ebook img

The infinitesimal Hopf algebra and the operads of planar forests PDF

0.35 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The infinitesimal Hopf algebra and the operads of planar forests

The in(cid:28)nitesimal Hopf algebra and the operads of planar forests Loï Foissy Laboratoire de Mathématiques, FRE3111, Université de Reims Moulin de la Housse - BP 1039 - 51687 REIMS Cedex 2, Fran e e-mail : loi .foissyuniv-reims.fr ABSTRACT. We introdu e two operads whi h own the set of planar forests as a basis. With 9 its usual produ t and two other produ ts de(cid:28)ned by di(cid:27)erent types of graftings, the algebra 0 of planar rooted trees H be omes an algebra over these operads. The ompatibility with the 0 in(cid:28)nitesimal oprodu t of H and these stru tures is studied. As an appli ation, an indu tive 2 way of omputing the dual basis of H for its in(cid:28)nitesimal pairing is given. Moreover, three n a Cartier-Quillen-Milnor-Moore theorems are given for the operads of planar forests and a rigidity J theorem for one of them. 5 1 KEYWORDS. In(cid:28)nitesimal Hopf algebra, Planar rooted trees, Operads. ] A AMS CLASSIFICATION. 16W30, 05C05, 18D50. R . h t Contents a m 1 Planar rooted forests and their in(cid:28)nitesimal Hopf algebra 3 [ 1.1 Planar trees and forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 v 1.2 In(cid:28)nitesimal Hopf algebra of planar forests . . . . . . . . . . . . . . . . . . . . . . 4 2 1.3 Pairing on H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 0 2 2 The operads of forests and graftings 5 2 Σ . 2.1 A few re alls on non- -operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 0 2.2 Presentations of the operads of forests . . . . . . . . . . . . . . . . . . . . . . . . 7 9 2.3 Grafting on the root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 0 2.4 Grafting on the left leave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 : P P v ց ր 2.5 Dimensions of and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 i X 2.6 A ombinatorial des ription of the omposition . . . . . . . . . . . . . . . . . . . 11 r a 3 Appli ations to the in(cid:28)nitesimal Hopf algebra H 13 3.1 Antipode of H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 γ 3.2 Inverse of the appli ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Elements of the dual basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Primitive suboperads 18 4.1 Compatibilities between produ ts and oprodu ts . . . . . . . . . . . . . . . . . . 18 PRIM(1) 4.2 Suboperad ր . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Prim( ) 4.3 Another basis of H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.4 From the basis (ft)t∈T to the basis (pt)t∈Tb . . . . . . . . . . . . . . . . . . . . . 23 PRIM(2) 4.5 Suboperad ր . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 PRIM ց 4.6 Suboperad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 P ր 5 A rigidity tPheorem for -algebras 27 ր 5.1 Double -in(cid:28)nitePsimal bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ր 5.2 Conne ted double -in(cid:28)nitesimal bialgebras . . . . . . . . . . . . . . . . . . . . 28 Introdu tion The Connes-Kreimer Hopf algebra of rooted trees, introdu ed in [1, 6, 7, 8℄, is a ommutative, non o ommutative Hopf algebra, its oprodu t being given by admissible uts of trees. A non ommutative version, the Hopf algebra of planar rooted trees, is introdu ed in [3, 5℄. We fur- themore introdu e in [4℄ an in(cid:28)nitesimal version of this obje t, repla ing admissible uts by left admissible uts: this last obje t is here denoted by H. Similarly with the Hopf ase, H is a , self-dual obje t and it owns a non-degenerate, symmetri Hopf pairing, denoted by h− −i. This pairing is related to a partial order on the set of planar rooted forests, making it isomorphi to (fF)F∈F theFTamari poset. As a onsequen e, H isgiven a dua(lfbt)at∈siTsdenoted by , indexed by the set Tof planar forest. In parti ular, the sub-family indexed by the set of planar rooted trees is a basis of the spa e of primitive elements of H. The aim of this text is to introdu e twoPstru turePs of operad on the spa e of planar forests. ց ր We introdu e two (non-symmetri ) operads and de(cid:28)ned in the following way: P m P (2) ց ց 1. is generated by and ց∈ , with relations: m ( ,I) = (I,m), ◦ ց ց ◦ m (m,I) = m (I,m),  ◦ ◦ (m,I) = (I, ).  ց ◦ ց ◦ ց P m P (2) ր ր 2. is generated by and ր∈ , with relations: m ( ,I) = (I,m), ◦ ր ր ◦ m (m,I) = m (I,m),  ◦ ◦ ( ,I) = (I, ).  ր ◦ ր ր ◦ ր  We then introdu e two produ ts on H or on its augmentation ideal M, denoted by ր and ց. F G F G F G Theprodu Ft ր onsists ofgGrafting ontheleft leave of and tmheprodu t ց onsPists ց of graftPing on the left root of . Together with itPs usual prPodu t , M be omes both a - ր ց ր and a q -algebra. More pre Pisely, MPis the free - and -algebra generated by a single ց ր element . As a onsequen e, and inherits a ombinatorial representation using planar forests, with omposition iteratively des ribed using the produ ts ց and ր. We then give several appli ations oPf these operadi stru tures. For example,fthe antiptodeTof ց t H is des ribed in tePrm of the operad .fWe sFhowFhow to ompute elements 's, with ∈ , ց F usiPnրg the a tion of , and the elements 's, ∈ from the pre eding ones using(ftFhe)Fa∈ Ftion of . Combining all these results, it is possible tom ompute by indu tion t∆h˜e basis . ∆˜ We(cid:28)nallystudythe ompatibilitiesofprodu ts ,ր,ցP,the oprodu t andthe oprodPu t ր ր ց dual of ր. This leads to the de(cid:28)nition of twoPtypesPof -bialgebras, and one type of - ր ց bialgebras. Ea h type then de(cid:28)ne a suboperad of or orresponding to primitive elements of M, whi h are expli itively des ribed: qq q q P (2) ր 1. The (cid:28)rst one is a free operad, generated by the element − ∈ . As a onsequen e, the spa e of primitive elements of H admits a basis (pt)t∈Tb indexed by the set of planar (ft)t∈T binary trees. The link with the basis is given with the help of the Tamari order. 2. The se ond one admits a combiPnat(onri)alnrepr2esentation in terms of planar rooted trkee,sl. It2is n ր generated by the orollas ∈ , ≥ , with the following relations: for all ≥ , c (c , I,...,I ) = c (I,...,I,c ). k l l k ◦ ◦ k−1 l−1 times times | {z } | {z } 2 3. The third one admits aqq oPmbi(n2a)torial representation in terms of planar rooted trees, and ց is freely generated by ∈ . P P ր ր We also give the de(cid:28)nition of a double -bialgebra, ombining the two tPypes of - ր bialgebras already introdu ed. We then prove a rigidity theorem: any double -bialgebra onne ted as a oalgebra is isomorphi to a de orated version of M. This text is organised as follows: the (cid:28)rst se tion gives several re alls on the in(cid:28)nitesimal Hopf algebra of planar rooted trees and its pairing. The two produ ts ց and ր are introdu ed in se tion 2, as well as the ombinatorial representation of the two asso iated operads. The ap- (fF)F∈F pli ations to the omputation of is given in se tion 3. Se tion 4 is devoted to the study of the sPuboperads of primitive elements and the last se tion deals with the rigidity theorem for ր double -bialgebras. Notations. K 1. We shall denote by a ommutative (cid:28)eld, of any hara teristi . Every ve tor spa e, K algebra, oalgebra, et , will be taken over . (A,∆,ε) 1 A ∆(1) = 1 1 2. Let be a ounitary oalgebra. Let ∈ , non zero, su h that ⊗ . We then de(cid:28)ne the non ounitary oprodu t: Ker(ε) Ker(ε) Ker(ε) ∆˜ : −→ ⊗ a ∆˜(a) =∆(a) a 1 1 a. (cid:26) −→ − ⊗ − ⊗ ∆(a) = a(1) a(2) ∆˜(a) = a′ a′′ We shall use the Sweedler notations ⊗ and ⊗ . 1 Planar rooted forests and their in(cid:28)nitesimal Hopf algebra We here re all some results and notations of [4℄. 1.1 Planar trees and forests T F 1. The set of planar trees is denoted by , and the set of planar fonrestsNis denoted by .FT(hne) weight of a planar forest is the number of its verti es. For all ∈ , we denote by n the set of planar forests of weight . 5 Examples. Planar rooted trees of weight ≤ : q q q q q q q q, qq, qqq, qqq, qqqq, qqqq, qqqq, ∨qqqq, qqqq ,Hq qq(cid:8)q q, qqqqq, qqqqq, qqqqq, qqqqq, ∨qqqqq, q∨qqqq, qqqq, qqqq, ∨qqqqq, ∨qqqq, ∨qqqq,∨qqq, qqqq. ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ 4 Planar rooted forests of weight ≤ : q q q q q q q qq q q q q q q q q q q q q q q q q q qqq q q q q q q 1, q, qq, q, qq q, q q, q q, q , q, qq qq, q q q, q q q, q q q, q q, q q , qq, qq, q q, q , q , q , ∨q , q . ∨ ∨ ∨ ∨ ∨ ∨ T 2. The algebra H is the free asso Fiative, unitary algebra generated by . As a onsequen e, a linear basis of H is given by , and its produ t is given by the on atenation of planar forests. Vert(F) 3. FWe sFhall also need two partial orFde=rstan.d..at total ordesr,so′n the set oFf verti es of 1 n ∈ , de(cid:28)ned in [3, 4℄. We put , and let be two verti es of . s s′ s′ s F F high (a) We shall say that ≥ if there exists a path from to in , the edges of high being oriented from the roots to the leaves. Note that ≥ is a partial order, whose F Hasse graph is the forest . 3 s s′ s s′ high left (b) If and are not omparable for ≥ , we shall say that ≥ if one of these assertions is satis(cid:28)ed: s t s′ t i < j i j i. is a vertex of and is a vertex of , with . s s′ t s s′ t i left i ii. and are verti es of the same , and ≥ in the forest obtained from by deleting its root. F left This de(cid:28)nes the partial order ≥ for all forests , by indu tion on the the weight. s s′ s s′ s s′ h,l high left ( ) We shall say that ≥ if ≥ or ≥ . This de(cid:28)nes a total order on the F verti es of . 1.2 In(cid:28)nitesimal Hopf algebra of planar forests F F F 1. Let ∈ . An admissible ut is a non empty ut of ertain edges and trees of , su h F that ea h path in a non- ut tree of meets at most one ut edge. The set of admissible F Adm(F) c F uts of will be denoted by . If is an admissible ut of , the forest of the c Pc(t) c verti es whi h are over the uts of will be denoted by (bran h of the ut ), and Rc(t) F the remaining forest will be denoted by (trunk of the ut). An admissible ut of x y F x Pc(F) x y left will be said to be left-admissible if, for all verti es and of , ∈ and ≤ y Pc(F) F Adml(F) imply that ∈ . The set of left-admissible uts of will be denoted by . F F 2. H is given a oprodu t by the following formula: for all ∈ , ∆(F)= Pc(F) Rc(F)+F 1+1 F. ⊗ ⊗ ⊗ c∈AXdml(F) ( ,∆) x,y Then H is an in(cid:28)nitesimal bialgebra, that is to say: for all ∈ H, ∆(xy)= (x 1)∆(y)+∆(x)(1 y) x y. ⊗ ⊗ − ⊗ Examples. ∆(q) = q 1+1 q, ⊗ ⊗ ∆(q q) = q q 1+1 qq + q q, ⊗ ⊗ ⊗ q q q ∆(q) = q 1+1 q + q q, ⊗ ⊗ ⊗ q q q q ∆(q q) = q q 1+1 q q + q qq + q q, q q q q⊗ ⊗ q q ⊗ ⊗ q ∆( q ) = q 1+1 q + qq q + q q, ∨q q∨ ⊗ ⊗q ∨ ⊗ ⊗ q q q q q ∆(q) = q 1+1 q + q q + q q, ⊗ ⊗ ⊗ ⊗ ∆(q qq q) = q qq q 1+1 q q qq + qq q q + q qq q, ⊗ ⊗ ⊗ ⊗ ⊗ q q q q q ∆(q q q) = q q q 1+1 q qq + q qq q + q q q + q q q, ⊗ ⊗ ⊗ ⊗ ⊗ q q q q q ∆(q q q) = q q q 1+1 q q q + q q q + q q q q + q q q, ⊗ ⊗ ⊗ ⊗ ⊗ q q q q q ∆(q q q) = q q q 1+1 qq q + q q q + q q q + qq q q, q q q q⊗ ⊗ q q ⊗ q q ⊗ q ⊗ ∆(q q ) = q q 1+1 q q + q q + q q q + q qq q, ∨q q∨ ⊗ ⊗q ∨ q ⊗ ∨ ⊗ ⊗ q q q q q q ∆(q q) = q q 1+1 qq + q q + qq q + q q q, q q q q⊗ ⊗ q q ⊗ q ⊗ ⊗ q q ∆( q q) = q q 1+1 q + q q q + qq qq + q q, ∨q q∨ ⊗ ⊗q ∨ ⊗ ⊗ q ∨ ⊗ q q q q q q ∆(q q) = q q 1+1 q + q q q + q qq + q q, ⊗ ⊗ ⊗ ⊗ ⊗ q q q q q q q q q q ∆(q q) = q q 1+1 q q + q q q + q q + q q q, ⊗ ⊗ ⊗ ⊗ ⊗ 4 qqq qqq qqq q q q ∆( q ) = q 1+1 q + q q + q q q + q q q q, ∨q ∨q ⊗ ⊗ ∨q ⊗ ∨ ⊗ ⊗ q q q q q q q q q q q ∆( q ) = q 1+1 q + q q + q q + q q q, ∨q ∨q ⊗ ⊗ ∨q ⊗ ∨ ⊗ ⊗ q q q q q q q q q q ∆( q ) = q 1+1 q + q q + q q q + q q q, ∨ ∨ ⊗ ⊗ ∨ ⊗ ⊗ ⊗ qqq qqq qqq qq q q q ∆( ∨q ) = ∨q 1+1 ∨q q q + q q q + q q, q q ⊗ ⊗q ⊗ ⊗ ∨ ⊗ q q q q q q q q q q q q ∆(q ) = q 1+1 q + q q + q q + q q. ⊗ ⊗ ⊗ ⊗ ⊗ S We proved in [4℄ that HS(i1s)a=n i1n(cid:28)nSi(tte)simaPl rHiomp(f a)lgebra, thtat iTs to saySh(aFs)a=n a0ntipode F. TFhis(aTntipo1de)satis(cid:28)es , ∈ H for all ∈ , and for all ∈ − ∪{ } . 1.3 Pairing on H B+ : F F 1. Wede(cid:28)netheoperator H −→ H,whi hasso iates,toaforest ∈ ,thetreeobtainqeqd q q q q F B+( q q) = ∨q by grafting the rooqtqs of the trees of on a ommon root. For example, ∨ ∨, q q q q B+(q q ) = ∨q and ∨ ∨ . γ 2. The appli ation is de(cid:28)ned by: γ : H −→ H (cid:26) t1...tn ∈ F −→ δt1,qt2...tn. , : K 3. There exists a unique pairing h− −i H×H −→ , satisfying: 1,x = ε(x) x i. h i for all ∈ H. xy,z = y x,∆(z) x,y,z ii. h i h ⊗ i for all ∈H. B+(x),y = x,γ(y) x,y iii. h i h i for all ∈ H. Moreover: , iv. h− −i is symmetri and non-degenerate. x y x,y = 0 v. If and are homogeneous of di(cid:27)erent weights, h i . S(x),y = x,S(y) x,y vi. h i h i for all ∈ H. left high This pairing admits a ombinatorial interpretation using the partial orders ≥ and ≥ and is related to the Tamari order on planar binary trees, see [4℄. (fF)F∈F , 4. We denote by F F fthe dual basis of tfhe,bGasis=ofδforests for the pairGing h−F −i. In other F F F,G terms, for all ∈ , is de(cid:28)ned by h i , for all forest ∈ . The family (ft)t∈T Prim( ) is a basis of the spa e H of primitive elements of H. 2 The operads of forests and graftings Σ 2.1 A few re alls on non- -operads Σ P = 1. (WPe(ns)h)anl∈lNwork here with non- -operads [11℄. Re all that su hna,nk1o,b.j.e. ,tknis aNfamily of ve tor spa es, together with a omposition for all ∈ : P(n) P(k ) ... P(k ) P(k +...+k ) 1 n 1 n ⊗ ⊗ ⊗ −→ p p ... p p (p ,...,p ). 1 n 1 n (cid:26) ⊗ ⊗ ⊗ −→ ◦ 5 p P(n) p P(k ) ... p 1 1 n TP(hke )folplow,in..g.,apsso iativPity ondition is satis(cid:28)ed: for all ∈ , ∈ , , ∈ n , 1,1 n,kn ∈ , (p (p ,...,p )) (p ,...,p ,...,p ,...,p ) ◦ 1 n ◦ 1,1 1,k1 n,1 n,kn = p (p (p ,...,p ),...,p (p ,...,p )). ◦ 1◦ 1,1 1,k1 n◦ n,1 n,kn I P(1) p P(n) Moreover, there exists a unit element ∈ , satisfying: for all ∈ , p (I,...,I) = p, ◦ I p = p. (cid:26) ◦ Σ P S P(n) n An operad is a non- -operad with a right a tion of the symmetri group on for n all , satisfying a ertain ompatibility with the omposition. P Σ P A P 2. Let be a non- -operad. A -algebra is a ve tor spa e , together with an a tion of : P(n) A⊗n A ⊗ −→ p a ... a p.(a ,...,a ), 1 n 1 n (cid:26) ⊗ ⊗ ⊗ −→ p P(n) p P(k ) ... p P(k ) 1 1 n n satisfying the following ompatibility: for all ∈ , ∈ , , ∈ , for all a ,...,a A 1,1 n,kn ∈ , (p (p ,...,p )).(a ,...,a ,...,a ...,a ) ◦ 1 n 1,1 1,k1 n,1 n,kn = p.(p .(a ,...,a ),...,p .(a ,...,a )). 1 1,1 1,k1 n n,1 n,kn I.a = a a A Moreover, for all ∈ . V P V In parti ular, if is a ve tor spa e, the free -algebra generated by is: FP(V) = P(n) V⊗n, ⊗ n∈N M P with the a tion of given by: p.((p a ... a ),...,(p a ... a )) 1⊗ 1,1⊗ ⊗ 1,k1 n⊗ n,1⊗ ⊗ n,kn = (p (p ,...,p )) a ... a ... a ... a . ◦ 1 n ⊗ 1,1⊗ ⊗ 1,k1 ⊗ ⊗ n,1⊗ ⊗ n,kn T b 3. Let be the set of planar binary trees: ∨ ∨ ∨ ∨H(cid:8) T = , ,∨ , ∨ ,∨ ,∨ , ∨, ∨, ... . b  ∨ ∨ ∨ ∨ ∨ ∨ ∨      n N T (n)   T n b b For all ∈ , is the ve tor spa e generated by the elements of with leaves: T (0) = (0), b T (1) = Vect( ), b T (2) = Vect , b ∨ (cid:18) (cid:19) T (3) = Vect ∨ , ∨ , b ∨ ∨ ! ∨ ∨ ∨ ∨H(cid:8) T (4) = Vect ∨ ,∨ , ∨, ∨, . b  ∨ ∨ ∨ ∨      6 T Σ b The family of ve tor spat ,ets,...i,stgiveTn atstru tunre of non- -otpe(rtad,.b.y.,gtra)ftings on the 1 n b 1 n leaves. More pre isely, if ∈ , with leaves, then ◦ is the binary t t t t 1 2 tree obtained by grafting on the (cid:28)rst leave of , on the se ond leave of , and so on t (note that the leaves of are ordered from left to right). The unit is . T Σ T (2) b ∨ b It is knowmn ,t.h.a.t,m is tPh(e2)free non- -operad generated by ∈ Σ . SimPilarly, given 1 k elements in , it is possible to des ribe the free non- -operad generated by these elements in terms of planar binary trees whose internal verti es are de orated by m ,...,m 1 k . 2.2 Presentations of the operads of forests De(cid:28)nition 1 P Σ m P (2) ց ց 1. is the non- -operad generated by and ց∈ , with relations: m ( ,I) = (I,m), ◦ ց ց ◦ m (m,I) = m (I,m),  ◦ ◦ (m,I) = (I, ).  ց ◦ ց ◦ ց P Σ  m P (2) ր ր 2. is the non- -operad generated by and ր∈ , with relations: m ( ,I) = (I,m), ◦ ր ր ◦ m (m,I) = m (I,m),  ◦ ◦ ( ,I) = (I, ).  ր ◦ ր ր ◦ ր  Remark. We shall prove in [2℄ that these quadrati operads are Koszul. 2.3 Grafting on the root F,G F 1 G = t ...t t = B+(G ) 1 n 1 1 Let ∈ −{ }. We put and . We de(cid:28)ne: F G= B+(FG )t ...t . 1 2 n ց F G In other terms, is grafted on the root of the (cid:28)rst tree of , on the left. In parti ular, F q = B+(F) ց . Examples. q q q q qq = Hq qq(cid:8)q q qq qq q = qq qq q q q qq = qqq q q q qq qq = qqqq q ց ∨q ց ց ∨ ց ∨q q q qqq q q qq q q q q q q q q q q q = q q q q = q q q q q q = q q q q qq = q q ց ∨q ց q ց ∨ ց ∨q q q qqq q q q q q qqq q q q q q q = q q q q = q q q q q q = q q q q qq = q q ց q∨q ց ∨q ց ∨ ց ∨q q qqq qq = ∨qqq qq qqq = qqqq q q qqq = Hq qq(cid:8)q q qqq qq = ∨qq q ∨ ց q∨ ց ∨ ∨ ց ∨ ∨ ∨ ց q q q q q qq q q q q qq q q qq qqq qq qq q q = q q q = q q q q = q q qq = q q. ց ∨ ց ∨ ց ∨ ց F,G,H F 1 Obviously, ց an be indu tively de(cid:28)ned in the following way: for ∈ −{ }, F q = B+(F), ց F (GH) = (F G)H  ց ց F B+(G) = B+(FG).  ց  We denote bFy M1the augmentation:ideal of H, that is to say the ve tor spa e generated by the elements of −{ }. We extend ց M⊗M −→ M by linearity. 7 x,y,z Proposition 2 For all ∈ M: x (yz) = (x y)z, ց ց (1) x (y z) = (xy) z. ց ց ց (2) x,y,z F 1 Proof. We azn=resBtr+i (zt o)uzrsezlv,ezs to F ∈ −{ }. Then (1) is immediate. In order to 1 2 1 2 prove (2), we put , ∈ . Then: x (y z)= x (B+(yz )z )= B+(xyz )z = (xy) (B+(z )z )= (xy) z, 1 2 1 2 1 2 ց ց ց ց ց (cid:3) whi h proves (2). P m ց Corollary 3 M is given a graded -algebra stru ture by its produ ts and by ց. (cid:3) Proof. Immediate, by proposition 2. 2.4 Grafting on the left leave F,G F G = 1 F G F Let ∈ . Suppose that 6 . Then ր is the planar forest obtained by grafting G G = 1 F 1 = F on the leave of whi h is at most on the left. For , we put ր . In parti ular, F q = B+(F) ր . Examples. qqq q q q q q q q qqq qq q q = ∨q q qq q = q qq qq qq q = q q q qq q q q = q q ր ր ր ∨ ր ∨ q q q q q q q q q q q q q q q q q q q q q q = ∨q q q q = q q qq q q = q q q q q q = q q ր ր ր ∨ ր ∨ q q q qqq q q qqq q qqq q qq q q q q = ∨q q q q = q q qq q q = ∨q q q q q q = q q ր q q ր q ր ր ∨ q q q q q q q q q ∨q q q q q q q q q q q q q q q = q q q = q qq q = ∨q q q q = ∨q q ∨ ր q ր ∨ ∨q ր ∨ q q∨ ∨ ր q q q q qq q qq q qq qq qq ∨q qq qq q q = q q q = q qq q = q q q q = q q. ր ր ր ր F,G,H F In an obvious way, ր an be indu tively de(cid:28)ned in the following way: for ∈ , F 1 = F, ր F (GH) = (F G)H G = 1,  ր ր if 6 F B+(G) = B+(F G).  ր ր :  We extend ր H⊗H −→ H by linearity. x,z y Proposition 4 1. For all ∈ H, ∈ M: x (yz) = (x y)z. ր ր (3) x,y,z 2. For all ∈ H: x (y z)= (x y) z. ր ր ր ր ( , ) 1 So H ր is an asso iative algebra, with unitary element . 8 x,y,z F y = 1 Proof. Note that (3) is immediate for ∈ , with 6 . This implies the (cid:28)rst point. In order to prove the se ond point, we onsider: Z = z / x,y , x (y z) =(x y) z . { ∈ H ∀ ∈H ր ր ր ր } 1 Z x,y Let us (cid:28)rst prove that ∈ : for all ∈ H, x (y 1) = x y = (x y) 1. ր ր ր ր ր z ,z Z z z Z 1 2 1 2 Let ∈ . Let us show that ∈ . By linearity, we an separate the proof into two ases: z = 1 1 1. . Then it is obvious. ε(z ) = 0 x,y 1 2. . Let ∈ H. By the (cid:28)rst point: x (y (z z )) = x ((y z )z )) 1 2 1 2 ր ր ր ր = (x (y z ))z 1 2 ր ր = ((x y) z )z 1 2 ր ր = (x y) (z z ). 1 2 ր ր Z B+ z Z x,y So is a subalgebra of H. Let us show that it is stable by . Let ∈ , ∈ H. Then: x (y B+(z)) = x B+(y z) ր ր ր ր = B+(x (y z)) ր ր = B+((x y) z) ր ր = (x y) B+(z). ր ր Z B+ Z = (cid:3) So is a subalgebra of H, stable by . Hen e, H. Remarks. x,y,z 1. (3) is equivalent to: for any ∈ H, x (yz) ε(y)x z =(x y)z ε(y)xz. ր − ր ր − F F 1 (qF ,..., qF ) F 1 n 2. Let ∈ −{ }. There exists a unique family of elements of su h that: F = (qF ) ... (qF ). 1 n ր ր q q q q q q ∨q q q = (qq) (qq) (q q q) ( , ) ForqeFxample, ∨ ր ր . As a onsequen e, H ր is freely generated by as an asso iative algebra. P m ր Corollary 5 M is given a graded -algebra stru ture by its produ t and by ր. (cid:3) Proof. Immediate, by proposition 4. P P ց ր 2.5 Dimensions of and P (n) P (n) n ց ր WP e now Pompute the dimensions ofq and for all and dedu e that M is the free ց ր - and -algebra generated by . r R(X) = n Notation. We denote by the number of planar rooted forests and we put +∞ 1 2X √1 4X r Xn R(X) = − − − n . It is well-known (see [3, 13℄) that 2X . n=1 X 9 , n N∗ P ? Proposition 6 For → ∈ {ց ր} and all ∈ , in the →-algebra M: P (n).(q,..., q) =Vect( n). ? → planar forests of weight P q ? As a onsequen e, M is generated as a →-algebra by . P ? Proof. ⊆. Immediate, as M is a graded →-algebra. n n = 1 I.(q)= q n 2 ⊇. Indu tion on . For , . For ≥ , two ases are possible. F = F F weight(F ) = n < n p ,p 1 2 i i 1 2 1. P , F = p .(q,..., q) . BFy =thep i.n(dq,u. .t.io,nq)hypothe(smis, t(hper,epe)x)i.s(tqs,..., q) =∈ ? 1 1 2 2 1 2 →, su h that and . Then ◦ m.(F ,F )= F F 1 2 1 2 . F T F = B+(G) p P p.(q,..., q) = G ? 2. ∈ . Let us put . Then there exists ∈ →, su h that . Then: ( (p,I)).(q,..., q) = G q = F, ց ◦ ց ( (p,I)).(q,..., q) = G q = F. (cid:26) ր ◦ ր F P (n).(q,..., q) (cid:3) ? Hen e, in both ases, ∈ → . ? , n N∗ dim(P (n)) r ? n Corollary 7 For all → ∈ {ց ր}, ∈ , → ≥ . Proof. Be ause we proved the surje tivity of the following appli ation: P (n) Vect( n) ? ev : → −→ planar forests of weight ? → p p.(q,..., q). (cid:26) −→ (cid:3) ? , n N∗ dim(P (n)) r ? n Lemma 8 For all → ∈ {ց ր}, ∈ , → ≤ . ? = n N∗ P (n) ր Proof. We prove it for → ր. Let us (cid:28)x ∈ . Then is linearly generated by m planar binary trees whose internal verti es are de orated by and ր. The following relations hold: @(cid:0) @(cid:0) @(cid:0) @(cid:0) @(cid:0) @(cid:0) ր@(cid:0) @(cid:0)ր ր@(cid:0) @(cid:0)m m@(cid:0) @(cid:0)m ր ր m ր m m = , = , = . In the sequel of the proof, we shall say that su h a tree is admissible if it satis(cid:28)es the following onditions: s m s 1. For ea h internal vertex de orated by , the left hild of is a leave. s s 2. For ea h internal vertex de orated by ր, the left hild of is a leave or is de orated by m . 1 2 3 For example, here are the admissible trees with , or leaves: @(cid:0) @(cid:0) @(cid:0) @(cid:0) @(cid:0) @(cid:0) @(cid:0) m@(cid:0) @(cid:0)m @(cid:0)m @(cid:0)ր @(cid:0)ր m ր ր m ր m ր , , , , , , , . P (n) n ր The pred iemdi(nPg r(enla)t)ions imply that a is linearly generated by admissiblentrees with ր n leaves. So is smaller than , the number of admissible trees with leaves. For n 2 b n n ≥ , we denote by the number of admissible trees with leaves whose root is de orated by 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.