ebook img

The Impact of Adverse Events on Hospital Outcomes and Sensitivity of Cost Estimates to PDF

152 Pages·2010·0.84 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Impact of Adverse Events on Hospital Outcomes and Sensitivity of Cost Estimates to

The Impact of Adverse Events on Hospital Outcomes                             and Sensitivity of Cost Estimates to Diagnostic Coding Error        by  Gavin John Wardle          A thesis submitted in conformity with the requirements for the degree of  Doctor of Philosophy    Department of Health Policy, Management, and Evaluation  University of Toronto          © Copyright by Gavin Wardle 2010 The Impact of Adverse Events on Hospital Outcomes and Sensitivity of Cost Estimates  to Diagnostic Coding Error  Gavin Wardle  Doctor of Philosophy  Department of Health Policy, Management, and Evaluation  University of Toronto  2010    Abstract    Previous research has established a consensus that in‐hospital adverse events are  ubiquitous, cause significant harm to patients, and have important financial consequences.   However, information on the extent, consequences and costs of adverse events in Canada is  limited.  For example, there is, as yet, no published study that has investigated the costs of  adverse events in a Canadian context.  This dissertation aims to redress this situation by  providing Ontario‐based estimates of the impact of eleven nursing sensitive adverse events on  cost, death, readmission, and ambulatory care use within 90 days after hospitalization.   This dissertation also aims to contribute more broadly to the patient safety literature by  quantifying the impact of diagnostic coding error in administrative data on estimates of the  excess costs attributable to adverse events.  Given the increasing importance of these  estimates in Canada and elsewhere for hospital payment policy and for assessments of the  business case for patient safety, this is an important gap in the literature.    ii Each of the adverse events was associated with positive excess costs, ranging from  $29,501 (metabolic derangement) to $66,412 (pressure ulcers).   Extrapolation from the study  hospitals yielded a provincial estimate of $481 million in annual excess costs attributable to the  adverse events, which represents 2.8 percent of Ontario’s total hospital expenditures.  Several  of the adverse events were also associated with significant excess rates of death, readmission,  and ambulatory care use.  These results suggest that there are economic as well as ethical  reasons to improve patient safety in Ontario hospitals.  Estimates of adverse event costs were highly sensitive to coding error.  The excess cost  of adverse events is likely to be significantly underestimated if the error is ignored.  This finding,  coupled with the observation that the likelihood of error is ignored in most studies, suggests  that previous assessments of the business case for patient safety may have been biased against  the cost effectiveness of patient safety improvements.  Furthermore, the observed extent of  institutional level variation in adverse event coding indicates that administrative data are an  inadequate basis for adverse event payment policies or for public reporting of adverse event  rates.    iii Acknowledgements      It is a pleasure to acknowledge my supervisor, Walter Wodchis, and my committee members, Audrey  Laporte, Geoff Anderson, and G. Ross Baker.  All provided excellent criticisms that improved the quality  of this thesis.  Walter deserves special thanks for support, enthusiasm, and inspiration, and for taking on  a somewhat wilful student.   I am grateful to Jan P. Clement of Virginia Commonwealth University for serving as my external  examiner and for valuable suggestions for subsequent research.  The Health System Performance Research Network of Ontario provided financial assistance and travel  grants for which I am most appreciative.  I also wish to thank the Ontario Ministry of Health and Long‐ Term Care and the Institute for Clinical Evaluative Sciences for generously providing access to data.  Three eminent researchers, Antoni Basinski, Colin Preyra, and David Wardle, fuelled, perhaps often  unknowingly, my interest and motivation.  My wife, Jennifer Widdup, provided continuous encouragement and inspiration; without her, this thesis  would not have been completed.      iv Table of Contents    1. Introduction ..................................................................................................................................... 1  2. The Accuracy of Adverse Event Coding in Ontario Hospital Administrative Data ............................... 5  Abstract ..................................................................................................................................................... 5  Introduction .............................................................................................................................................. 7  Research Questions ............................................................................................................................... 8  Background ............................................................................................................................................... 8  The Reabstraction Study ......................................................................................................................... 10  Data ......................................................................................................................................................... 13  Methods .................................................................................................................................................. 15  Results ..................................................................................................................................................... 22  Analysis of Adverse Event Coding ....................................................................................................... 23  Analysis of Charlson Comorbidity Coding ........................................................................................... 35  Discussion................................................................................................................................................ 40  3. Sensitivity of Estimates of Adverse Event Costs to Diagnostic Coding Error ..................................... 45  Abstract ................................................................................................................................................... 45  Introduction ............................................................................................................................................ 47  Research Questions ............................................................................................................................. 48  Background ............................................................................................................................................. 48  Data ......................................................................................................................................................... 50  Methods .................................................................................................................................................. 51  Results ..................................................................................................................................................... 60  Case‐Control Matched Samples .......................................................................................................... 60  Cost Model Specification ..................................................................................................................... 63  Sensitivity of Estimated Adverse Event Costs to Coding Errors ........................................................... 66  Discussion................................................................................................................................................ 73  4. The Impact of Adverse Events on 90‐Day Outcomes and Costs ....................................................... 76  Abstract ................................................................................................................................................... 76  Introduction ............................................................................................................................................ 78  Research Questions ............................................................................................................................. 79  v Background ............................................................................................................................................. 79  Data ......................................................................................................................................................... 81  Methods .................................................................................................................................................. 82  Results ..................................................................................................................................................... 89  Excess In‐Hospital Deaths, Readmissions, and Ambulatory Care Use ................................................ 96  Excess Costs ......................................................................................................................................... 97  The Nature of Excess Inpatient Costs .................................................................................................. 98  Discussion................................................................................................................................................ 99  5. Conclusions .................................................................................................................................. 102  Contributions to the Literature ......................................................................................................... 102  The Utility of Administrative Data for Research and Policymaking .................................................. 103  Limitations......................................................................................................................................... 113  Suggestions for Future Research ....................................................................................................... 115  6. References ................................................................................................................................... 117  7. Appendices .................................................................................................................................. 125  Appendix 2.1: Ontario Case Costing Institutions 2003/04 .................................................................... 125  Appendix 2.2: Adverse Event ICD10‐CA Codes and Descriptions ......................................................... 128  Appendix 2.3: Construction of the Hybrid Data Set .............................................................................. 130  Appendix 2.4: Charlson Comorbidity Coding Discrepancies ................................................................. 132  Appendix 3.1: Major Clinical Categories ............................................................................................... 137  Appendix 3.2: Cost Regression Coefficients from the Three Matched Samples .................................. 138  Appendix 3.3: Impact of Adverse Events on Length of Stay ................................................................. 140  Appendix 4.1: Episodes of Care ............................................................................................................ 142  Appendix 4.2: Evaluation of the Candidate Regression Models ........................................................... 143          vi List of Tables    Table 2.1: Diagnosis Types .......................................................................................................................... 13  Table 2.2: Diagnosis Coding Agreement ..................................................................................................... 17  Table 2.3: Qualitative Classification of the Kappa Statistic ......................................................................... 19  Table 2.4: Scheme for Establishing the Hybrid Data Set ............................................................................. 22  Table 2.5: Exclusion Criteria and Impact on Sample Size ............................................................................ 23  Table 2.6: Counts of Records with Adverse Events ..................................................................................... 24  Table 2.7: Summary of Agreement Measures for Adverse Event Coding .................................................. 25  Table 2.8: Sensitivity and Positive Predictive Values of Adverse Event Coding .......................................... 26  Table 2.9: Adverse Event Coding Agreement: Kappa ................................................................................. 27  Table 2.10: Adverse Event Coding Discrepancies in the Original and Reabstraction Data Sets ................. 28  Table 2.11: Reasons for Adverse Event Coding Discrepancies ................................................................... 29  Table 2.12: Reasons for Adverse Event Coding Discrepancies by Adverse Event Type .............................. 31  Table 2.13: Incidence of Adverse Events by Facility ................................................................................... 34  Table 2.14: Summary Agreement Measures for Charlson Comorbidities .................................................. 36  Table 2.15: Charlson Comorbidity Coding Agreement ............................................................................... 37  Table 2.16: Charlson Comorbidity Coding Agreement: Kappa ................................................................... 38  Table 2.17: Mean Charlson Index by Facility .............................................................................................. 39  Table 3.1: Descriptive Characteristics of OCCI and Matched Samples ....................................................... 62  Table 3.2: Distribution of Cost in the Matched Samples ............................................................................ 63  Table 3.3: Coefficient Estimates from Candidate Models .......................................................................... 64  Table 3.4: Loss Functions in the Original Matched Sample ........................................................................ 65  Table 3.5: Predictive Ratios in the Original Matched Sample ..................................................................... 66  Table 3.6: Estimated Adverse Events Coefficients from the Matched Samples ......................................... 67  vii Table 3.7: Estimated Incremental Cost of each Adverse Event .................................................................. 68  Table 3.8: Total Cost Attributable to Adverse Events by Institution .......................................................... 70  Table 3.9: Total Cost Attributable to each Adverse Event .......................................................................... 71  Table 4.1: Post‐Discharge Activity Occurring at Discharging Hospital ........................................................ 83  Table 4.2: Matching Rates by Adverse Event .............................................................................................. 87  Table 4.3: Proportion of Patients with Adverse Events in the All Hospital and OCCI Samples .................. 90  Table 4.4: Unadjusted Outcome Rates in the OCCI Cohort ........................................................................ 92  Table 4.5: Descriptive Characteristics of the Records with and without Adverse Events .......................... 93  Table 4.6: Estimated Odds Ratios for 90‐Day Outcomes ............................................................................ 94  Table 4.7: Excess Outcomes and Costs due to Adverse Events .................................................................. 95  Table A.1: OCCI Hospitals by Type ............................................................................................................ 125  Table A.2: OCCI Hospital Characteristics ................................................................................................... 126  Table A.3: Distribution of Weighted Activity by Major Clinical Category ................................................. 127  Table A.4: Pressure Ulcer Coding in the Original and Reabstracted Data Sets ......................................... 130  Table A.5: Reasons for Pressure Ulcer Coding Discrepancies ................................................................... 130  Table A.6: Agreement in Pressure Ulcer Coding between Original and Hybrid Data Sets ....................... 131  Table A.7: Comorbidity Coding Discrepancies in the Original and Reabstraction Data Sets .................... 132  Table A.8: Reasons for Comorbidity Coding Discrepancies ...................................................................... 133  Table A.9: Reasons for Charlson Comorbidity Coding Discrepancies by Comorbidity ............................. 135  Table A.10: Reasons for Charlson Comorbidity Coding Discrepancies by Comorbidity ........................... 136  Table A.11: Estimated Incremental Effect of each Adverse Event on Length of Stay .............................. 140      viii List of Figures    Figure 2.1: Reliability of Adverse Event and Comorbidity Coding at the Institutional Level ...................... 40  Figure 3.1: Distribution of Case Costs in Original Matched Sample ........................................................... 56  Figure 3.2: Measures of Agreement and Overestimation of Cost .............................................................. 72  Figure 4.1: Relationship between Estimated Excess Cost and Patient Severity ......................................... 98  Figure A.1: Correlation between Misestimation of Cost and Length of Stay ........................................... 141      ix 1. Introduction    The safety of patients is an international problem in health care and is a major topic of  investigation in health services research.  Adverse events are often studied as markers of  threats to patient safety and are commonly defined as: “unintended injuries or complications  that are caused by health care management rather than by the patient’s underlying disease and  that lead to death, disability at the time of discharge, or prolonged hospital stays” (Brennan et  al. 1991).  Landmark studies in Canada and the US have reported alarmingly high rates of in‐ hospital adverse events (Baker et al. 2004; Kohn et al. 2000).  These rates are troubling because  adverse events have been linked to serious consequences for patients.  For example, the  Institute of Medicine’s (IOM) Committee on Quality of Health Care in America reported that  that between 44,000 and 98,000 Americans die each year as a result of medical errors (Kohn et  al. 2000).  Estimates are similarly concerning in Canada where Baker et al. (2004) estimated that  between 9,250 and 23,750 deaths were the result of potentially preventable adverse events.     A growing branch of research in the patient safety arena is the estimation of the  economic cost of adverse events.  Early studies in this area investigated costs at single  institutions or at small groups of institutions.  Classen et al. (1997) investigated adverse drug  events at a single hospital in Salt Lake City and estimated excess inpatient costs of $1M per  year.  Bates et al. (1997) estimated that preventable adverse events at two large Boston  hospitals were associated with $2.8M in excess hospital costs per year.  A more recent group of  studies suggest that the national costs of adverse events in the US are considerable (Kohn,  Corrigan, Donaldson, 2000; Zhan and Miller 2003a; Zhan et al. 2006).  The Institute of Medicine  report estimated that medical errors were associated with a cost of $17‐29 billion (Kohn et al.  2000).  Zhan and Miller (2003a) estimated that the adverse events that constitute 18 Agency for  Healthcare Research and Quality patient safety indicators resulted in $4.6 billion in excess  annual hospital costs.  Zhan et al. (2006) estimated that five adverse events led to $300 million  in excess Medicare costs.    1

Description:
that previous assessments of the business case for patient safety may have inadequate basis for adverse event payment policies or for public reporting of greedy algorithm, once a match is established, the control record is
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.