerlawspectralindex theknotsareallwellfittedwithpowerlawswithGalacticabsorp- tion(N = 7×1020 cm−2)andhavesteepspectra(withphoton totheinfrareddataaloneis1.13±0.19fortheouterregion,which H indicesof1.84±0.16,2.01±0.16,and2.02±0.23respectively). wouldbeconsistentwithalarger∆p,thoughtheerrorsarelarge. However, theirfluxdensitiesarelow(∼ 2nJyeach) andsothey Insuchamodeltheremaybelow-levelX-rayemissionfromthis regionthatwouldbedetectableindeeperobservations. wouldnotcontributesignificantlytothefluxintheinfraredifthese Noobviousjet-relatedinfraredemissionisseenonthecoun- spectrawereextrapolatedbacktothosefrequencies. terjetsideofthesource.ThecounterjetradioandX-rayknotsdis- Intheabsenceofcounterpartstotheknotsatotherwavebands, cussedbyH03areatsmalldistancesfromthenucleus,wherethe weexcludetheminwhatfollows,andaskthequestion:istheover- infraredbackgroundfromthehostgalaxyishigh. allspectrumoftheextendedemissionconsistentwithasynchrotron model?Toinvestigatethis,weextractedfluxdensitiesfromthree matched regions of the jet around the flare point at all available frequencies,excludingpointsourcesand,inthecaseoftheX-ray, the compact knots labelled on Fig.2, and measuring background 3.2 Thesmall-scalejet fromadjacentoff-sourcebackgroundregions.TheX-rayemission intheseregionsisdominatedbytheextendedemissionandsothe The Gemini observations do not detect any component of the jet exclusionoftheknotsmakeslittledifferencetoourresults.Fig.1 within 24 arcsec of the nucleus. Using the baseline photometric showstheextractionregions,whichwecalltheinner,middleand calibrationweestimatethatanupperlimitonanycompactjet-like outer regions, and the results are tabulated in Table 1. The high componentis1mJyat10µm.Theobservationsarelesssensitive background and low signal intheinner jet means that wecannot thanwouldhavebeenpredicted,presumablybecauseofthebright measure reliablefluxes for theinner jetat 8 and 4.5µm. For the emissionfromthedustlane.Theupperlimitallowsustosetalower X-ray data, we fitted power laws with Galactic absorption to the limit on the spectral index between radio and infrared, given the tworegionsinwhichsignificantcountsweredetectedtodetermine knotradiofluxesmeasuredpreviously(H03),ofα > 0.5,consis- a 1-keV flux density (finding photon indices of 2.29±0.05 and tentwiththeαRI measuredfor thelarge-scalejet,∼ 0.75. Since 2.44 ±0.07 for the inner and middle regions respectively), and the knots in the inner region generally have steep X-ray spectral the upper limit to the flux density in the outer region was deter- indices, it seems likely that their spectrum, like that of the outer mined assuming a spectrum similar to that of the middle jet re- jet,turnsoverbeforetheinfraredregion.Sub-mmobservationsare gion. Atotherwavelengths thefluxdensitiesweredetermined by requiredtotestthis. 4 M.J. Hardcastleetal. Figure2.UnsmoothedChandragreyscaleimageofthejetofCenAinthe0.5-5.0keVbands.OverlaidarethecontoursfromFig.1.Pixelsarethestandard Chandrapixels,0.492arcseconaside.Greenboxesshow(fromrighttoleft)theboundariesofinner,middleandouterextractionregions. Figure4.Thespectraoftheinner,middleandouterregionsofthejet.Tri- Figure3.Theprofileofthepartofthejetneartheflarepoint.Thex-axis anglesdenotetheinnerregion,filledcirclesthemiddleregion,andstarsthe showslinear distance fromthenucleus alongthejet. Redindicates radio emission (from a 4.9-GHz map with 6.2×2.0 arcsec resolution, beam outerregion.Thesolidlineisthebest-fittingreferencesynchrotronmodel tothemiddleregion,asdescribedinthetext.Whereerrorbarsarenotvisi- elongatedN-S),greenindicates24-µminfrared,andblueindicates0.5-5.0 bletheyaresmallerthansymbols.TheX-rayupperlimitismarkedwithan keVX-rays.ThepositionsoftheX-rayknotsF2,G1,G2,G3andoftheflare arrow. pointaremarkedwithvertical lines.Theextraction regionfortheprofile wasarectangle42arcsecinthetransversedirection:eachpointrepresentsa 0.9-arcsecslice.InfraredandX-raydatawerebackground-subtractedusing FWHM of 0.27 arcsec. Some of the apparent extension with re- adjacentidenticalregions.RepresentativePoissonerrorsareplottedonthe specttothePSFmaybetheresultofthelongerobservation,with X-raypoints. morechop/nodcycles,usedforthenucleus,butwecanconserva- tivelysaythatthesizeofthenucleusat10µmis <∼0.27arcsec,or 3.3 Thenucleus <∼4.5pc,consistentwiththemeasurement of0.17±0.02arcsec byKarovskaetal.ThetorusinCenAmustthusbecompact. Cen A’s nucleus has been observed at wavelengths around N- band by several other groups (Krabbe, Bo¨ker & Maiolino 2001; Karovskaetal.2003; Siebenmorgen, Kru¨gel&Spoon2004). We 4 DISCUSSION:THEORIGINOFTHEFLAREPOINT estimatethebackground-subtracted 10-µmfluxdensityofthenu- cleusinourGeminiobservationsas1.1Jy,witha10percentpho- TheSpitzerobservationsconfirmthatthebroad-bandspectrumof tometriccalibrationerror.Thisissignificantlyhigherthanseenin the large-scale Cen A jet can be described with a synchrotron someearlierobservations,thoughconsistentwiththe1.5±0.4Jy model,asinotherFRIsources,althoughthedetailedspectralshape reportedbyKarovskaetal.fromdatatakenin2002May,andmay almost certainly requires a multi-component model for the syn- indicate variability on timescales of years. Variability has earlier chrotron emission. However, the infrared detection points up the beenclaimedatshorterinfraredwavelengths(Turneretal.1992). importance of the region wehavecalled theflarepoint. Boththe Comparing825-sindividualobservationsfrom2004Mar06with radio and infrared brighten by a factor ∼ 3 here (Fig. 3) while the short, 43-s observation of the standard star HD 110458, we thereislittleor no X-rayemission after the extended component find that the nucleus appears slightly resolved, with a Gaussian ofregionG.TheshortsynchrotronlifetimeofX-ray-emittingelec- Infraredjetin Cen A 5 trons means that X-ray emission must always be associated with Qualitatively, the bulk deceleration at the flare point in ei- high-energyparticleacceleration:butcouldthelackofX-raysafter ther of these scenarios is also consistent with the observed onset regionGimplythatthisregion,whichisroughlycoincident with of bending of the jet there. However, if the jet really has a high theentryofthejetintothelobe,representsthe‘lastgasp’ofpar- bulkspeed, as required toavoidin situparticleacceleration after ticle acceleration in Cen A’s jet? In a field strength of 3 nT, the theflarepoint,itsdensitymustbelow.Forexample,ifweassume equipartitionvalueforthispartofthejet,theelectronenergyloss thatthejetisbentbytherampressureofhotexternalmaterialmov- timescale(E/(dE/dt))is2×104 yearsforelectronsemittingat ingatthesoundspeed,then,applyingEuler’sequation(e.g.Eilek 4.5µm,and4×104yearsforelectronsemittingat24µm.Thepro- etal.1984)andusingtheparametersofKraftetal.(2003),thejet jecteddistancefromtheendoftheX-rayemissionattheflarepoint densitymustbe10−4timestheexternaldensityifthespeedis0.2c. totheendofthejet,whereonlyradioand24-µmemissionisde- Thisisstillafactor5abovetheminimumpossibleeffectivejetden- tected,isroughly2.5kpc,implyingalighttraveltimeof∼8×103 sity(fromtheminimum-energycondition,assumingthatthejetisa years.Thus,forparticleaccelerationtobeabsentinthisregion,we purelepton/magneticfieldplasma),butifanyentrainmentofbary- requirejetspeedsof(0.2/sinθ)c,whereθistheangletotheline onicmaterialtakesplaceintheinnerjet,orifthereisasignificant ofsight.Asspeedsintheinnerjetare >∼0.5c,andtheangletothe departure fromequipartion, thejet willbe heavier, inwhich case lineofsightmayberelativelylarge(seediscussioninH03)thisis relativisticbulkspeedsatthebendwouldbeunrealistic.Inthatsit- notimpossible,sothatitcouldindeedbethecasethatsignificant uation,thepost-shockjetspeedwouldhavetobeslower,andsome high-energyparticleaccelerationceasesattheflarepoint. continuinginsituparticleaccelerationwouldberequiredtoexplain This motivates us to ask a further question: what is the na- theextendedinfraredjet. tureoftheextendedX-rayemissionattheflarepoint?Mostofthe X-rays(Fig.3)come fromaregion only10arcsec, or 170 pc,in size. This is still larger than the expected travel distance for 1- ACKNOWLEDGEMENTS keV-emitting electrons (at most 100 pc) and in fact extended X- WearegratefultoCharlesLawrenceandMairiBrookesfordiscus- ray emission isseen on scales up to around 30 arcsec, making it sionoftheirresultsonCenApriortopublication.MJHthanksthe difficulttosustainamodelinwhichtheparticleaccelerationhere RoyalSocietyforaresearchfellowship. takes place at a single point if the magnetic fieldstrength has its equipartition value, although only modest decreases in the mag- netic field strength, by a factor of a few, would be necessary to makeaone-shotaccelerationmodelviable,sincethelosstimescale REFERENCES goesasB−3/2.Morepuzzlinginthispictureistheoffsetbetween Brodie,J.P.,Ko¨nigl,A.,Bowyer,S.,1983,ApJ,273,154 thepeakX-ray,radioandinfraredsurfacebrightnessesseeninFig. Brookes,M.H.,Lawrence,C.R.,Stern,D.,Werner,M.,2006,ApJsubmit- 3.Itisalsonotclearwhatthephysicalrelationshipisbetweenthe ted diffuseX-rayemissionattheflarepointandtheX-rayknotsG1–3. Cardelli,J.A.,Clayton,G.C.,Mathis,J.S.,1989,ApJ,345,245 In fact there is a striking similarity in the X-ray, albeit on larger Clarke,D.A.,Burns,J.O.,Norman,M.L.,1992,ApJ,395,444 scales, betweentheflarepoint andother regionsintheinner part Eilek,J.A.,Burns,J.O.,O’Dea,C.P.,Owen,F.N.,1984,ApJ,278,37 ofthejetwhereweseecompactX-rayfeaturesfollowedbydiffuse Evans,D.A.,Kraft,R.P.,Worrall,D.M.,Hardcastle, M.J.,Jones,C.,For- X-rayemission,suchastheregionaroundknotBX2(H03). man,W.R.,Murray,S.S.,2004,ApJ,612,786 Evans,D.A.,Worrall,D.M.,Hardcastle,M.J.,Kraft,R.P.,Birkinshaw,M., InH03wearguedthattheknotsintheinnerjetwererelated 2006,ApJinpress,astro-ph/0512600 toshocksasaresultofinteractionsbetweenthejetfluidandsmall- Feigelson,E.D.,Schreier,E.J.,Delaville,J.P.,Giacconni,R.,Grindlay,J.E., scaleobstaclesinthejet.Theflarepointisdifferentinthatitap- Lightman,A.P.,1981,ApJ,251,31 pears to affect the whole jet. It would be tempting, since the ex- Gopal-Krishna,Saripalli,L.,1984,A&A,141,61 tendedemissionisassociatedwiththeentryofthejetintothehigh- Hardcastle,M.J.,Birkinshaw,M.,Worrall,D.M.,2001,MNRAS,326,1499 surface-brightness regions of the NE lobe, to suggest that weare Hardcastle,M.J.,Worrall,D.M.,Kraft,R.P.,Forman,W.R.,Jones,C.,Mur- seeing an extended reconfinement shock, inwhich case the simi- ray,S.S.,2003,ApJ,593,169[H03] larityof thelength of theX-rayemittingregion andthewidthof Israel,F.P.,1998,A&A8237 the radio jet implies a Mach number ∼ 2. The roughly tapering Joy,M.,Harvey,P.M.,Tollestrup,E.V.,Sellgren,K.,McGregor,P.J.,Hy- land,A.R.,1991,ApJ,366,82 shapeofthedownstreamX-rayemissionisconsistentwiththisidea Kataoka, J.,Stawarz, L.,Aharonian, F.,Takahara, F.,Ostrowski,M.,Ed- (Sanders 1983) if only the inward-propagating shock accelerates wards,P.G.,2006,ApJinpress,astro-ph/0510661 particlestohighenergies.Theideathatthejetdeceleratesrapidly Krabbe,A.,Bo¨ker,T.,Maiolino,R.,2001,ApJ,557,626 andsignificantlyattheflarepointisconsistentwiththeobservation Kraft,R.P.,etal.,2000,ApJ,531,L9 thatitbecomesbothbroaderandbrighteratthisposition.Thede- Kraft,R.P.,Forman,W.R.,Jones,C.,Murray,S.S.,Hardcastle,M.J.,Wor- tailsoftheshockstructurewouldthendependonthevelocitystruc- rall,D.M.,2002,ApJ,569,54 tureofthejet,anditmaybethatadetailedmodeltakingthisinto Kraft,R.P.,Va´zquez,S.,Forman,W.R.,Jones,C.,Murray,S.S.,Hardcastle, accountcouldreproducetheoffsetsbetweentheemissionpeaksat M.J.,Worrall,D.M.,Churazov,E.,2003,ApJ,592,129 differentfrequencies.Analternativemodelisthatthejetinteracts Leeuw, L.L.,Hawarden, T.G.,Matthews, H.E.,Robson, E.I.,Eckart, A., attheflarepointwithsomelarge-scaleexternalfeaturethatisable 2002,ApJ,565,131 Neff,S.G.,Schiminovich,D.,Martin,C.D.,2003,AAS20396.07 to affect the whole jet. Gopal-Krishna and Saripalli (1984) have Perlman, E.S., Biretta, J.A., Sparks, W.B., Macchetto, F.D., Leahy, J.P., pointedoutthecoincidencebetweentheradioandX-rayflarepoint 2001,ApJ,551,206 andanoptical‘shell’,seenindeepimages,whichtheyconsiderto Sanders,R.H.,1983,ApJ,266,73 bearemnant ofacannibalized galaxy. Aseriesof shockscaused Schreier, E.J., Feigelson, E., Delvaille, J., Giacconi, R., Grindlay, J., by such aninteraction would beequally consistent withwhat we Schwartz,D.A.,Fabian,A.C.,1979,ApJ,234,L39 observe,iftheycanbedistributedovertheentireregionofX-ray Siebenmorgen,R.,Kru¨gel,E.,Spoon,H.W.W.,2004,A&A,414,123 emissionor,again,ifthemagneticfieldissub-equipartition. Turner,P.C.,Forrest,W.J.,Pipher,J.L.,Shure,M.A.,1992,ApJ,393,648

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.