ebook img

The Hunt for New Physics at the Large Hadron Collider PDF

8.2 MB·English
by  P. Nath
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Hunt for New Physics at the Large Hadron Collider

0 The Hunt for New Physics at the Large Hadron Collider 1 0 Principal Conveners: Pran Natha 2 Brent Nelsona n a Conveners for New Physics Sections: Hooman Davoudiaslb (Extra Dimensions) J Bhaskar Duttac (Dark Matter) 4 Daniel Feldmand and Zuowei Liue (Hidden Sectors) 1 Tao Hanf (Top) ] Paul Langackerg (Z Prime) h Rabi Mohapatrah and Jose Vallei (Neutrinos) p Pran Natha (SUSY) - p Brent Nelsona (Strings) e Apostolos Pilaftsisj (CP violation) h Dirk Zerwask (Higgs) [ 1 ShehuAbdusSalaml,bb, Claire Adam-Bourdariosk, J.A. Aguilar-Saavedram, Benjamin Allanachl, v B. Altunkaynaka, Luis A. Anchordoquin, Howard Baero, Borut Bajcp, O. Buchmuellerq, M. Carenar,s, 3 R.Cavanaught,u, S.Changv, Kiwoon Choiw, C. Cs´akix, S. Dawsonb, F. de Camposy, A. DeRoeckq,z, 9 M. Du¨hrssenaa, O.J.P. E´boliab, J.R. Ellisq, H. Fla¨cherq, H.Goldberga, W. Grimusac, U. Haischad, 6 2 S.Heinemeyerae, M. Hirschi, M. Holmesa, Tarek Ibrahimaf, G. Isidoriag, Gordon Kaned, K.Kongah,Remi . Lafayeai, G. Landsbergaj, L. Lavouraak,Jae Sik Leeal, SeungJ. Leeam, M. Lisantiah, Dieter Lu¨stan,ao, 1 M.B. Magroap, R.Mahbubanit, M. Malinskyaq, Fabio Maltoniar, S. Morisii, M.M. Mu¨hlleitneras, 0 B. Mukhopadhyayaat, M. Neubertad, K.A.Oliveau, Gilad Perezam, Pavel Fileviez P´erezf, T. Plehnav, 0 E. Pont´onaw, WernerPorodax, F. Quevedol, M. Rauchas, D. Restrepoay, T.G. Rizzoah,J. C. Rom˜aoak, 1 F.J. Rongaaz, J. Santiagom, J. Schechterbb, G. Senjanovi´cbc, J. Shaobb, M. Spirabd, S.Stiebergeran, Zack : v Sullivanbe, Tim M.P. Taitbf, Xerxes Tataf,bg, T.R. Taylora, M. Tohariah, J. Wackerah, C.E.M. Wagners,bh,bi, Xi Lian-Tao Wangbj, G. Weigleinbk, D. Zeppenfeldas,K. Zurekd r a (a) Department of Physics, Northeastern Uni- (h) Maryland Center for Fundamental Physics versity, Boston, MA 02115,USA and Department of Physics, University of Mary- (b) Department of Physics, Brookhaven Na- land, College Park,MD, 20742 tional Laboratory,Upton, NY 11973, USA (i) AHEP Group, Instituto de F´ısica Corpus- (c) Department of Physics, Texas A&M Uni- cular – C.S.I.C./Universitat de Val`encia, Cam- versity, College Station, TX 77843-4242,USA pus de Paterna,Aptdo 22085,E–46071Val`encia, (d) Michigan Center for Theoretical Physics, Spain RandallLab.,UniversityofMichigan,AnnArbor, (j) School of Physics and Astronomy, Univer- MI 48109 sityofManchester,ManchesterM139PL,United (e)C.N.YangInstituteforTheoreticalPhysics, Kingdom StonyBrookUniversity,Stony Brook,NY 11794, (k) LAL, Universit´e Paris-Sud, IN2P3/CNRS, USA Orsay, France (f) Department of Physics, University of Wis- (l) Department of Applied Mathematics and consin, Madison, WI 53706,USA Theoretical Physics, Wilberforce Road, Cam- (g) Institute for Advanced Study ,Princeton, bridge, CB3 0WA, United Kingdom NJ 08540 (m)DepartamentodeF´ısicaTeo´ricaydelCos- 1 2 mos and CAFPE, Universidad de Granada, E- IN2P3/CNRS, Annecy, France 18071 Granada, Spain (aj) Department of Physics, BrownUniversity, (n) Department of Physics, University of 182 Hope St, Providence, RI 02912,USA Wisconsin-Milwaukee, Milwaukee, WI 53201, (ak) Technical University of Lisbon, Centre USA forTheoreticalParticlePhysics,1049-001Lisbon, (o) Dept. of Physics and Astronomy, Univer- Portugal sity of Oklahoma, Norman, OK, 73019,USA (al)PhysicsDivision,NationalCenterforThe- (p)J.StefanInstitute,1000Ljubljana,Slovenia oretical Sciences, Hsinchu, Taiwan (q) CERN, CH-1211 Gen`eve 23, Switzerland (am) Department of Particle Physics, Weiz- (r) Theoretical Physics Department, Fermilab, mann Institute of Science, Rehovot 76100,Israel Batavia, IL 60510,USA (an)Max–Planck–Institutfu¨rPhysik,Werner– (s)EFIandPhysicsDepartment,Universityof Heisenberg–Institut, 80805 Mu¨nchen, Germany Chicago 5640 S. Ellis Ave., Chicago, IL 60637, (ao) Arnold Sommerfeld Center for Theo- USA retical Physics, Ludwig-Maximilians-Universit¨at (t) Fermi National Accelerator Laboratory, Mu¨nchen, 80333 Mu¨nchen, Germany P.O. Box 500, Batavia, Illinois 60510, USA (ap) Centro Universit´ario Funda¸ca˜o Santo (u) Physics Department, University of Illinois Andr´e, Santo Andr´e – SP, Brazil at Chicago, Chicago, Illinois 60607-7059,USA (aq) Theoretical Particle Physics Group, De- (v) Physics Department, University of Califor- partment of Theoretical Physics, Royal Institute nia Davis, Davis, CA 95616 ofTechnology(KTH),Roslagstullsbacken21,SE- (w) Physics Department, KAIST, Daejeon, 106 91 Stockholm, Sweden 305-701,Korea (ar) Center for Particle Physics and Phe- (x) Institute for High Energy Phenomenology, nomenology, Universit´e Catholique de Louvain Laboratory of Elementary Particle Physics, Cor- Chemin du Cyclotron 2, B-1348, Louvain-la- nell University, Ithaca, NY 14853, USA Neuve, Belgium (y) Departamento de F´ısica e Qu´ımica, Uni- (as) Institut fu¨r Theoretische Physik, Univer- versidadeEstadualPaulista,Guaratingueta´–SP, sit¨at Karlsruhe, KIT, D–76128 Karlsruhe, Ger- Brazil many (z) Antwerp University, B-2610 Wilrijk, Bel- (at)RegionalCentreforAccelerator-basedPar- gium ticlePhysics,Harish-ChandraResearchInstitute, (aa) Physikalisches Institut, Universit¨at ChhatnagRoad,Jhunsi,Allahabad-211019,In- Freiburg, Germany dia (ab) Instituto de F´ısica, Universidade de Sa˜o (au)SchoolofPhysicsandAstronomy,Univer- Paulo, Sa˜o Paulo – SP, Brazil sityofMinnesota,Minneapolis,Minnesota55455, (ac) University of Vienna, Faculty of Physics, USA Boltzmanngasse 5, A–1090 Vienna, Austria (av) Institut fu¨r Theoretische Physik, Univer- (ad) Institut fu¨r Physik (THEP), Johannes sit¨at Heidelberg, Germany Gutenberg-Universit¨at, D-55099 Mainz, Ger- (aw)DepartmentofPhysics,ColumbiaUniver- many sity, New York, NY 10027,USA (ae) Instituto de F´ısica de Cantabria (CSIC- (ax) Institut fu¨r Theoretische Physik und UC), E–39005Santander, Spain Astronomie, Universit¨at Wu¨rzburg, D-97074 (af)DepartmentofPhysics,FacultyofScience, Wu¨rzburg, Germany University of Alexandria, Alexandria, Egypt (ay) Instituto de F´ısica, Universidadde Antio- (ag) INFN, Laboratori Nazionali di Frascati, quia, A.A 1226, Medellin, Colombia Via E. Fermi 40, I–00044Frascati, Italy (az)InstituteforParticlePhysics,ETHZu¨rich, (ah) SLAC National Accelerator Laboratory CH-8093 Zu¨rich, Switzerland 2575SandHillRd.,MenloPark,CA,94025,USA (ba) CAFPE and Departamento de F´ısica (ai) LAPP, Universit´e de Savoie, Teo´rica y del Cosmos, Universidad de Granada, 3 E-18071Granada, Spain (bb) Department of Physics, Syracuse Univer- sity, Syracuse, NY 13244-1130,USA (bc) International Centre for Theoretical Physics, 34100 Trieste, Italy (bd) Paul Scherrer Institut, CH–5232 Villigen PSI, Switzerland (be) Department of Biological, Chemical, and PhysicalSciences,IllinoisInstituteofTechnology, 3101 S. Dearborn St., Chicago, IL 60616-3793, USA (bf) Department of Physics and Astronomy, University of California, Irvine, CA 92697,USA (bg) Dept. of Physics and Astronomy, Univer- sity of Hawaii, Honolulu, HI , USA (bh) KICP,University of Chicago 5640S. Ellis Ave., Chicago, IL 60637,USA (bi) HEP Division, Argonne National Labora- tory 9700 S. Cass Ave., Argonne, IL 60439, USA (bj) Department of Physics,PrincetonUniver- sity, Princeton, NJ. 08544, USA (bk) IPPP, University of Durham, Durham DH1 3LE, United Kingdom The Hunt for New Physics at the Large Hadron Collider Abstract TheLargeHadronColliderpresentsanunprecedentedopportunitytoprobetherealmofnewphysicsin theTeVregionandshedlightonsomeofthecoreunresolvedissuesofparticlephysics. Theseincludethe natureofelectroweaksymmetrybreaking,theoriginofmass,thepossibleconstituentofcolddarkmatter, new sourcesofCPviolationneededtoexplainthe baryonexcessinthe universe,thepossibleexistenceof extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Additionally, the LHC will be a top factoryandaccuratemeasurementsofthepropertiesofthe topandits raredecayswillprovideawindow to new physics. Further, the LHC could shed light on the origin of neutralino masses if the new physics associated with their generation lies in the TeV region. Finally, the LHC is also a laboratory to test the hypothesisofTeVscalestringsandDbranemodels. Anoverviewofthesepossibilitiesispresentedinthe spirit that it will serve as a companionto the Technical Design Reports (TDRs) by the particle detector groups ATLAS and CMS to facilitate the test of the new theoretical ideas at the LHC. Which of these ideasstandsthetestoftheLHCdatawillgovernthecourseofparticlephysicsinthesubsequentdecades. 4 Contents 1 Introduction 10 1.1 Hunt for supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 Hunt for the Higgs boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 CP violation at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 LHC and dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Top physics at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 Z physics at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 ′ 1.7 Visible signatures from the hidden sector at the LHC . . . . . . . . . . . . . . . . . . . . . 12 1.8 Probing the origin of neutrino mass at the LHC . . . . . . . . . . . . . . . . . . . . . . . . 12 1.9 Hunt for extra dimensions at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.10 Hunt for strings at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Hunt for Supersymmetry at the LHC 14 2.1 Hunt for SUSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Hyperbolic Branch / Focus Point (HB/FP) . . . . . . . . . . . . . . . . . . . . . . 16 2.2 A Brief Catalogue of SUSY Signatures at the LHC . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Catalogue of SUSY signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 Events with missing E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 T 2.2.3 Jet-free multilepton+Emiss events . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 T 2.2.4 Signals with isolated photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.5 Signals from long-lived charged sparticles . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.6 Events with displaced vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.7 Events containing intermittent tracks . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.8 Inclusive multilepton events without Emiss . . . . . . . . . . . . . . . . . . . . . . . 23 T 2.2.9 Resonance sparticle production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.10 Rapity gap events from SUSY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.11 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 LHC Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 mSUGRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.2 MSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.3 Extrapolationto High Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 Fits to the Phenomenological MSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Mass and Spin Measurement with the Transverse Mass Variable M . . . . . . . . . . . . 29 T2 2.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5.2 M Kink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 T2 2.5.3 MAOS Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 6 3 Higgs Physics 36 3.1 Predictions for SUSY Higgses at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.1 Frequentist Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.2 Results for M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 h 3.1.3 Results for the Heavy Higgs Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Higgs Boson Production at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.2 Minimal Supersymmetric Extension . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 Higgs decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3.1 Standard Model Higgs decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3.2 MSSM Higgs boson decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.3 Higher order corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.4 Branching ratios and total widths . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4 Higgs Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.1 Standard channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.2 Mass measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.3 Error estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.4 Subjet analyses for H b¯b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 → 3.4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5 Alternative Higgs Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.1 Nonstandard Higgs Models and Decays . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.2 Discovering the Higgs with Low Mass Muon Pairs . . . . . . . . . . . . . . . . . . 53 3.6 Determination of Higgs-BosonCouplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.6.1 Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.7 On the Possible Observation of Light Higgses A,H,H at the LHC . . . . . . . . . . . . 59 ± 3.7.1 Light Higgses in the SUGRA and String Landscape . . . . . . . . . . . . . . . . . 59 4 CP Violation at the LHC 67 4.1 CP violation in Supersymmmetric Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2 CP violation in the Higgs sector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3 CPX scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.4 Trimixing scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.5 Testing the Cancellation Mechanism at the LHC . . . . . . . . . . . . . . . . . . . . . . . 74 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5 Connecting Dark Matter to the LHC 79 5.1 Dark Matter at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1.2 mSUGRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.1.3 mSUGRA at the LHC and the Determination of Dark Matter Content . . . . . . . 81 5.1.4 Stau-Neutralinno Coannihilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.1.5 Hyperbolic branch/Focus point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.6 Bulk Region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.1.7 Over-Dense Dark Matter Region in the mSUGRA model. . . . . . . . . . . . . . . 89 5.1.8 Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.2 Decoding the Origin of Dark Matter with LHC Data . . . . . . . . . . . . . . . . . . . . . 92 7 5.2.1 Decoding Dark Matter with the LHC . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.2.2 Light Gluinos in SUGRA GUTS and discovery at the LHC . . . . . . . . . . . . . 94 5.2.3 CDMS II and LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3 Lifting LHC Degeneracies Using Dark Matter Observations . . . . . . . . . . . . . . . . . 97 5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.3.2 Degenerate Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.3.3 Direct Detection Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6 Top-Quark Physics at the LHC 105 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2 Standard Model Top-Quark Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2.1 Top Quark Decay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2.2 tt¯Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.2.3 Single-top Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3 New Physics in Top-Quark Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.3.1 Rare Decays into Standard Model Particles . . . . . . . . . . . . . . . . . . . . . . 109 6.3.2 Exotic Decays into Nonstandard Particles . . . . . . . . . . . . . . . . . . . . . . . 111 6.4 Top Quarks in New Resonant Production . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.4.1 Emergence of Top Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.4.2 Chiral Coupling to New Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.5 Top-Rich Events for New Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.5.1 Signal of New Top Partners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.5.2 Multiple Top Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7 Z Physics at the LHC 124 ′ 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.3 Existing Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.4 The LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.4.1 Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.4.2 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.5 Other LHC Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8 Visible Signatures from Hidden Sectors 136 8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 8.2 Stueckelberg Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.2.1 Massive Stueckelberg vector bosons . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.2.2 Explaining PAMELA PositronData . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.2.3 Stueckelberg Extension of MSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.2.4 Enhancement of Relic Density via Coannihilation with Hidden Matter . . . . . . . 139 8.2.5 Narrow Resonances at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 8.2.6 Summary: Stueckelberg Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.3 Hidden Valleys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8.3.1 Overview and basic framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8.4 Models of hidden dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 8.4.1 Low mass dark sectors mediated by kinetic mixing . . . . . . . . . . . . . . . . . . 142 8 8.4.2 Low mass dark sectors as solutions to the baryon-dark matter coincidence . . . . . 143 8.4.3 Dark sectors with confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8.4.4 Collider signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8.4.5 Summary of Low Mass Dark Sectors . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.5 Probing the GeV dark sector at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 8.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 8.5.2 Basic framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 8.5.3 Production at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8.5.4 Summary of GeV Dark Sector Signatures . . . . . . . . . . . . . . . . . . . . . . . 149 8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 9 Probing the Origin of Neutrino Mass at the LHC 153 9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.2 Seesaw Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.2.1 Type-I seesaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9.2.2 Type-II seesaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9.2.3 Type-III seesaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9.2.4 Double seesaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.2.5 Inverse seesaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.2.6 Linear seesaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.2.7 Inverse type-III seesaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.2.8 Nesting of seesaw mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 9.2.9 Loop models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 9.3 Phenomenology at LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 9.3.1 Type I seesaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 9.3.2 Type II Seesaw at the LHC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 9.3.3 Charged fermions in type-III seesaw . . . . . . . . . . . . . . . . . . . . . . . . . . 164 9.3.4 Low-scale seesaw schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 9.4 R-parity violation: Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 9.4.1 R-parity violating supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 9.4.2 Explicit bilinear R-parity violation . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 9.4.3 Spontaneous RPV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 9.4.4 The µνSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 9.5 R-parity: LHC studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 9.5.1 LSP decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 9.5.2 Three and multi-lepton channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 9.5.3 Displaced LSP decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 9.5.4 Displaced b-jets from Higgs decay . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 9.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 10 Extra Dimensions 179 10.1 A Short Overview of Large Extra Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 179 10.2 Mini-Black Holes at Modern Colliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 10.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 10.2.2 Mini-black hole production and decay . . . . . . . . . . . . . . . . . . . . . . . . . 181 10.2.3 Monte Carlo generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 10.2.4 Experimental studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 9 10.3 On the Possible Observation of KK Excitations of SM states at the LHC. . . . . . . . . . 182 10.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 10.3.2 Precision constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 10.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 10.4 Probing Universal Extra Dimensions at Colliders . . . . . . . . . . . . . . . . . . . . . . . 184 10.4.1 One and Two Universal Extra Dimensions . . . . . . . . . . . . . . . . . . . . . . . 184 10.4.2 Collider signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 10.5 Signals of a Warped New Dimension at Colliders . . . . . . . . . . . . . . . . . . . . . . . 186 10.6 Precision Measurement Constraints on Warped Extra Dimensions . . . . . . . . . . . . . 188 10.7 Flavor physics in models with warped extra dimensions . . . . . . . . . . . . . . . . . . . 191 10.8 Radion Phenomenology in Warped Extra Dimensions. . . . . . . . . . . . . . . . . . . . . 193 10.9 A Brief Review of Higgsless Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 11 String Phenomenology and the LHC 202 11.1 New States and New Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 11.1.1 Anomalous Vector Boson Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . 202 11.1.2 Fractionally-ChargedExotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 11.1.3 E -based Exotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 6 11.2 Heterotic Orbifold Compactifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 11.2.1 Spectra in Semi-Realistic Orbifold Models . . . . . . . . . . . . . . . . . . . . . . . 206 11.2.2 Electroweak Symmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 11.2.3 Supersymmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 11.3 D-Branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 11.4 Compressed Spectra in Intersecting D-Brane Models . . . . . . . . . . . . . . . . . . . . . 210 11.5 M-Theory on Manifolds of G Holonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 2 11.5.1 Model description and soft terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 11.5.2 LHC Phenomenology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 11.6 F-Theory Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 11.6.1 Review of F-theory GUTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 11.6.2 LHC phenomenolgy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 11.7 Models of Supersymmetry Breaking Mediation, the LHC and Global Fits . . . . . . . . . 216 11.7.1 Large Volume String Scenario and LHC Signatures . . . . . . . . . . . . . . . . . . 216 11.7.2 Comparison of LVS and Other Models of SUSY Breaking . . . . . . . . . . . . . . 219 11.8 TeV-Scale String Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 12 Conclusion 233 Chapter 1 Introduction ways in which one may connect the observed Pran Nath deviations from the Standard Model prediction to the underlying new physics. The Large Hadron Collider (LHC) when fully Thus the underlying theme of this report is to operational will have an optimal center of mass provide an overview for experimentalists of the energy in proton -proton collisions of √s = 14 testablenewphysicsattheLHC.Themaintopics TeV and a design luminosity of 1034cm−2s−1. covered in the report are the following. The main experiments at the LHC are: ALICE, ATLAS, CMS, LHCb, and TOTEM. Of these 1. Hunt for supersymmetry ALICE is devote to the study of heavy ion 2. Hunt for the Higgs boson collisions, LHCb to the study of B physics, and TOTEM to the study of total cross section, 3. CP violation at the LHC elastic scattering and diffraction dissociation at the LHC. Thus ATLAS1 and CMS2 are the 4. LHC and dark matter primary detectors dedicated to the discovery 5. Top quark physics at the LHC of new physics. It is expected that initially LHC will run at √s = 7 TeV to collect data 6. Z physics at the LHC ′ for calibration, later ramping the CM energy to √s=10 TeV, and then to √s=14 TeV. 7. Visiblesignaturesfromthehiddensectorat the LHC The particle physics capabilities of the AT- 8. Probing the origin of neutrino mass at the LAS and CMS detectors are described in their LHC technical design reports (TDRs) [1,2] which give an overview of their performance as the 9. Hunt for extra dimensions at the LHC LHC begins its operation. The purpose of the present document is to present a broad overview 10. Hunt for strings at the LHC of the new physics possibilities that the LHC We discuss below each of these topics briefly. is likely to see. Of course, irrespective of the particular nature of new physics the end product 1.1. Hunt for supersymmetry at the LHC would be an excess of observed leptons, photons, jets and missing energy in Supersymmetry provides a technically natural some combination. It is then necessary to devise solutionto the socalledgaugehierarchyproblem 1ATorroidalLHCApparatuS. that arises in the non-supersymmetric unified 2CompactMuonSolenoid. theories with various mass scales. Gauging 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.