ebook img

The Humongous Book of Algebra Problems PDF

578 Pages·2008·20.01 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Humongous Book of Algebra Problems

A member of Penguin Group (USA) Inc. ALPHA BOOKS Published by the Penguin Group Penguin Group (USA) Inc., 375 Hudson Street, New York, New York 10014, USA Penguin Group (Canada), 90 Eglinton Avenue East, Suite 700, Toronto, Ontario M4P 2Y3, Canada (a division of Pearson Penguin Canada Inc.) Penguin Books Ltd., 80 Strand, London WC2R 0RL, England Penguin Ireland, 25 St. Stephen’s Green, Dublin 2, Ireland (a division of Penguin Books Ltd.) Penguin Group (Australia), 250 Camberwell Road, Camberwell, Victoria 3124, Australia (a division of Pearson Australia Group Pty. Ltd.) Penguin Books India Pvt. Ltd., 11 Community Centre, Panchsheel Park, New Delhi—110 017, India Penguin Group (NZ), 67 Apollo Drive, Rosedale, North Shore, Auckland 1311, New Zealand (a division of Pearson New Zealand Ltd.) Penguin Books (South Africa) (Pty.) Ltd., 24 Sturdee Avenue, Rosebank, Johannesburg 2196, South Africa Penguin Books Ltd., Registered Offices: 80 Strand, London WC2R 0RL, England Copyright © 2008 by W. Michael Kelley All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of information contained herein. For information, address Alpha Books, 800 East 96th Street, Indianapolis, IN 46240. International Standard Book Number: 978-1-59257-722-4 Library of Congress Catalog Card Number: 2008920832 10 09 08 8 7 6 5 4 3 2 1 Interpretation of the printing code: The rightmost number of the first series of numbers is the year of the book’s printing; the rightmost number of the second series of numbers is the number of the book’s printing. For example, a printing code of 08-1 shows that the first printing occurred in 2008. Printed in the United States of America Note: This publication contains the opinions and ideas of its author. It is intended to provide helpful and informative material on the subject matter covered. It is sold with the understanding that the author and publisher are not engaged in rendering professional services in the book. If the reader requires personal assistance or advice, a competent professional should be consulted. The author and publisher specifically disclaim any responsibility for any liability, loss, or risk, personal or otherwise, which is incurred as a consequence, directly or indirectly, of the use and application of any of the contents of this book. Most Alpha books are available at special quantity discounts for bulk purchases for sales promotions, premiums, fund-raising, or educational use. Special books, or book excerpts, can also be created to fit specific needs. For details, write: Special Markets, Alpha Books, 375 Hudson Street, New York, NY 10014. Contents Introduction Chapter 1: Arithmetic Fundamentals Your one-stop shop for a review of numbers 1 Numbers fall into different groups Number Classification ................................................................................................2 Expressions Containing Signed Numbers .A.d..d.,. s.u.b..t.r.a.c..t,. .m.u..lt.i.p.ly.,. a..n.d.. d..iv.i.d.e.. p.o.s.i.t.iv..e. a..n.d.. n.e..g.a.t.i.v.e. .n.u.m..b.e..r.s...5 When numbers band together, deal with them first Grouping Symbols ......................................................................................................8 Algebraic Properties ...................B..a..s..ic.. .a..s.s..u.m...p.t..io..n.s. .a..b..o..u.t.. .a..l.g.e..b..r.a.................................. 11 Chapter 2: Rational Numbers Understanding fractions sure beats being afraid of t h e m 17 Rational Number Notation ..P.r.o..p.e..r. .a..n..d.. .i.m..p.r.o..p.e..r. .f..r.a..c..t.i.o..n.s.,. .d..e..c..im...a..l.s., .a..n..d.. .m..i.x..e..d.. .n.u..m..b..e..r.s.. 18 Reducing fractions to lowest terms, like 1/ instead of 5/ Simplifying Fractions ..................................................................2...................1.0.......... 23 Combining Fractions ............A.d..d..., .s.u..b..t.r..a..c..t., .m...u.l.t..ip..ly.., .a..n..d.. .d..i.v.i.d..e.. .f..r.a..c..t.i.o..n.s...................... 26 Chapter 3: Basic Algebraic Expressions Time for x to make its stunning debut 37 The alchemy of turning words into math Translating Expressions ............................................................................................ 38 Rules for simplifying expressions that contain powers Exponential Expressions ............................................................................................ 40 Distributive Property ...........M..u..lt..i.p.l.y. .o..n.e.. .t.h..i.n..g. .b..y.. a... b..u..n..c.h.. .o..f. .t..h.i.n..g.s. .i.n.. .p.a..r.e..n.t..h..e..s.e..s........... 45 My dear Aunt Sally is eternally excused Order of Operations .................................................................................................. 48 Evaluating Expressions ........................R..e..p.la...c.e.. .v..a..r.i.a..b.l.e..s. .w..i.t.h.. .n..u..m..b..e..r.s......................... 51 Chapter 4: Linear Equations in One Variable How to solve basic equations 55 Adding and Subtracting to Solve an Equation .........A.d...d.. .t.o./..s.u..b.t..r.a..c..t.. f..r.o..m.. .b..o.t..h.. .s.i.d..e.s....... 56 Multiplying and Dividing to Solve an Equation ............M..u..l.t.i.p.l.y./..d..iv..i.d..e.. .b.o..t.h.. .s.i.d..e..s............ 59 Solving Equations Using Multiple Steps ..............N.o..t.h..i.n.g.. .n.e..w.. .h..e..r.e..,. j.u..s.t.. .m..o.r..e.. s..t.e..p.s........... 61 Absolute Value Equations .......................M..o..s.t. .o..f. .t..h..e.m... .h.a...v.e.. .t.w..o.. .s.o.l.u..t.i.o..n.s....................... 70 Equations Containing Multiple Variables ..E..q.u..a..t.i.o.n.s. .w..i.t.h.. T..W..O.. .v.a..r.i.a..b.l.e..s. .(.li.k.e.. .x. .a..n.d.. .y.). .o.r. .m..o..r.e.. 73 The Humongous Book of Algebra Problems iii Table of Contents Chapter 5: Graphing Linear EquationsI dine nTtwifoy tVhaer ipaobinltess t hat make an equation true 77 Which should you use to graph? Number Lines and the Coordinate Plane ..................................................................... 78 Plug in some x’s, plot some points, call it a day Graphing with a Table of Values ................................................................................ 83 Graphing Using Intercepts ...........T..h..e.. .e..a..s.i.e..s.t. .w..a..y.. .t.o.. .p.l.o.t.. .t.w..o.. .p.o.i.n..t.s. .o..n. .a.. .l.i.n.e.. .q..u..ic..k..ly........ 90 Figure out how slanty a line is Calculating Slope of a Line ....................................................................................... 93 Don’t miss the point in these graphs (Get it?) Graphing Absolute Value Equations ..........................................................................100 Chapter 6: Linear Equations in Two Variables Generating equations of lines 105 Point-Slope Form of a Linear Equation .....................P..o.i.n.t.. .+.. .s.l.o.p.e.. .=.. .e..q.u..a..t..io..n.................106 Lines that look like y = mx + b Slope-Intercept Form of a Linear Equation ..................................................................110 Graphing equations that are solved for y Graphing Lines in Slope-Intercept Form ......................................................................113 Write equations of lines in a uniform way Standard Form of a Linear Equation .........................................................................118 Creating Linear Equations ..................P..r.a..c..t.i.c..e.. .a..l.l .t..h..e. .s..k.i.l.ls.. .f.r.o..m.. .t..h.i.s. .c..h..a..p.t..e..r.............121 Chapter 7: Linear Inequalities They’re like equations without the equal sign 127 Dust off your equation-solving skills from Chapter 4 Inequalities in One Variable .....................................................................................128 Graphing Inequalities in One Variable .................S..h..o.o.t.. .a..r.r.o..w..s. .i.n.t..o. .n..u.m...b..e.r.. .li.n..e.s.............132 Compound Inequalities ........................T..w..o. .i.n.e..q..u..a..l.it..i.e.s.. .f.o..r. .t.h..e.. .p.r.i.c..e.. .o.f.. .o.n.e...................135 Break these into two inequalities Absolute Value Inequalities .......................................................................................137 Set Notation ..................................A. .f..a..n.c..y.. .w..a..y.. .t.o.. w...r.i.t.e.. .s.o.l.u..t.i.o..n.s................................140 Graphing Inequalities in Two Variables .L..i.n.e..s. .t.h..a..t. .g.i.v.e.. .o.f..f. .s.h..a..d..e. .i.n. .t..h.e.. .c.o..o.r.d..i.n.a..t.e.. .p.l.a..n.e....142 Chapter 8: Systems of Linear Equations and InWeoqruk awlitithi emso r e than one equation at a time 147 Graph two lines at once Graphing Linear Systems .........................................................................................148 Solve one equation for a variable and plug it into the other The Substitution Method ..........................................................................................153 Variable Elimination ..........M..a..k..e.. o..n.e.. .v..a..r.i.a..b..le.. .d..i.s.a..p..p.e..a..r. .a..n.d... .s.o.l.v.e.. .f..o.r.. t..h..e.. .o.t.h..e..r. .o..n.e......162 The answer is where the shading overlaps Systems of Inequalities .............................................................................................168 Linear Programming .............U.s..e. .t..h..e. .s..h.a...r.p. .p.o..in..t.s.. .a..t. .t..h.e.. .e..d..g..e. .o..f. .a.. .s..h.a...d..e..d.. .r.e..g.i.o.n.........173 Chapter 9: Matrix Operations and Calculations Numbers in rows and columns 181 The order of a matrix and identifying elements Anatomy of a Matrix ...............................................................................................182 Combine numbers in matching positions Adding and Subtracting Matrices .............................................................................183 Not as easy as adding or subtracting them Multiplying Matrices ...............................................................................................188 Values defined for square matrices only Calculating Determinants ........................................................................................192 Cramer’s Rule ......................D..o.u..b..l.e.-.d..e..c..k..e.r.. .m..a..t..r.ic..e..s. .t..h.a...t. .s.o..lv..e.. .s.y..s.t.e..m..s.......................200 The Humongous Book of Algebra Problems iv Table of Contents Chapter 10: Applications of Matrix Algebra Advanced matrix stuff 207 Augmented and Identity Matrices .............E..x..t.r.a... .c.o..lu..m...n.s. .a..n..d.. .l.o.t..s. .o.f.. .0..s. .a..n.d... .1.s...............208 Swap rows, add rows, or multiply by a number Matrix Row Operations ...........................................................................................211 Row and Reduced-Row Echelon Form ..M..o..r.e.. .m..a..t..r.ic..e..s. .f..u..ll. .o.f.. .0..s. .w..i.t.h.. .a.. .d..i.a..g.o..n.a..l. .o..f. .1..s......216 Inverse Matrices ..................M...a..t.r.i.c..e..s. .t.h..a..t.. .c.a..n..c..e..l .o..t.h..e..r. .m..a..t..r.i.c..e.s.. .o.u..t..........................228 Chapter 11: Polynomials Clumps of numbers and variables raised to powers 237 Labeling them based on the exponent and total terms Classifying Polynomials ...........................................................................................238 Only works for like terms Adding and Subtracting Polynomials ........................................................................239 FOIL and beyond Multiplying Polynomials ..........................................................................................244 A lot like long dividing integers Long Division of Polynomials ...................................................................................246 Divide using only the coefficients Synthetic Division of Polynomials ..............................................................................251 Chapter 12: Factoring Polynomials The opposite of multiplying polynomials 257 Greatest Common Factors ..........L.a..r.g..e..s.t. .f..a..c..t.o..r. .t.h..a..t.. .d..i.v.i.d..e..s. .i.n.t..o. .e..v.e..r.y..t..h.i.n..g. .e..v..e.n..l.y........258 Factoring by Grouping ..........................Y.o..u.. c..a..n.. .f.a..c..t..o.r. .o..u..t. .b..i.n.o.m...i.a..ls.., .t..o.o......................265 Common Factor Patterns ..D..i.f.f..e.r..e.n..c..e.. .o.f.. p..e..r.f.e..c..t. .s..q.u..a..r.e..s./.c..u..b..e..s., .s..u.m... .o.f.. .p.e..r.f.e..c..t.. .c.u..b..e..s....267 Factoring Quadratic Trinomials ...............T..u..r.n. .o..n.e.. .t..r.i.n.o..m..i.a..l. i.n..t.o.. t..w..o.. b..i.n.o..m..i.a..l.s...............270 Chapter 13: Radical Expressions and SEqquuaartei oronost s , cube roots, and fractional exponents 275 Moving things out from under the radical Simplifying Radical Expressions ................................................................................276 Fractional powers are radicals in disguise Rational Exponents .................................................................................................281 Add, subtract, multiply, and divide roots Radical Operations .................................................................................................283 Solving Radical Equations .....................U..s.e.. .e..x.p.o..n.e..n..t.s. .t..o. .c..a..n..c.e..l. .o.u..t. .r.a...d..ic..a..l.s...............288 — Complex Numbers .........................N..u..m..b..e..r.s. .t..h.a..t.. .c..o.n..t.a..i.n. .i.,. .w..h.i.c..h.. .e.q..u..a..l.s. .√..–..1.................290 Chapter 14: Quadratic Equations and Inequalities Solve equations containing x2 295 Use techniques from Chapter 12 to solve equations Solving Quadratics by Factoring ...............................................................................296 Make a trinomial into a perfect square Completing the Square .............................................................................................300 Quadratic Formula ......U..s.e.. .a..n. .e..q..u..a..t.i.o.n..’s. .c..o..e.f..fi..c..i.e.n..t.s.. .t.o. .c..a..l.c..u.l.a..t..e.. t..h..e.. .s.o.l.u..t.i.o.n..............305 Applying the Discriminant .............W...h..a..t. .b..2. .–. .4..a..c.. .t.e..l.ls. .y..o.u.. .a..b..o..u.t.. .a..n. .e..q..u..a..t.i.o.n...............312 One-Variable Quadratic Inequalities ...................I.n..e..q.u..a..l.i.t.i.e..s. .t.h..a..t.. .c.o..n.t..a..i.n. .x..2................316 The Humongous Book of Algebra Problems v Table of Contents Chapter 15: Functions Named expressions that give one output per input 323 Relations and Functions ........................W..h..a..t.. m...a..k..e.s.. .a.. .f.u..n.c..t..i.o.n.. .a.. .f.u..n.c..t..io..n.?.................324 +, –, ·, and ÷ functions Operations on Functions ..........................................................................................326 Composition of Functions .........................P.l.u..g. .o..n.e.. .f.u..n..c..t.i.o.n.. .i.n.t.o.. .a..n.o..t.h..e..r.......................330 Inverse Functions .........................F.u..n..c..t.i.o.n..s. .t.h..a..t.. .c.a...n.c..e..l .e..a..c..h.. .o.t..h.e..r.. .o.u..t......................335 Piecewise-Defined Functions .......F..u.n..c..t.i.o.n.. .r.u..l.e.s.. .t.h..a..t. .c..h..a..n..g.e.. .b..a..s.e..d.. .o.n.. .t.h..e.. .x..-.in..p.u..t...........343 Chapter 16: Graphing Functions Drawing graphs that aren’t lines 347 Graphing with a Table of Values ......................P..l.u.g.. .i.n. .a.. .b..u..n.c..h.. .o.f.. .t.h..i.n.g..s. .f..o.r. .x................348 Domain and Range of a Function ..........W...h..a..t. .c..a..n. .y..o.u.. .p.l.u..g. .i.n..?. .W..h..a..t. .c..o..m..e..s. .o.u..t..?............354 Symmetry ...................P..ie..c..e..s. .o.f.. .a.. .g.r..a..p.h.. .a..r.e.. .r.e..fl..e..c..t.i.o.n..s. .o.f.. .e..a..c..h.. o..t.h..e..r.........................360 Fundamental Function Graphs ..............T..h..e.. .g.r.a..p..h..s. .y.o..u.. n..e..e..d.. .t.o.. u..n..d..e..r.s.t..a..n.d.. .m...o.s.t...........365 Graphing Functions Using Transformations ....M..o.v..e.,. .s.t..r.e..t.c..h.., .s.q..u..i.s.h.., .a..n..d.. .fl..i.p. .g..r.a..p.h..s.........369 Absolute Value Functions ..................T..h..e..s.e.. .g.r.a...p.h..s. .m..i.g.h..t.. .h.a...v.e.. .s.h..a..r.p. .p..o.i.n.t..s....................374 Chapter 17: Calculating Roots of Functions Roots = solutions = x-intercepts 379 Identifying Rational Roots ...........F.a..c..t..o.r.i.n..g. .p.o..l.y.n..o.m...ia...ls. .g..i.v.e..n.. .a.. .h.e..a..d.. .s..t.a..r.t....................380 The ends of a function describe the ends of its graph Leading Coefficient Test ...........................................................................................384 Descartes’ Rule of Signs ...............S..ig..n.. c..h..a..n..g.e..s. .h..e..l.p. .e..n.u..m..e..r.a..t..e.. .r.e..a..l. r..o.o.t..s.....................388 Rational Root Test ..............F.i.n..d.. .p.o.s..s.i.b.l.e.. .r.o..o.t..s. .g.i.v.e..n.. .n.o..t.h..i.n.g.. .b..u.t.. .a.. .f.u..n..c..t.i.o.n....................390 Synthesizing Root Identification Strategies .F.a..c..t..o.r.i.n..g. .b..i.g. .p.o..ly..n..o.m..i.a..l.s. .f..r.o.m... .t.h..e.. .g.r..o.u..n.d... u..p....394 Chapter 18: Logarithmic Functions Contains enough logs to build yourself a cabin 399 Given log b = c, find a, b, or c Evaluating Logarithmic Expressions ...............................a...........................................400 Graphs of Logarithmic Functions ......A..l.l. .lo..g. .f..u.n..c..t.i.o..n.s. .h..a..v..e. .t..h..e.. s..a..m..e.. .b..a..s.i.c.. .s.h..a..p.e...........402 What the bases equal when no bases are written Common and Natural Logarithms ............................................................................406 Change of Base Formula ............C..a..lc..u..l.a..t.e.. .l.o.g.. .v.a..l.u..e.s.. .t.h..a..t. .h..a..v..e.. .w..e.i.r.d.. .b..a..s..e.s.................409 Logarithmic Properties .....E..x..p.a..n..d..i.n.g.., .c..o.n..t.r..a..c..t.i.n.g.., .a..n..d.. .s.i.m...p.l.if..y.i.n..g. .l.o.g.. .e..x.p..r.e..s.s.i.o.n..s.............412 Chapter 19: Exponential Functions Functions with a variable in the exponent 417 Graphs that start close to y = 0 and climb fast Graphing Exponential Functions ..............................................................................418 Composing Exponential and Logarithmic Functions .T..h..e..y. .c..a..n..c.e..l. .e..a..c..h. .o..t.h..e..r. .o.u..t............423 Exponential and Logarithmic Equations .C..a..n..c.e..l. .l.o.g..s. .w..i.t.h.. .e..x.p..o.n.e..n..t.i.a..l.s. .a..n..d.. .v.i.c..e.. .v.e..r.s.a......426 Exponential Growth and Decay ....U..s.e.. .f.(.t.). .=.. .N..e..k.t .t..o. .m..e..a..s..u.r..e. .t..h..in..g.s.. .li.k..e.. .p.o.p.u..l.a..t..io..n............433 The Humongous Book of Algebra Problems vi Table of Contents Chapter 20: Rational Expressions Fractions with lots of variables in them 439 Reducing fractions by factoring Simplifying Rational Expressions ..............................................................................440 Adding and Subtracting Rational Expressions ...U..s.e.. .c.o..m..m...o.n.. d...e.n..o.m...i.n.a..t..o.r.s......................444 Multiplying and Dividing Rational Expressions .C.o..m..m...o.n.. .d..e..n.o..m..i.n.a..t..o.r..s. .n.o..t. .n..e.c..e..s.s.a..r..y.......452 Simplifying Complex Fractions .........R..e..d..u.c..e.. .f..r.a..c..t.i.o.n..s. .t..h.a..t.. .c..o.n..t.a..i.n.s.. .f.r.a..c..t..io..n..s..............457 Graphing Rational Functions ............R..a..t..io..n.a..l. .f..u.n..c..t.i.o.n..s. .h..a..v.e.. .a..s..y.m...p.t.o..t.e..s.....................459 Chapter 21: Rational Equations and Inequalities Solve equations using the skills from C h ap t e4r6 250 Proportions and Cross Multiplication W..h..e.n.. .t.w..o. .f.r.a..c..t.i.o.n.s.. a..r.e.. .e.q..u.a..l., .“.X..”. .m..a..r.k.s.. t..h.e.. .s.o.l.u.t..io.n.......466 Ditch the fractions or cross multiply to solve Solving Rational Equations .....................................................................................470 Direct and Indirect Variation .......T..u..r.n.. .a.. .w..o..r.d.. .p.r.o..b.l.e..m.. .i.n..t.o. .a.. .r..a..t.i.o.n..a..l. .e.q..u..a..t..io..n..............475 Critical numbers, test points, and shading Solving Rational Inequalities ...................................................................................479 Chapter 22: Conic Sections Parabolas, Circles, Ellipses, and Hyperbolas 487 Parabolas ................V..e..r.t.e..x.., .a...x.i.s. .o.f.. .s.y..m..m...e..t.r.y.., .f..o.c..u..s.,. .a..n.d.. .d...ir.e..c..t..r.i.x.............................488 Center, radius, and diameter Circles ...................................................................................................................494 Major and minor axes, center, foci, and eccentricity Ellipses ..................................................................................................................499 Transverse and conjugate axes, foci, vertices, and asymptotes Hyperbolas .............................................................................................................506 Chapter 23: Word Problems I f two trains leave the station full of consecutive integers, how much inte r5e1st5 is earned? Determining Unknown Values ................In..t.e..g..e.r.. .a..n.d... a...g.e.. .p.r.o..b..le..m..s................................516 Simple, compound, and continuously compounding Calculating Interest .................................................................................................521 Area, volume, perimeter, and so on Geometric Formulas .................................................................................................525 Distance equals rate times time Speed and Distance .................................................................................................529 Mixture and Combination ............M...e.a..s..u.r..in..g. .i.n..g.r.e..d..i.e..n.t..s. .i.n. .a.. .m...i.x.t..u..r.e...........................534 Work ......................H.o..w.. .m..u..c..h.. .t.i.m..e.. .d..o..e.s.. .it.. .s.a..v.e.. .t..o. .w..o..r.k.. t..o.g..e..t.h..e..r.?...............................538 Appendix A: Algebraic Properties 545 Appendix B: Important Graphs and Graph Transformations 547 Appendix C: Key Algebra Formulas 551 Index 555 The Humongous Book of Algebra Problems vii Introduction Are you in an algebra class? Yes? Then you NEED this book. Here’s why: Fact #1: The best way to learn algebra is by working out algebra problems. There’s no denying it. If you could figure this class out just by reading the textbook or taking good notes in class, everybody would pass with flying colors. Unfortunately, the harsh truth is that you have to buckle down and work problems out until your fingers are numb. Fact #2: Most textbooks only tell you WHAT the answers to their practice problems are, but not HOW to do them! Sure, your textbook may have 175 problems for every topic, but most of them only give you the answers. That means if you don’t get the answer right you’re totally out of luck! Knowing you’re wrong is no help at all if you don’t know why you’re wrong. Math textbooks sit on a huge throne like the Great and Terrible Oz and say, “Nope, try again,” and we do. Over and over. And we keep getting the problem wrong. What a delightful way to learn! (Let’s not even get into why they only tell you the answers to the odd problems. Does that mean the book’s actual author didn’t even feel like working out the even ones?) Fact #3: Even when math books try to show you the steps for a problem, they do a lousy job. Math people love to skip steps. You’ll be following along fine with an explanation and then all of a sudden BAM, you’re lost. You’ll think to yourself, “How did they do that?” or “Where the heck did that 42 come from? It wasn’t there in the last step!” Why do almost all of these books assume that in order to work out a problem on page 200, you’d better know pages 1 through 199 like the back of your hand? You don’t want to spend the rest of your life on homework! You just want to know why you keep getting a negative number when you’re calculating the minimum cost of building a pool whose length is four times the sum of its depth plus the rate at which the water is leaking out of a train that left Chicago at 4:00 a.m. traveling due west at the same speed carbon decays. The Humongous Book of Algebra Problems viii

Description:
When the numbers just don’t add up… Following in the footsteps of the successful The Humongous Books of Calculus Problems, bestselling author Michael Kelley has taken a typical algebra workbook, and made notes in the margins, adding missing steps and simplifying concepts and solutions. Students
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.