©EntomologicaFennica.11October2006 The influence of habitat type on the distribution of carabid beetles in traditionally managed “dehesa” ecosystems in NW Spain AngelaTaboada,D.JohanKotze,JoséM.Salgado&ReyesTárrega Taboada,A.,Kotze,D.J.,Salgado,J.M.&Tárrega,R.2006:Theinfluenceof habitat type on the distribution of carabid beetles in traditionally managed “dehesa”ecosystemsinNWSpain.—Entomol.Fennica17:284–295. Weinvestigatedtheresponsesofcarabidbeetlestohabitattypeatthelocalscale intraditionallymanaged“dehesa”ecosystemsinNWSpain.Thebeetleswere sampled from two habitat types (central grassland and surrounding forested zone)offive“dehesa”ecosystems,fromMaytoOctober2004.Atotalof4,374 carabidindividualsand55specieswerecapturedusingpitfalltrapping.Mostof thespecieswerecollectedfrombothhabitattypes,probablyduetoopenspaces createdbetweenold-growthtreesintheforestedzone.Differencesincarabidas- semblagecompositionwerefoundmainlyduetoHarpalusspeciescharacteristic fromthecentralgrasslandandafewforestspecialistspeciesexclusivelyfoundin theforestedzone.Themaintenanceofthe“dehesa”structuremaybeofimpor- tanceforcarabidspeciesadaptedtothevarietyofhabitatscreated,andrequires thecontinuationoftraditionalmanagementpractices. A. Taboada and J. M. Salgado, Department of Animal Biology, University of León, Campus de Vegazana s/n, E-24071 León, Spain; E-mail: dbaatp @unileon.es D.J.Kotze,DepartmentofBiologicalandEnvironmentalSciences,P.O.Box65 (Biocenter3,Viikinkaari1),FI-00014UniversityofHelsinki,Finland R.Tárrega,DepartmentofEcology,GeneticsandMicrobiology,Universityof León,CampusdeVegazanas/n,E-24071León,Spain Received12December2005,accepted1March2006 1.Introduction diversity(Gómez-Limón&DeLucíoFernández 1999).A“dehesa”isanagro-forestrysystemwith Historicallanduseandmanagementpractices,in- extensivegrazing(sheep,goats,pigsandcattle); cludingforestburningandcuttingtocreateagri- thesemultipleland-usesproducealandscapeof cultural land and pastures for livestock grazing, high habitat heterogeneity (Blanco et al. 1997). havealteredanddiversifiedthelandscapeinthe Theresultinganthropogenicmosaic(pasture,ar- Iberian Peninsula (Blanco et al. 1997, Luis- able,woodland)producesarangeofenvironmen- Calabuigetal.2000).Insomecases,thesetradi- talconditionsandnichesthatcanenhancediver- tional practices have transformed the forested sity(e.g.,Pulido&Díaz1997,Martín&López landtocreate“dehesa”ecosystems,wheretheuse 2002). ofresourcescoexistswithareasofhighbiological The origin and evolution of the “dehesa” ENTOMOL.FENNICAVol.17 (cid:127) CarabidbeetlesindehesaecosystemsinNWSpain 285 Figure1.Compositionofthedehesaecosystemanditsrelationtothesurroundingoakforest.a)Aerialviewand b)detailedview.Habitattypes:G=Centralgrassland,F=Forestedzone,O=Surroundingoakforest. landscape have been intrinsically related to branches(toprovideshade,browsingandacorn transhumance pastoral systems for centuries production), and c) the enhancement of tree re- (Blanco et al. 1997). Well-developed “dehesa” generation by the planting of new seedlings systemswereestablishedasapermanentfeature (Blancoetal.1997). oftheSpanishlandscapefromtheearly Middle Hereweinvestigatetheresponsesofcarabid Ages,whenclearing,thinningandploughingof beetlestohabitattype(definedbythevariability continuous oak forests were frequently per- inthecompositionofthevegetationlayer)atthe formed. These management practices were de- local scale in traditionally managed “dehesa” veloped in order to obtain regularly-spaced re- ecosystemsinNWSpain.WeselectedaQuercus tainedtrees(between30and60treesperha)and pyrenaica“dehesa”systemthattypicallyconsists to enhance grassland growth among the trees oftwomainhabitattypes:1)acentralgrassland (Blancoetal.1997,Joffreetal.1999,Pulidoet areaand2)asurroundingforestedzonecharac- al.2001).Mostcontemporary “dehesa”ecosys- terised by scattered old-growth trees, which are temswerecreatedduringthesecondhalfofthe maintainedforlivestockshelterandfeedingpur- 19thandthebeginningofthe20thcenturiesasare- poses(Fig.1). sult of increased human densities (Pulido et al. We aim to determine if the carabid assem- 2001). blages inhabiting the “dehesa” ecosystemdiffer The degree of habitat diversity (i.e., differ- betweenthecentralgrasslandandthesurround- encesinvegetationstructureandcomposition)in ingforestedzonedespitetheirspatialproximity. a “dehesa” ecosystem is mainly dependent on We ask whether differences in environmental managementpracticesanddifferentproductsob- conditionsduetotreedevelopmentintheforested tained (e.g., forage, firewood, charcoal, acorn, areainfluencethepresenceofcarabidspeciesac- cork,tannin).Basically,thevegetationstructure cording to their habitat preferences [see Reyes- ofa“dehesa”iscomposedoftwolayers(Joffreet Lópezetal.(2003)forants].Shadeprovidedby al. 1999): a savannah-like open tree layer with thescatteredtreesintheforestedzoneincreases scattered matureoaks (mainly Quercus ilex and microhabitat humidity, decreases temperature Q. suber) and a grass dominated layer (usually andcontributestoleaflitterdevelopmentandor- native annual herbs for grazing). The mainte- ganicmattercontent(Joffreetal.1999),leading nanceofthistwo-layeredvegetationstructurere- alsotomodificationsinthevegetationcomposi- quires continuous management such as: a) con- tion.Thesechangesinenvironmentalconditions trolofshrubinvasionbyuprooting,clearingand may make the forested zone suitable for forest ploughing,b)preservationoftheold-growthtree specialist species, even though these zones are layer by regular pruning to favour horizontal notconsideredtrueforestecosystems.Openhab- 286 Taboadaetal. (cid:127) ENTOMOL.FENNICAVol.17 itat species are expected to thrive in the central caryophyllea, Cynosurus cristatus, Medicago grasslandandgeneralistspeciesareexpectedto lupulina, Ornithopus compressus, Trifolium ar- belessinfluencedbythedifferencesbetweenthe vense,T.campestre,T.glomeratum,T.pratense, twohabitattypes. T. strictum, and Vulpia bromoides (Díez et al. 1994, 1995). The surrounding forested zone is characterised by a more complex vegetation 2.Materialandmethods structure consisting of several layers: oak trees, oak saplings, shrubs and annual and perennial 2.1.Studyareaandsamplingmethod herbs(Table1). Vegetation sampling in these forested zones ThestudywasconductedinNWSpain(42º36’– were carried out in June–July 2004: (a) under- 42º39’N,4º58’–5º05’W),intheMediterranean story vegetation cover (shrubs, herbs and sap- Region 980–1,030 m a.s.l. We selected five lings)wasvisuallyestimatedin20systematically Quercus pyrenaica “dehesa” ecosystems [Fes- placed1m×1mquadratspersite;(b)oaktree tuco heterophyllae–Querceto pyrenaicae sig- characteristics(perimeter,height,canopydiame- metum;Penasetal.(1995)]atleast1kmapart, ter and distance between trees) were measured surroundedbycontinuousoakforestsandwitha from40treespersite. similargrazingintensity(sheepandgoats).Each Weusedplasticpitfalltraps(depth86mm,di- “dehesa” ecosystem included the two habitat ameter60mm)coveredby10cm×10cmroofs types described above, and we sampled carabid and partly filled with 25% propylene glycol to beetlesinfivecentralgrasslandsites(sizerange collectthebeetles.Pitfallcatchesreflectcarabid 2.09–8.23ha)andfivesurroundingforestedsites activity-density(e.g.,Thomas1998)thatwillbe (sizerange11.50–24.64ha). referredtohereasabundanceornumberofindi- Grazedandopencentralgrasslandsaredomi- viduals.Fivesamplingpointswereplacedineach nated by a variety of herb species such as Aira ofthetensites.Eachsamplingpointconsistedof Table1.Structuralcharacteristicsofthevegetationatthefiveforestedzones.Dominantherb(annualandperennialherbs)and scarce(<5%cover)shrubspeciesateachzonearegiven.Oaksaplings(<1mheight)areindicatedwhencoverwasgreater than2%.Mean±StandardDeviationdistancebetweenoaktrees,treeheight,perimeterandcanopydiameterarealsogiven. Annualherbs Perennialherbs Shrubs Mean±SD Mean±SD Mean±SD Mean±SD treedist. treeht. treeperim. canopy (m) (m) (cm) diam.(m) 1 Airacaryophyllea Agrostiscapillaris Crataegusmonogyna 7.70±3.76 8.46±4.42 73.33±71.47 6.49±4.66 Cynorosusechinatus Festucarubra Tuberariaguttata Plantagolanceolata 2 Tuberariaguttata Agrostiscapillaris Ericacinerea 7.65±5.32 11.03±4.14 123.40±112.32 7.45±4.97 Carexmuricata Halimiumumbellatum Festucarubra Oaksaplings 3 Airacaryophyllea Agrostiscapillaris Halimiumumbellatum 9.66±5.17 10.20±4.70 98.68±102.69 6.83±4.50 Cynosurusechinatus Oaksaplings Tuberariaguttata Vulpiabromoides 4 Airacaryophyllea Agrostiscapillaris Thymusserpyllum 7.18±4.34 10.18±4.96 87.80±91.43 6.08±4.27 Tuberariaguttata Hieraciumcastellanum Vulpiabromoides Hieraciumgr.pilosella Plantagolanceolata 5 Airacaryophyllea Agrostiscapillaries Callunavulgaris 5.53±3.13 13.88±2.10 86.20±48.26 6.64±3.03 Trifoliumcampestre Carexmuricata Ericaumbellate Festucarubra Lithodoradiffusa Hieraciumgr.pilosella Thymusserpyllum Oaksaplings ENTOMOL.FENNICAVol.17 (cid:127) CarabidbeetlesindehesaecosystemsinNWSpain 287 Table2.Generalisedlinearmodelresults.df=degreesoffreedom.ResidualDevianceistheamountofvariationnotexplained bythemodels;pvaluesinparentheses(boldfaceifp<0.05;¤2distribution).TheCentralgrassland(Grassl.)coefficientsarethe basicinterceptsofthemodels;Forest=forestedzone.Theta(withSE)istheaggregationvalue(fornegativebinomialmodels only)withlowervaluesindicatingahigherdegreeofaggregation. Resid.Dev.(p) Coeff. NullDev. Size Ants Habitattype Size Ants Grassl. Forest Theta(SE) Residualdf 9 8 7 6 Abundance 272.79 264.40(0.004) 263.56(0.361)16.91(<0.001) –0.051 9.49x10–5 –1.248 0.870 RarefiedRichness 4.26 4.25(0.902) 3.79(0.497) 3.79(0.976) 0.009 1.85x10–4 2.675 –0.009 Calathusfuscipes 14.56 14.17(0.536) 14.17(0.946) 10.80(0.067) –0.039 3.94x10–4 –3.419 1.409 2.00(0.86) Carabusamplipennis 44.85 11.52(<0.001) 9.35(0.140) 7.44(0.167) 0.093 –1.75x10–3 –7.708 1.896 3.00(2.29) Harpalusdistinguendus 58.67 16.61(<0.001) 14.25(0.124) 12.08(0.141) –0.207 –9.00x10–4 –0.791 –1.283 2.29(1.34) Harpalusebeninus 25.40 24.85(0.459) 18.54(0.012) 7.56(<0.001) –0.119 5.91x10–3 –13.350 5.977 0.99(0.66) Harpalusrufipalpis 29.81 15.01(<0.001) 11.39(0.057) 8.56(0.093) –0.317 1.92x10–3 –5.068 2.165 1.30(0.70) Harpalusserripes 17.70 11.15(0.011) 8.64(0.113) 8.44(0.652) 0.070 5.17x10–3 –10.640 –1.408 0.44(0.26) Nebriasalina 18.54 16.61(0.164) 12.86(0.053) 10.09(0.096) –0.114 –9.17x10–4 –4.407 2.107 1.69(0.88) Poeciluskugelanni 35.23 28.33(0.009) 20.21(0.004) 12.76(0.006) 0.057 1.87x10–3 –7.920 2.063 2.60(1.69) Steropusgallega 25.26 20.22(0.025) 14.99(0.022) 12.68(0.128) –0.095 –2.53x10–3 –3.567 1.505 1.54(1.24) Steropusglobosus 22.44 22.17(0.603) 12.53(0.002) 10.57(0.161) 0.060 1.95x10–3 –5.782 0.771 3.71(1.76) Syntomusfoveatus 25.31 13.30(<0.001) 13.14(0.690) 11.21(0.165) 0.005 4.69x10–4 –4.412 –2.550 1.11(0.58) Trechusobtusus 16.13 12.91(0.073) 12.91(0.939) 11.96(0.329) –0.018 –2.22x10–4 –5.489 1.621 0.92(0.50) Trechusquadristriatus 23.49 15.60(0.005) 15.10(0.476) 12.04(0.081) –0.034 –2.46x10–4 –6.256 2.911 0.97(0.61) Zabrussilphoides 26.11 12.64(<0.001) 11.04(0.206) 10.54(0.478) –0.173 1.10x10–3 –4.973 0.786 1.66(0.99) Generalistgroup 27.65 22.31(0.021) 16.89(0.020) 10.63(0.012) 0.193 2.00x10–3 –7.412 –3.274 2.43(1.46) Openhabitatgroup 13.18 11.23(0.162) 10.37(0.354) 10.37(0.972) –0.006 7.55x10–4 –4.635 –0.033 2.91(1.39) threetraps50–200cmapart(i.e.,15trapspersite, Generalisedlinearmodels(GLM)wereused 150trapsintotal).Samplingpointswereatleast to test for differences in carabid abundance and 30mapartandasfaraspossiblefromsiteedges. species richness between the two habitat types. Beetles were collected continuously from 28 Species representing at least 50 individuals and Mayto4Octoberin2004,andtrapswereemptied collectedfromatleastfiveofthetensiteswere every20–25days.Beetleswereidentifiedusing analysed individually. The remaining species standard keys (Jeannel 1941–1942, Lindroth werepooledintogroupsaccordingtotheabove 1974, Trautner & Geigenmüller 1987), and fol- mentioned habitat classification in order to in- low the nomenclature in Serrano (2003). We clude them into the analysis. Calathus gra- counted the number of ants (Formicidae) col- natensisandtheforestspecialistgroupwerenot lected in the traps due to high abundances ob- tested, as they were clearly associated with the tained. forestedzone.Theresponsevariablesinthemod- els were number of individuals (overall and for individualspecies)andoverallnumberofspecies 2.2.Dataanalysis (i.e., species richness). Abundance data were modelledfollowinganegativebinomialerrordis- Wepooledthecarabidcatchesofeachsiteandfor tribution(White&Bennetts1996)unlessspeci- thewholetrappingperiod,andclassifiedthespe- fiedotherwise(seeTable2),andspeciesrichness ciesasforestspecialists,generalistsoropenhabi- dataweremodelledfollowingaPoissonerrordis- tat species, according to the literature (Jeannel tribution.Thepredictorvariablewashabitattype 1941–1942,Lindroth1974,Vázquez1990,Cam- (central grassland and forested zone). Site size pos2003,Ortuño&Marcos2003&Peláez2004; and mean ant abundance per site were included seeAppendix). into the models as exploratory variables. Ants 288 Taboadaetal. (cid:127) ENTOMOL.FENNICAVol.17 were included into the models because in pre- vious studies potential competitor groups ex- plainedalargeamountofthevariabilityfoundin the carabid assemblages and individual species (Taboadaetal.unpubl.).Asaresultofmanage- mentpracticesandthe“dehesa”habitatconfigu- ration,centralgrasslandsareunavoidablysmaller than surrounding forested zones and, conse- quently, size and habitat type were statistically confoundedinthemodels(Pearson’scorrelation: r=0.75,df=8,p=0.001).Therefore,thepre- dicted values obtained (see Figs. 2 and 3) were based on: a) the mean size of each habitat type (i.e.,4.22haforcentralgrasslandsand17.65ha forforestedzones)inordertogetamorerealistic predictionforeachhabitattypeindependentlyof size, and on b) the overall mean size (i.e., the meansizeofthetensites,10.94ha,whichislo- catedoutsidethetruesizerangesofbothhabitat types)inordertoobtainavalid(althoughlessre- alistic)comparisonbetweenhabitattypesbytak- ingsizeintoaccount. We performed a Detrended Correspondence Analysis(DCA)tocorrelatecarabidspeciesand sites(Jongmanetal.1995),assumingaunimodal (Gaussian) response of carabid beetle abun- dancestotheenvironment.Specieswithatleast 15individuals(26species)wereincludedinthis analysis,avoidingtheinclusionofscarcespecies accordingtoourdataset. Unequaltrappingeffort(19%traploss)was corrected by including the number of days the trapspersitewereactiveasanoffsetterminthe abundancemodels,andbyrarefyingspeciesrich- nessdatato200individuals.Abundancedatafor Figure2.Mean(±95%ConfidenceInterval)predicted theDCAanalysiswerestandardisedto100trap- numberofcarabidindividualsandspeciesatthetwo ping days. Data analyses were carried out with habitattypes.Predictionswereobtainedwith:the the R statistical package (R Development Core meansizeofeachhabitattype((cid:1))andtheoverall Team2005). meansize((cid:1));seetext.Predictedvaluesforabun- dancewerestandardisedtothemeannumberofac- tivetrappingdayspersite(i.e.,1,543days).Predicted valuesforspeciesrichnesswereobtainedafterrar- 3.Results efactionto200individuals. We collected 4,374 carabid individuals and 55 species (Appendix). Overall carabid abundance habitat (57.8% and 48.6% in central grasslands was statistically significantly higher in the for- and forested zones, respectively) and generalist ested zone (Table 2, Fig. 2a). Rarefied species species(42.2%and37.9%,respectively).Nofor- richnessdidnotdiffersignificantly betweenthe estspecialistspecieswerecapturedfromthecen- twohabitattypes(Table2,Fig.2b). tralgrasslands,but13.5%ofthespeciescaptured Both habitat types supported mainly open exclusively from the forested zones were forest ENTOMOL.FENNICAVol.17 (cid:127) CarabidbeetlesindehesaecosystemsinNWSpain 289 Figure3.Mean(±95% CI)predictednumberof individualsofthemost representativespecies atthetwohabitattypes. Predictionswereob- tainedwith:themean sizeofeachhabitat type((cid:1))andtheover- allmeansize((cid:1)).Pre- dictedvalueswere standardisedtothe meannumberofactive trappingdayspersite (i.e.,1,543days). specialists,includingCalathusrotundicollis,Ca- ciatedtotheforestedzone,independentlyofsize losoma inquisitor, Carabus lusitanicus and No- (for example, Calathus fuscipes, Harpalus tiophilus biguttatus (Appendix). Calathus gra- ebeninus, Poecilus kugelanni and Steropus gal- natensis,ageneralistspeciesaccordingtothelit- lega;Table2,Fig.3);(b)twospeciesresponded erature, was also exclusively collected fromthe asgeneralistsinthestatisticalsense(i.e.,nosta- forestedzones. tistically significant difference between the two The most abundant species were collected habitattypes)andasopenhabitatspeciesinthe frombothcentralgrasslandsandforestedzones: ecological sense (Harpalus distinguendus and Calathus fuscipes (1,071 individuals, 24.5% of Harpalusserripes;Table2,Fig.3);and(c)two thetotalcatch),Steropusglobosus(769individu- species responded highly negatively to habitat als,17.6%)andHarpalusdistinguendus(612in- size(HarpalusrufipalpisandZabrussilphoides; dividuals,14%),allgeneralistspecies.Onlytwo Table2,Fig.3). (Harpalus ebeninus and Poecilus kugelanni) of Inaddition,speciesintheopenhabitatgroup the14speciestested,respondedstatisticallysig- (24 species) were not statistically significantly nificantly to habitat type (i.e., responded posi- associatedwitheitherofthehabitattypes,while tivelytotheforestedzone,Table2).Nineofthe thegeneralistgroup(11species)wasstatistically 14 species tested responded statistically signifi- significantly associated with the central grass- cantlytothesizeofthestudiedsites,andthenum- lands(Table2).Theforestspecialistgroup(five berofantswasasignificantpredictoroftheabun- species) responded to habitat type as expected danceoffourbeetlestested(Table2). (not tested as it was clearly associated with the Ingeneral,habitatsizehadanegligibleeffect forestedzone). onthespeciesresponsestohabitattypeasmostof Results from the DCA analysis (Fig. 4) thespeciestestedrespondedinthesamedirection showedthatthecarabidassemblagecomposition whenwecomparedthepredictedvaluesobtained ofthetwohabitattypesclearly differed,mainly fromtheoverallmeansizetothepredictedvalues due to the presence of Harpalus species (open obtainedfromthemeansizeofeachhabitattype andgeneralistspecies)inthecentralgrasslands, (Fig.3). and forest specialist species (e.g., Calathus Weidentifiedthreetypesofresponsesofthe rotundicollisandCalosomainquisitor)andother speciestohabitattype:(a)mostofthespeciesre- abundantlycollectedspeciesattheforestedzones spondedeitherasgeneralistsoraremainlyasso- (e.g.,Poeciluskugelanni). 290 Taboadaetal. (cid:127) ENTOMOL.FENNICAVol.17 Figure4.Detrended CorrespondenceAnaly- sis(eigenvaluesand axislengths:0.52and 2.86SDforaxis1,and 0.21and1.54SDfor axis2,respectively)for carabidspeciesand sites.Habitattypes:G= Centralgrassland,F= Forestedzone.Carabid namesareacombina- tionof4(genusname) by4(speciesname) letters.Forexample, calaambi=Calathus ambiguus. 4.Discussion movementratesandconsequentlyahigheractiv- ity-densitymeasurefrompitfalltraps). Eventhoughthetwohabitattypessampledhere On the other hand, some species were more werequitedifferentintermsofvegetationstruc- abundantlyfoundintheforestedzone,butcannot ture,weshowedthattheywerequitesimilarre- be considered as true forest specialist species. gardingtothecarabidbeetles–mostspeciesdid Thesespeciesmaybeassociatedtospecificenvi- not respond to habitat type (i.e., were collected ronmentalconditionscreatedundertheoaktrees frombothcentralgrasslandsandforestedzones). (see Reyes-López et al. 2003). For example, Some of these species were collected from the Poecilus kugelanni was abundantly found in forestedzonesbutweremainlycharacteristicof meadow areas characterised by non grazed tall theopencentralgrasslands,suchasspeciesofthe grasses(Taboadaetal.unpubl.)thatarealsochar- genusHarpalus,asshownintheDCAanalysis. acteristicoftheimmediateoaktreesurroundings Thesespeciesmayprefertheenvironmentalcon- intheforestedzone. ditionsthatcharacterisethecentralgrassland,like Differences between the two habitat types highertemperatureandlowermoisture,butmay werealsofoundintermsofhigheroverallabun- alsooccasionallymoveintothesurroundingfor- dance and carabid assemblage composition, estedzone.Human-createdspacesbetweenold- mainlyduetohighnumbersofHarpalusspecies growthtreesintheforestedzonemayallowthese collectedfromthecentralgrasslandsanddueto speciestomovefromandtothecentralgrassland species collected exclusively from the forested (Koivula&Niemelä2003).Besides,astempera- zones, as reflected in the DCA analysis. The ture has a significant effect on carabid beetle maintenance of the forested zone characterised movement(Raworth&Choi2001), itmay also bymatureoaktrees,withgreatcanopycover,per- have influenced pitfall catches in the central imeterandheight,positivelyinfluencedthepres- grasslands(i.e.,highertemperaturesimplyhigher enceofafewforestspecialistspecies.Thesespe- ENTOMOL.FENNICAVol.17 (cid:127) CarabidbeetlesindehesaecosystemsinNWSpain 291 cies may move from the well-developed sur- simplifiedagriculturallandsincaseofintensifi- roundingoakforest(seeTaboadaetal.2004)to cation,orintoclosedoakforestedlands(i.e.,due theforestedzoneduetoshadeandhumiditypro- to invasion by young trees and shrubs fromthe vided by tree development, and probably the surroundings)incaseofabandonment,havelead morediversemicrohabitatscreatedbyleaflitter to the alteration of the vegetation composition accumulation (Koivula et al. 1999). Some spe- and structure in these ecosystems (Díez et al. cies,suchasCarabuslusitanicusandNotiophilus 1991, Gómez-Limón & De Lucío Fernández biguttatus,werefoundinlownumbersinthesur- 1999, Plieninger et al. 2003, Peco et al. 2005). rounding forested zone, but in case of the rare Thislossinhabitatdiversityinthe“dehesa”eco- Calosoma inquisitor the forested zone of the systemmayaffectthefauna,andespeciallythose “dehesa”probablyprovidesasuitablehabitat. specialistspeciesadaptedtohabitatheterogene- Ourresultsfurthersuggestthatantsareasig- ity(Niemeläetal.1996,Stoateetal.2001).In- nificantpredictorofthedistributionoffourcara- deed,incaseofcarabidbeetles,theassemblage bid species tested. We found either positive or compositionisexpectedtovaryalonglandscape negativeresponsesofcarabidstoants.Although transformations due to land use intensification antsappeartoaffectcarabidabundanceandspe- (Fournier&Loreau1999,Vanbergenetal.2005) cies richness negatively (Lövei & Sunderland andabandonment(Burel&Baudry1995,Purtauf 1996,Hawesetal.2002),individualspeciesre- etal.2004). spondeddifferentlytothepresenceofwoodants, Preservingthecharacteristichabitatdiversity dependingontheirdailyactivitypatterns[e.g.,in of“dehesas”inNWSpainmeansthatspecificand spruceborealforests;Koivulaetal.(1999,2002)] traditional practices are needed, such as shrub andtheirabilitiestoavoiddirectencountersand control(bycuttingorgrazingbygoats),treecare predation by ants [in mixed pine-birch forests; (cutting branches, removing old trees, sanitary Reznikova&Dorosheva(2004)]orintheirabil- care, planting of new trees) and livestock man- ity toproducedefensivechemicals[e.g.,formic agement(i.e.,balancedfeedinginthewholearea) acid;Willetal.(2000)]. (Blancoetal.1997,Plieningeretal.2003).Ulti- In terms of carabid beetle assemblages, the mately, the preservation of “dehesas” requires forestedzonesofthe“dehesas”arenotthatdiffer- thatconservationpoliciesintegrateparticipatory entfromthecentralgrasslandsandcannotbecon- planning approaches that consider the motiva- sidered as true forest ecosystems. Furthermore, tionsoflocalpeople(landownersandland-users) maindifferencesincarabidbeetlesareexpected andtheappreciationof“dehesa”incomes(Plie- betweentheopen“dehesa”ecosystem(i.e.,cen- ninger et al. 2004) as most “dehesas” are pri- tralgrasslandandsurroundingforestedzoneto- vatelyownedorlocalrentingsystems. gether) and the closed oak forest, a hypothesis thatwillbeaddressedinthefuture.Itmaywellbe that the “dehesa” carabid beetles constitute a uniqueassemblagethatdependsonhabitatdiver- sityofthe“dehesa”ecosystem,makingitworthy ofconservationefforts. The long-term maintenance of the “dehesa” landscape strongly depends upon varied local Acknowledgements.WethankL.CalvoandH.Roblesfor uses (Gómez-Limón & De Lucío Fernández collaboration,S.LehvävirtaforusefulcommentsandB. O’Haraforstatisticaladvice.A.Vanbergenandananony- 1999).Overthelast60years,greatchangesinthe mous reviewer improved the manuscript considerably. Mediterranean rural landscape, together with LandscapemeasurementswerecarriedoutwithSIGPAC changes in the agriculture policies of the Euro- (http://sigpac.mapa.es/fega/visor).WethanktheServicio peanUnion,resultedineithertheintensification TerritorialdeMedioAmbientedelaJuntadeCastillay ofagriculturalandlivestockfarmingortheaban- Leónwhograntedaccesstotheforestsandseveralforest guards for collaboration. The study was supported by donmentoftraditionalandnon-competitiveland Ministerio de Ciencia y Tecnología (project reference uses, leading to the disappearance of “dehesa” REN2003-05432/GLO). A. Taboada was financed by ecosystems. Transformation of “dehesas” into JuntadeCastillayLeón,SpainandCIMO,Finland. 292 Taboadaetal. (cid:127) ENTOMOL.FENNICAVol.17 References Biodivers.Conserv.11:1269–1288. Koivula,M.&Niemelä,J.2003:Gapfellingasaforest harvestingmethodinborealforests:responsesofcara- Blanco, E., Casado, M. A., Costa, M., Escribano, R., bid beetles (Coleoptera, Carabidae). — Ecography García, M., Génova, M., Gómez, A., Gómez, F., 26:179–187. Moreno,J.C.,Morla,C.,Regato,P.&Sáinz,H.1997: Koivula,M.,Punttila,P.,Haila,Y.&Niemelä,J.1999: Losbosquesibéricos.Unainterpretacióngeobotánica. Leaflitterandthesmall-scaledistributionofcarabid — Editorial Planeta, Barcelona, Spain. 572 pp. [In beetles(Coleoptera,Carabidae)intheborealforest.— Spanish.] Ecography22:424–435. Burel,F.&Baudry,J.1995:Speciesbiodiversityinchang- Lindroth,C.H.1974:HandbooksfortheIdentificationof ingagriculturallandscapes:AcasestudyinthePays BritishInsects.Coleoptera,Carabidae.—RoyalEnto- d’Auge,France.—Agric.Ecosyst.Environ.55:193– mologicalSociety,London.148pp. 200. Lövei,G.L.&Sunderland,K.D.1996:Ecologyandbe- Campos,A.M.2003:EstudiodelosCarabidae(Coleop- haviourofgroundbeetles(Coleoptera:Carabidae).— tera)deGalicia.—PhDthesis,Univ.ofSantiagode Annu.Rev.Entomol.41:231–256. Compostela,Spain.660pp.[InSpanish.] Luis-Calabuig,E.,Tárrega,R.,Calvo,L.,Marcos,E.& Díez,C.,Luis,E.,Tárrega,R.&Valbuena,L.1991:Deg- Valbuena,L.2000:Historyoflandscapechangesin radation process in traditional systems of sylvo- NorthwestSpainaccordingtolanduseandmanage- pastoralmanagementindehesasystemsdominatedby ment.—In:Trabaud,L.(ed.),LifeandEnvironment Quercuspyrenaica.—Proceedingsofthe“IVCon- intheMediterranean:43–86.WitPress,Southampton, grèsInternationaldesTerresdeParcours”,pp.107– U.K. 109. Martín,J.&López,P.2002:TheeffectofMediterranean Díez,C.,Luis,E.,Tárrega,R.&Alonso,P.1994:Estudio dehesamanagementonlizarddistributionandconser- delasleguminosasendehesasderobledeQuercus vation.—Biol.Conserv.108:213–219. pyrenaicaysurelaciónconlascaracterísticasedáfi- Niemelä,J,HailaY.&Punttila,P.1996:Theimportanceof cas.—Proceedingsofthe“XXXIVReuniónCientí- small-scaleheterogeneityinborealforests:variation ficadelaSociedadEspañolaparaelEstudiodelos indiversityinforest-floorinvertebratesacrossthesuc- Pastos(S.E.E.P.)”,pp.71–77.[InSpanish.] cessiongradient.—Ecography19:352–368. Díez,C.,Luis,E.,Tárrega,R.&Alonso,P.1995:Estudio Ortuño, V. M. & Marcos, J. M. 2003: Los Caraboidea de las gramíneas en dehesas de roble de Quercus (Insecta:Coleoptera)delacomunidadautónomadel pyrenaicaysurelaciónconlascaracterísticasedáfi- PaísVasco.TomoI.—ServicioCentraldePublica- cas.—Proceedingsofthe“XXXVReuniónCientífica cionesdelGobiernoVasco,Spain.573pp.[InSpan- delaSociedadEspañolaparaelEstudiodelosPastos ish.] (S.E.E.P.)”,pp.43–47.[InSpanish.] Peco,B.,DePablos,I.,Traba,J.&Levassor,C.2005:The Fournier,E.&Loreau,M.1999:Effectsofnewlyplanted effectofgrazingabandonmentonspeciescomposition hedgesonground-beetlediversity(Coleoptera,Cara- andfunctionaltraits:thecaseofdehesagrasslands.— bidae)inanagriculturallandscape.—Ecography22: BasicAppl.Ecol.6:175–183. 87–97. Peláez, M. C. 2004: Estudio faunístico, ecológico y Gómez-Limón, J. & De Lucío Fernández, J. V. 1999: biogeográfico de los Carabidae (Coleoptera) del Changesinuseandlandscapepreferencesontheagri- macizodelSueve(Asturias,España).—PhDthesis, cultural-livestock landscapes of the central Iberian Univ.ofLeón,Spain.893pp.[InSpanish.] Peninsula (Madrid, Spain). — Landsc. Urban Plan. Penas,A.,García,M.E.&Herrero,L.1995:Seriesde 44:165–175. vegetación.Atlasdelmedionaturaldelaprovinciade Hawes,C.,Stewart,A.J.A.&Evans,H.F.2002:Theim- León.—InstitutoTecnológicoGeominerodeEspaña pactofwoodants(Formicarufa)onthedistribution yDiputacióndeLeón,León,Spain.104pp.[InSpan- andabundanceofgroundbeetles(Coleoptera:Carabi- ish.] dae)inaScotspineplantation.—Oecologia131:612– Plieninger,T.,Pulido,F.J.&Konold,W.2003:Effectsof 619. land-usehistoryonsizestructureofholmoakstandsin Jeannel,R.1941–1942:ColéoptèresCarabiques.Faunede Spanish dehesas: implications for conservation and France,vol.39and40.—Lechevalier,Paris.1173pp. restoration.—Environ.Conserv.30:61–70. Joffre,R.,Rambal,S.&Ratte,J.P.1999:Thedehesasy- Plieninger,T.,ModolellyMainou,J.&Konold,W.2004: stemofsouthernSpainandPortugalasanaturaleco- Landmanagerattitudestowardmanagement,regener- systemmimic.—Agrofor.Syst.45:57–79. ationandconservationofSpanishholmoaksavannas Jongman,R.H.G.,TerBraak,C.J.F.&VanTongeren,O. (dehesas).—Landsc.UrbanPlan.66:185–198. F.R.1995:DataAnalysisinCommunityandLand- Pulido,F.J.&Díaz,M.1997:Linkingindividualforaging scapeEcology.—CambridgeUniversityPress,Cam- behaviourandpopulationspatialdistributioninpatchy bridge.299pp. environments: a field example with Mediterranean Koivula,M.,Kukkonen,J.&Niemelä,J.2002:Borealca- bluetits.—Oecologia111:434–442. rabid-beetle (Coleoptera, Carabidae) assemblages Pulido,F.J.,Díaz,M.&HidalgoDeTrucios,S.J.2001: alongtheclear-cutoriginatedsuccessiongradient.— SizestructureandregenerationofSpanishholmoak ENTOMOL.FENNICAVol.17 (cid:127) CarabidbeetlesindehesaecosystemsinNWSpain 293 Quercusilexforestsanddehesas:effectsofagroforest- ron.Manage.63:337–365. ryuseontheirlong-termsustainability.—For.Ecol. Taboada,A.,Kotze,D.J.&Salgado,J.M.2004:Carabid Manage.146:1–13. beetleoccurrenceattheedgesofoakandbeechforests Purtauf,T.,Dauber,J.&Wolters,V.2004:Carabidcom- inNWSpain.—Eur.J.Entomol.101:555–563. munitiesinthespatio-temporalmosaicofaruralland- Thomas,C.F.G.,Parkinson,L.&Marshall,E.J.P.1998: scape.—Landsc.UrbanPlan.67:185–193. Isolatingthecomponentsofactivity-densityfortheca- RDevelopmentCoreTeam2005:R:Alanguageandenvi- rabidbeetlePterostichusmelanariusinfarmland.— ronmentforstatisticalcomputing.—RFoundationfor Oecologia116:103–112. Statistical Computing, Vienna, Austria. ISBN 3- Trautner, J. & Geigenmüller, K. 1987: Tiger Beetles, 900051-07-0;URLhttp://www.R-project.org Ground Beetles: Illustrated Key to the Cicindelidae Raworth,D.A.&Choi,M-Y.2001:Determiningnumbers andCarabidaeofEurope.—Margraf,Germany.488 ofactivecarabidbeetlesperunitareafrompitfall-trap pp. data.—Entomol.Exp.Appl.98:95–108. Vanbergen,A.J.,Woodcock,B.A.,Watt,A.D.&Nie- Reyes-López,J.,Ruiz,N.&Fernández-Haeger,J.2003: melä,J.2005:Effectofland-useheterogeneityonca- Communitystructureofground-ants:theroleofsingle rabid communities at the landscape scale. — Eco- treesinaMediterraneanpastureland.—ActaOecol. graphy28:3–16. 24:195–202. Vázquez,M.G.1990:Estudiofaunístico,biogeográficoy Reznikova,Z.&Dorosheva,H.2004:Impactsofredwood ecológico de los Caraboidea (Coleoptera) entre las antsFormicapolyctenaonthespatialdistributionand cuencasdelosríosBernesga,ToríoyPorma(León, behaviouralpatternsofgroundbeetles(Carabidae).— España).—PhDthesis,Univ.ofLeón,Spain.455pp. Pedobiologia48:15–21. [InSpanish.] Serrano,J.2003:CatálogodelosCarabidae(Coleoptera) White, G. C. & Bennetts, R. E. 1996: Analysis of fre- delaPenínsulaIbérica.—MonografíasdelaSociedad quencycountdatausingthenegativebinomialdistri- EntomológicaAragonesavol.9,Zaragoza,Spain.130 bution.—Ecology77:2549–2557. pp.[InSpanish.] Will,K.W.,Attygalle,A.B.&Herath,K.2000:Newde- Stoate,C.,Boatman,N.D.,Borralho,R.J.,RioCarvalho, fensivechemicaldataforgroundbeetles(Coleoptera: C.,DeSnoo,G.R.&Eden,P.2001:Ecologicalim- Carabidae):interpretations in a phylogenetic frame- pactsofarableintensificationinEurope.—J.Envi- work.—Biol.J.LinneanSoc.71:459–481.