Mon.Not.R.Astron.Soc.000,1–??(2013) Printed18January2013 (MNLATEXstylefilev2.2) The host-galaxy response to the afterglow of GRB100901A⋆ Olga E. Hartoog1,2 , Klaas Wiersema3, Paul M. Vreeswijk4, Lex Kaper1, † Nial R. Tanvir3, Sandra Savaglio5, Edo Berger6, Ryan Chornock5, Stefano Covino7, Valerio D’Elia8,9, Hector Flores10, Johan P. U. Fynbo11, Paolo Goldoni12, An- dreja Gomboc13,14, Andrea Melandri7,15, Alexei Pozanenko16, Joop Schaye2, Anto- 3 nio de Ugarte Postigo17, Ralph A. M. J. Wijers1 1 0 2 (Affiliationscanbefoundafterthereferences) n a J 18January2013 6 1 ] ABSTRACT O C ForGamma-RayBurst100901A,wehaveobtainedGemini-NorthandVeryLargeTele- scope opticalafterglowspectra at fourepochs:one hour,one day,three days and one week . h afterthe burst, thanksto the afterglowremainingunusuallybrightat late times. Apartfrom p a wealth of metal resonance lines, we also detect lines arising from fine-structure levels of o- the ground state of Feii, and from metastable levels of Feii and Niii at the host redshift r (z=1.4084).Theselinesarefoundtovarysignificantlyintime.Thecombinationofthedata st andmodellingresultsshowsthatwedetectthefalloftheNiii4F9/2 metastablelevelpopula- a tion,whichtodatehasnotbeenobserved.Assumingthatthepopulationoftheexcitedstates [ isduetotheUV-radiationoftheafterglow,weestimateanabsorberdistanceofafewhundred 1 pc.Thisappearstobeatypicalvaluewhencomparedtosimilarstudies.Wedetecttwointer- v veningabsorbers(z = 1.3147,1.3179).Despite the wide temporalrangeof the data, we do 2 notseesignificantvariationintheabsorptionlinesofthesetwointerveningsystems. 1 Key words: gamma-ray burst: individual: GRB100901A; gamma-rays: bursts - galaxies: 9 3 abundances-galaxies:ISM-galaxies:distancesandredshifts . 1 0 3 1 1 INTRODUCTION Savaglio,Glazebrook&LeBorgne 2009; Hjorthetal. 2012). For v: areview of longGRBsandtheirhost galaxies, seee.g.,Savaglio Shortly after the first detection of an optical afterglow asso- i (2006,2012). X ciated with a long gamma-ray burst (GRB, vanParadijsetal. 1997), it became clear that GRBs may be useful probes of r Optical spectra (i.e., rest frame UV at redshifts around z a distant galaxies: afterglowscan be very bright and have asimple ∼ 1 2) of GRBafterglowsgenerally show strong absorption lines power law continuum at ultraviolet (UV) to optical wavelengths, − of metals, both at low and high-ionisation stages, as well as against which otherwise undetectable absorbing systems, such high neutral hydrogen column densities (see Fynboetal. 2009 as the gas in the host galaxy, leave an observable signature foralargeandrelativelyunbiased sample).Absorptionlinespro- (see e.g., Vreeswijketal. 2001; Savaglio,Fall&Fiore 2003; vide the redshift and allow estimation of column densities of the Vreeswijketal. 2004; Bergeretal. 2006; Fynboetal. 2006; host galaxy of the GRB and possibly other absorbers along the Prochaskaetal. 2007). Long GRBs are formed as end products line of sight. This provides valuable information on the metal- oftheevolutionofmassivestars(Woosley1993;Paczyn´ski1998) licity and dust content of galaxies at arbitrary redshift, regard- and should therefore probe star-forming regions. Their optical less of the brightness of these systems, which is very difficult afterglows fade away on short timescales ( days), making it ∼ to obtain otherwise. The highest redshift lines in the afterglow possibletostudytheirhost galaxiesinemissionaswell(seee.g., spectrum formally only provide a lower limit on the host red- shift. However, the presence of fine-structure lines can confirm thegalaxyasthehost,becausethesearisefromexcitedstatesthat ⋆ BasedonobservationsobtainedattheGeminiObservatoryatMaunaKea are expected to have been populated by the UV-afterglow radia- under programme GN-2010B-Q-7, and observations obtained with ESO TelescopesattheParanalObservatoryunderprogramme085.A-0009(B). tionoftheGRB(Prochaska,Chen&Bloom2006;Vreeswijketal. [email protected] 2007). These lines are not seen in foreground line-of-sight ab- † c 2013RAS (cid:13) 2 OlgaE. Hartoogetal. sorbers in quasar (QSO) spectra, except for some relatively low- otherspectraatrespectively1and7daysaftertheburstwereob- energy excited states from carbon. Due to the transient nature tained.A fourthspectrumwasobtainedapproximately 3days af- of the afterglow, the absorption lines from these excited states tertheburstwiththeX-shooterspectrographmountedontheESO are expected to vary in strength, which may provide informa- VeryLargeTelescope(VLT),underprogramme085.A-0009(B)(PI tion on the internal distribution of gas and kinematics within the Fynbo).SeeTable1foradetailedlogoftheobservationspresented host galaxy; often the only way to obtain such information for inthispaper. these distant and mostly faint galaxies. Fine-structure line vari- ation has been measured and modelled for a handful of bursts (e.g., Vreeswijketal. 2007; Dessauges-Zavadskyetal. 2006; 2.1 Gemini-N/GMOSspectroscopy D’Eliaetal. 2009a; Ledouxetal. 2009; deUgartePostigoetal. Gemini-N/GMOS is a low-resolution long slit spectrograph, 2011; DeCiaetal. 2012; Vreeswijketal. 2013), which allowed equippedwiththreedetectors.Fortheobservationspresentedhere, constraintstobeplacedonthedistancebetweentheburstandthe a slit width of 0.75 and the B600 grism with the G5307 order absorbing material (seeVreeswijketal. 2013 foradescription of ′′ suppressionfilterhavebeenused,whichresultedinthewavelength themethodsused). coverage and resolving power reported in Table 1. We used four Theprimarydifficultyinprobingcolumndensityvariationsin exposures per epoch, using dithers in both dispersion and spatial GRBsightlinestofittothemodelsdescribedabove,istherequire- coordinates tosample over the chip gaps and regions affected by mentonafterglowbrightness:forfainterafterglowsthenecessary amplifierlocation.TheGMOSspectrahavebeenreducedwiththe highsignal-to-noiseandhighspectralresolutionaredifficulttoob- IRAFpackagesforGeminiGMOS(version1.9),usingarclineex- tain with current instrumentation. This also limitsthis method to posurestaken directlybeforeandafterthescience data.Thefour early-timedataandalimitedrangeofinstruments,makingitdiffi- exposuresarecombinedafterextraction.Theresultingspectrawere culttobuildupasample.Inthecasesdescribedabove,thevariation normalisedandnofluxcalibrationwasperformed. ismeasuredwithhighresolutionspectrographs,andallspectraare obtainedwithinafewhourspostburst(observer’sframe). The optical afterglow of GRB100901Aremained unusually 2.2 VLT/X-shooterspectroscopy bright out to very late times, which allowed us to collect spectra over a time span of a week with the Gemini-North Multi-Object VLT/X-shooterisacross-dispersede´chellespectrographwherethe SpectrographandX-shooterontheESOVeryLargeTelescope. In incominglightissplitintothreewavelengtharmsusingdichroics, thispaperweinvestigatethebehaviouroftheexcitedlevel popu- coveringthefullopticaltonearinfraredwavelengthrangesimulta- lationsover thisunusually long timespan, and theapplication of neously(D’Odoricoetal.2006;Vernetetal.2011).TheX-shooter the excitation models to low and intermediate resolution spectra. spectrahavebeentakeninnoddingmodewith1 2binning(i.e., × The observations and data reduction are described in Section 2. binninginthedispersiondirection)intheUV-Blue(UVB)andVi- Westudy the metal resonance linesat the host-galaxy redshift in sual(VIS)arms,usinga100kHz/high-gainreadoutand4 600s × Section 3.1. In Section 3.1.1 we examine the dust content of the exposuretimes.Theselectedslitwidthswere1.0,0.9and0.9 for ′′ host galaxy. The two intervening absorbers are analysed in Sec- theUVB,VISandnear-infrared(NIR)arms,respectively.A5 nod ′′ tion 3.1.3. In Section 3.2 the fine-structure line variability is de- throwalongtheslitwasusedtoimproveskysubtraction.Thespec- scribedandmodelled.InSection3.3webrieflydiscusstheemis- tra were reduced using the ESO pipeline software version 1.2.2, sionlinesfromthehostgalaxy.WediscussourresultsinSection4 using the so-called physical model mode (Goldonietal. 2006; andsummariseourconclusionsinSection5. Modiglianietal. 2010). We used calibration data (bias, dark, arc ThroughoutthepaperweadoptastandardΛCDMcosmology lamp,flat-fieldandflexurecontrolframes)takenthenextdayoras withH = 71kms 1Mpc 1,Ω = 0.27,Ω = 0.73.Weindicate closeintimeaspossibletothescienceobservations.Thebinsizes 0 − − m Λ linetransitionsbytheirvacuumwavelengths. oftheresultingspectrawere0.2,0.2,and0.5ÅforUVB,VISand NIR spectra, respectively. Extracted spectra were flux calibrated using spectrophotometric standard star exposures, also taken the same night, resulting in roughly flux-calibrated spectra spanning 2 OBSERVATIONS thenear-ultraviolettothenear-infrared.Wecautionthattheweather GRB100901Awas detected by Swift on 2010 September 1 at conditionsduringthisnightwerepoor,andlikelynon-photometric. 13:34:10UT.WithatotaldurationofT =439 33s(Immleretal. Weusedatelluricstandardstar(HD4670,aB9Vstar)tocorrect 2010; Sakamotoetal. 2010) the burs9t0is clea±rly classified as a thetelluricabsorptionfeaturesintheNIRafterglowspectrum,us- long burst. The optical afterglow candidate at RA (J2000) = ingtheIDLspextoolpackage(Vacca,Cushing&Rayner2003,see 01h49m03.42s, Dec =+22 4530.8 (90% confidence error radius alsoWiersema2011fortheuseonX-shooterdata). ◦ ′ ′′ ofabout0.81 )wasidentifiedinanUltraviolet/OpticalTelescope ′′ (UVOT) exposure which started 147s after the Burst Alert Tele- scope(BAT)trigger(Immleretal.2010).Automaticobservations 3 ANALYSIS withtheFaulkesTelescopeNorthidentifiedanuncataloguedobject atthepositionconsistentwiththeUVOTcandidate(Guidorzietal. TheGMOSepoch1spectrum(seeFigure1)isthatofabrightafter- 2010).Severalfollow-upphotometryeffortsfollowed,resultingin glowincludingmanymetalabsorptionlines.Ataredshiftof1.4084 thelightcurvepresentedandanalysedinGombocetal.(inprep) we detect strong resonance lines of Feii, Mnii, Crii, Alii, Aliii, and Gorbovskoyetal. (2012) (see also Figure 8). The first opti- Znii and Siii. Additionally, at the same redshift, line transitions cal spectrum of the afterglow was taken with the Gemini Multi- arising from excited states of Feii and Niii are clearly detected ObjectSpectrograph(GMOS)onGemini-North(programmeGN- (seeSection3.2).Thereforeweidentifythisasthehost-galaxyred- 2010B-Q-7,PITanvir),approximately1hr15mins(0.0526days) shiftz (Chornocketal.2010).WedonotdetectlinesfromFeiii, h afterbursttrigger(Chornocketal.2010).Withthisinstrument,two as observed in the case of GRB080310 (DeCiaetal. 2012). No c 2013RAS,MNRAS000,1–?? (cid:13) Theafterglowspectrum ofGRB100901A 3 Figure1.NormalisedGMOSspectrum(epoch1)oftheafterglowofGRB100901A.Theredlabelsindicatetheabsorptionlinesofthehost(zh=1.4084);the greenandbluelabels(withverticaloffset)indicatetheabsorptionlinesformedintwointerveningsystemsatz1=1.3147andz2=1.3179.Themagentalabels showunshiftedNailines(z=0),resultingfromtheabsorptionintheMilkyWay.Thenumbersatthelabelsindicatetheconfigurationofthelowerleveland thevacuumrestwavelengthofthetransition.ThehostshowsresonancelinesfromtheionsMnii,Feii,Crii,Znii,Siii,AliiandAliii,aswellaslinesfrom excitedstatesofFeiiandNiii,whicharefoundtovarysignificantly(seeSection3.2).IntheinterveningsystemswedetectMgi,Mgii,Feii,AliiandAliii. c 2013RAS,MNRAS000,1–?? (cid:13) 4 OlgaE. Hartoogetal. Table1.Overview ofthespectroscopic observations oftheafterglow ofGRB100901A,arrangedbyinstrumentandepoch.Columns(1)and(2)indicate telescope,instrument,setup,andslitdimensions.Column(3)givesthewavelengthcoverageforthissetupandtheresolvingpowerR= λ/∆λ,with∆λthe FWHMofanunresolvedline.Column(4)givesthemidtimeoftheepochsofobservationindaysaftertheburstBATtrigger.Column(5)liststheinterpolated observedR-magnitudeoftheafterglowatthisepoch(Gombocetal.,inprep).Column(6)liststhetotalexposuretimeoftheobservationinthisepoch.Columns (7)and(8)givetheseeingandtheairmass.Theseeingismeasuredbyfittingagaussianalongthespatialdirectionoftheslit,aroundthecentralwavelengthof eachspectrum.Column(9)givesthesignal-to-noiseratio(S/N)inthecontinuumat4150and6100ÅperGMOSpixel(δλ=0.91Å).Column(10)givesthe namewewillusetorefertotheepoch. Telescope Instrument SpectralRange TimeafterBurst mR Exp.Time Seeing Airmass S/N/(δλ=0.91Å) Abbrev. andSetup andResolution (days) (s) ( ) at4150,6100Å ′′ Gemini-North GMOS, 3810 6710Å 0.0526 17.8 4 400 0.62 1.06 38,95 epoch1 − × B600+G5307 R=1000 1900 1.0095 18.6 4 500 0.52 1.01 16,70 epoch2 − × 0.75′′×330′′ 7.0270 22.3 4×1200 0.68 1.05 5,13 epoch3 VeryLarge X-Shooter 3000 25000Å 2.7492 20.2 4 600 1.30 1.48 9,7 xsh − × Telescope UVB1.0 11 R=5400 ′′× ′′ VIS0.9 11 R=7400 ′′× ′′ NIR0.9 11 R=5800 ′′× ′′ Lyman-αisdetected,becauseitistoofarintheblueforthecov- 3.1 Resonancelines ered wavelength range. Two intervening absorbers are visible at TomeasuretheobservedequivalentwidthW oftheabsorption z = 1.3147andz =1.3179(Chornocketal.2010).Inthesesys- λ,obs 1 2 linesinthespectrum,welocallyfitgaussianfunctionstothenor- temswedetectFeii,Alii,Aliii,MgiandMgii(restframeequiv- malised spectrum with ngaussfit, a task in the stsdas package in alentwidthW < 1Å).Wenotethattheselinesareweakeratthe λ IRAF.Inprinciple,W canbeobtaineddirectlybyintegration, interveningsystemredshiftsthanatthehostredshift.Thereareno λ,obs but as can be seen in Figure 1, many lines are blended. In some fine-structurelinesdetectedatanyoftheinterveningabsorberred- casesonelineneeds tobefixedinordertomeasurethepotential shifts.Naiλλ5892,5898aredetectedatz=0andarethusdueto variationoftheother.ngaussfitcande-blenduptothreelines,with foregroundabsorptionintheGalaxy. the possibility to keep part of the parameters fixed. This method The GMOS epoch2 spectrum (not fully shown in a figure) allowsthatinspectrawithlowS/N,anabsentorveryweaklineis looks similar, though the signal-to-noise ratio (S/N) is lower due sometimesformallybestfittedwithalinewithnegativeequivalent tothe decreasing brightness of theafterglow. Thelinetransitions width(i.e.,anemissionline,seealsoFigure6and7);fortheselines arisingfromthemetastableNiii4F level(seeTableA4)appear 9/2 weobtainupperlimitsforW . morepronouncedinepoch2thaninepoch1;theFeiifine-structure λ,obs Theformalerrorontheequivalentwidthisobtainedfromthe lineshavebecomeslightlyweaker. errorspectrum: SinceGMOS epoch3 isobserved afterthebreak inthelight curveat 2days(Gombocetal.,inprep),whichcausesthebright- line ∼ ness to drop more quickly, the S/N is lower than for the other σWλ,obs =δλvt (σi/Fc)2, (1) epochs,despitethelongerintegrationtimeandcomparableweather Xi conditions.Still,strongmetalresonancelinesareclearlydetected. withδλthespectralbinwidth,σ thevalueoftheerrorspectrum i Fine-structure lines that were present in epoch1 and lines from inbiniandF thecontinuumflux.Thesummationrunsovertwo c metastablelevelsthatwerepresentinepoch2aremuchweakeror timesthefull-width-at-half-maximum(FWHM).Furthermore,we notdetectedanymore(seeSection3.2). add3%oftheequivalent widthtotheformalerrortoaccount for Thequality of theX-shooterspectrum (xsh, after2.75 days, the uncertainty in placing the continuum. In the low-resolution seeTable 1) islow due topoor weather conditions and largeair- GMOS spectra, all absorption lines are unresolved and can be mass, but because of the extraordinarily large wavelength cover- fit with a gaussian with a fixed FWHM of 3.6Å (the resolution age of this instrument, this spectrum does provide additional in- element), which is determined from the width of the lines in the formation.Moreover,thehigherresolutionallowustoexcludethe arc-lamp frames. In xsh we fix FWHM = 1.0Å and 0.7Å in existence of different velocity components down to 70kms−1 the UVB and VIS-arms, respectively, based on the widths of arc withrespectto 200kms−1 forGMOS.Thestronga∼ndsaturated lines and telluric emission lines. Some strongly saturated lines Mgiiλλ2796,2∼803, Mgiλ2853, and Caiiλλ3934,3969 absorp- (forexampletheMgiidoublet)inthesespectracannotbefitwith tion lines from the host galaxy are outside the range of GMOS gaussians and are therefore integrated numerically. The resulting due to the redshift, but they are clearly detected in xsh-VIS (not restframeequivalentwidthsW =W /(1+z )oftheresonance λ λ,obs h shown in a figure). Naiλ5892,5897 falls in a region with atmo- linesinthefirsttwoepochsarelistedinTable2. spheric absorption and can therefore not be detected. We do not detect the red wing of the Ly-α absorption line due to low S/N. Toinfercolumndensitiesofthedifferentionsfromtheabsorp- Furthermore,inxsh-NIR,wemarginallydetectforbiddenoxygen tionlineequivalentwidths,wemakeuseofamulti-ionsinglecom- emissionline[Oiii]λ5007atthehost-galaxyredshift(seeFigure9 ponentcurve-of-growth(MISC-COG)analysis(Spitzer1978).The andSection3.3). Dopplerlinewidthisinprinciplerelatedtothetemperatureandthe We do not detect prominent interstellar (dust) extinction levelofturbulenceintheabsorbinggas.Limitedbyspectralreso- featuressuchasthe2175Åfeature(seee.g.,El´ıasdo´ttiretal.2009) lution,itisdifficulttodistinguishbetweenthisandbroadeningdue ordiffuseinterstellarbandsinanyofthespectraatthehost-galaxy tothecomplexphysicalstructureofabsorbingcloudsinthe sight redshift. line.Thereforewespeakofan’effective’Dopplerparameter,which doesnotcarryinformationaboutthetemperatureofthegas,butis c 2013RAS,MNRAS000,1–?? (cid:13) Theafterglowspectrum ofGRB100901A 5 merelyasimplificationinthemodel(Jenkins1986).Theassump- tionweneedtomakeinthisanalysisisthattheeffectiveDoppler parameterbisthesameforallionspecies,andthatitissingle(one velocitycomponent). Inotherwords,weassumethatthevelocity structureisthesameinalllines,andthatitisdominatedbysmall- scale effect such as thermal velocities and turbulence and not by differencesinbulkvelocitiesofdifferentgasclouds. 3.1.1 Hostgalaxycolumndensities We use three unblended Feii resonance lines (λ2249, λ2260 and λ2586) todetermine bfortheline-of-sightgasinthehost galaxy (see Table 2). Because these lines cover both the linear and the flatpartoftheCOG,bothbandthecolumndensityforFeii,N , FeII canbeconstrained.Theyaredependentvariables,thereforefitthem simultaneously with a grid method, yielding b = 22.1+1.7kms 1 1.6 − andlogN /cm 2=15.23+0.07. − FeII − 0.08 Figure 2. Curve-of-growth (COG) for the resonance lines in the host The COGwiththe bes−t fitvalue for bisshown inFigure2. galaxyofGRB100901A.Thesolidlinegives thebestfitCOGwithb = Theionspeciesotherthanironhavelinetransitionseither onthe 22.1kms−1,thedottedlinesshowtheeffectoftheerroronb.Thedashed linearorontheflatpartoftheCOG;therefore,bhastobeassumed line,whichcoincideswiththelinearpartoftheCOG,isaCOGforb= , tobethesameforallionspeciesinordertodeterminethecolumn thatcanbeusedasanapproximationforweaklines. ∞ densities. The resulting column densities of the ions are listed in Table2.Formostlineswehavetakenanaverageofthefirsttwo epochs, except Mgii and Caii which can only be measured in xsh. The equivalent widths of the Alii lines are slightly largerin epoch1 while those of Aliii are largerin epoch2. While not very significant,itmaybeasignofionisationduetotheGRBafterglow (see e.g., Vreeswijketal. 2013). Due to the low significance we decidednottotakethisintoaccountintheexcitationmodellingin Section3.2. Spectralresolutionlimitstheabilitytodistinguishdifferentve- locitycomponents inabsorption lines:aninstrumental FWHM = 3.6Å(GMOS spectra) corresponds to 200kms−1. In xsh-VIS, avelocitycomponentdifferenceof70k∼ms−1wouldbedetectable, butwedonotseeindicationsformorethanonevelocitycomponent inanyofthelines.ThiscouldbeduetothelowS/Nofxsh,because mostintermediatetohigh-resolutionspectraofGRBsshowabsorp- tionlineswithatleasttwocomponents(butseee.g.,Ledouxetal. 2009). Figure 3. [Fe/Zn] as a function of the Znii column density in QSO- Prochaska (2006) warns that column densities derived with DLAs(reddiamonds),GRB-DLAs(blackcircles)andGRB100901A(blue the MISC-COG method are systematically underestimated, espe- square). QSO-DLA values are from Luetal. (1996); Prochaska&Wolfe ciallywhentheunderlyinglinestructureisthatofseparatedclumps (1996, 1997); Pettinietal. (1999, 2000); Prochaska&Wolfe (2000); ofgasatdifferentvelocityshifts.Inthiscaseonederivesahighb Prochaskaetal.(2001).GRB-DLAvaluesarefromSavaglio,Fall&Fiore (2003); Fynboetal. (2002); Fioreetal. (2005); Watsonetal. (2006); withMISC-COG analysis, and therefore a lowercolumn density. Penpraseetal.(2006);Vreeswijketal.(2007);D’Eliaetal.(2009b,2011). Resultsforasinglecomponent COGanalysiswithb & 20kms−1 are highly suspect, according to Prochaska (2006). That COG analysisofalow-resolutionspectrumcanbeaccurateisshownby D’Eliaetal.(2011),whocomparelowandhigh-resolutionspectra 3.1.2 Dustdepletion for the afterglow of GRB081008. The COG analysis gives the sameresultaslinefitstothehigh-resolutionspectrumwithin3σ. Thestrengthoftheabsorptionlinesinthespectrumareameasure They conclude that this is linked to the low level of saturation oftheabundanceofanelementinthegasphaseonly.Apartfrom of the lines. The equivalent widths of the low-ionisation lines in theoverallgas-to-dustratio,thefractionofaspecificelementthat GRB100901Aare found to be in the lowest 10% of the sample islockedontodustdependsontheelementspeciesandonthena- of69low-resolutionspectraconductedbydeUgartePostigoetal. tureofthedust.Therefore,thepatternofrelativeabundances, the (2012), which strengthens the case that a COG analysis on this depletionpattern,mightgiveinsightintotheamountandnatureof spectrumcanprovideaccurateresults.However,columndensities thedust.InTable2welisttheabundanceratioswithrespecttothe resulting from COG analysis always need to be treated with refractory(depleted)elementFeandthenon-refractoryelementZn, caution. comparedtotheratioinasolarabundanceenvironment.Weusethe following,commonlyusednotation c 2013RAS,MNRAS000,1–?? (cid:13) 6 OlgaE. Hartoogetal. Table2.Themeasuredrest-frameequivalent width Wλ fortheresonance lines atthehostredshift,andthecorresponding ioncolumndensities, obtained withcurve-of-growth(COG)analysis.Thefirstcolumnliststheionandthevacuumrestwavelength(Å);thesecondcolumngivestheoscillatorstrength fλ. Columns(3)and(4)givetherest-frameWλinÅ measuredinepoch1andepoch2(GMOS)respectively.Forlinesforwhichwehaveagoodmeasurementboth inepoch1andepoch2,theweightedaverageisused;otherwiseweusethevaluemeasuredinepoch1.ThevaluesthatarefinallyusedfortheCOGanalysis arelistedinColumn(5).Column(6)givesthebestfittingcolumndensityfortheion,fittedtoaCOGwitheffectiveDopplerparameterb=22.1+11..67kms−1. Columns(7)and(8)givetherelativeabundanceswithrespecttoironandzincusingsolarvaluesfromAsplundetal.(2009)(fornotationseeEqua−tion2).The referencesforthewavelengthandoscillatorstrengthareincolumn(9). Line fλ Wλ/Å Wλ/Å <Wλ/Å> log(Nion/cm−2) [X/Fe] [X/Zn] ref epoch1 epoch2 Alii 1670.7874 1.740 0.418 0.093 0.338 0.098 0.380 0.067 13.57+0.41 0.61 0.42 1.84 0.42 1 ± ± ± 0.32 − ± − ± − Aliii 1854.7164 0.539 0.113 0.054 0.162 0.060 0.135 0.040 13.02+0.13 a a 1 Aliii 1862.7895 0.268 0.044±0.051 0.113±0.056 0.075±0.038 ...−0.16 1 ± ± ± Siii 1808.013 2.080 10 3 0.292 0.062 0.267 0.068 0.281 0.046 15.96+0.18 +0.72 0.19 0.51 0.19 2 × − ± ± ± 0.16 ± − ± − ZZnniiii 22006226..616346b 52..041600×1100−11 00..139612±00..004416 00..220860±00..004583 00..139277±00..003315 13.5.2..−+00..0077 +1.23±0.10 33 × − ± ± ± Crii 2056.2539 1.030 10 1 0.150 0.040 0.151 0.046 0.151 0.030 13.73+0.09 +0.36 0.12 0.87 0.12 3 Crii 2066.161 5.120×10−2 0.096±0.038 0.111±0.045 0.102±0.029 ...−0.10 ± − ± 3 × − ± ± ± Feii 2249.8754c 2.190 10 3 0.129 0.034 0.151 0.040 0.139 0.026 15.23+0.07 1.23 0.10 4 Feii 2260.7793 2.620×10−3 0.152±0.034 0.168±0.040 0.159±0.026 ...−0.08 − ± 4 Feii 2586.6495 7.094×10−2 0.705±0.044 0.727±0.048 0.715±0.032 ... 4 × − ± ± ± Mnii2576.877 3.610 10 1 0.265 0.032 0.257 0.037 0.262 0.024 13.23+0.04 +0.07 0.09 1.16 0.04 5 MMnniiii22650964..446929 12..988000×××1100−−−11 00..126046±±±00..006340 0.207d±±0.034 00..210674±±±00..006243 ......−0.05 ± − ± 55 Mgii2796.352 6.123 10 1 0.920 0.147e 15.06+0.83 0.27 0.83 1.50 0.83 6 Mgii2803.531 3.054×10−1 0.918±0.126e ...−0.60 − ± − ± 6 × − ± Caii 3934.777 6.500 10 1 0.907 0.220e 13.74+0.47 0.33 0.50 1.56 0.50 7 Caii 3969.591 3.220×10−1 0.836±0.185e ...−0.50 − ± − ± 7 × − ± aThequantities[Aliii/Fe]and[Aliii/Zn]donothaveanyphysicalmeaning,sincetheAliiiisprobablymainlyfromadifferentregionthanAlii,Feiiand Znii(seealsoSavaglio&Fall2004). bThecontaminationbyCriiλ2026isdeterminedfromtheotherCriilinesandisnegligible.ThecontributionofMgiλ2026cannotbedetermined,butwe assumeitissmallbasedontheabsenceofMgiλ1827. cFeii2344,2374,3282and2600arealsoclearlydetected,butthoseareblendedwithfine-structurelinesandthereforenotusedintheabundancestudy. Estimatesoftheirequivalentwidthscanbefoundintheappendix. dTheequivalentwidthofthelineisfixedinthesecondepochinordertomeasurethevariedstrengthoftheblendedfine-structureline(s). eAbsorptionlinesareoutsidetheGMOSrange,measurementisfromxshspectrum. Referencesforatomicdata:(1)NISTAtomicSpectraDatabase,(2)Bergeson&Lawler(1993b),(3)Bergeson&Lawler(1993a)(4)Verneretal.(1999), (5)Morton(2003),(6)Verneretal.(1996),(7)Morton(1991). N(X) n(X) of other GRB-DLAs and QSO-DLAs1. The relative abundance [X/Y] log log , (2) ≡ N(Y)!− n(Y)! valuesindicateastrongerdepletion(i.e.,moredust)inGRB-DLAs ⊙ thaninQSO-DLAs,butamongtheGRB-DLAs,GRB100901Ais notaparticularlyspecial case.BothGRB-DLAsandQSO-DLAs appear to follow the overall trend that systems with stronger Zn column densities show stronger depletion. The fact that the two with N(X) thecolumn density of element X,and n(X) the num- classespopulatedifferentregionsinthediagramismainlyasight ber density of element X in a solar environment (Asplundetal. lineeffect.QSOsprobegalaxiesinrandomorientationswithonly 2009). Differences from zero indicate dust content. We thus as- a small chance that the densest region of a galaxy is intersected, sumethatrelativeabundances(bothingasanddust)aresolar.Fe, whilesightlinestoGRBafterglowsprobethegastowardsthepro- ZnandCrareironpeakelements,whichmakesthisareasonable genitorregion,sotheywillingeneralshowhighcolumndensities assumption, although the main production pathway of Zn is not (seealsoSavaglio2006;Prochaskaetal.2007;Fynboetal.2009). fullyidentified(Umeda&Nomoto2002).Discrepanciesinrelative abundancesmightalsobeduetoadifferentstar-formationhistory thantheMilkyWay. 1 DLA:DampedLyman-αsystem:asightlineabsorberwith NHI > 2 InFigure3weshow[Fe/Zn]asafunctionoftheZncolumn 1020cm 2(Wolfe,Gawiser&Prochaska2005).ADLAsysteminaGRB× − density for the host of GRB100901A, compared with a sample afterglowspectrumisusuallyduetothehostgalaxy. c 2013RAS,MNRAS000,1–?? (cid:13) Theafterglowspectrum ofGRB100901A 7 Furthermore,forGRB-DLAswithrelativelylowcolumndensities and weak absorption lines, [Fe/Zn] is not well constrained (i.e., not reported in literature) because the fading afterglow prevents buildingupS/Noverseveralnightsofobservations.Thisisnotthe caseforQSO-DLAs,whichiswhytheseobjectsalsopopulatethe lowN partoftheparameterspace. ZnII A more detailed analysis of the dust content can be per- formedbycomparingtheheavy-elementdustdepletionpatternof GRB100901Awithobservationsintheinterstellarmedium(ISM) oftheMilkyWay(Savage&Sembach1996).Weusethemethod describedinSavaglio&Fall(2004).Weconsidertheobservedde- pletionpatternsintheMWsightlinestroughawarmhalo(WH), warmdiskandhalo(WDH),warmdisk(WD)andcooldisk(CD) asmodels.Forthefit,weusetwofreeparameters.Oneisthedust- Figure4.DepletionpatternforthehostofGRB100901A,comparedwith to-metalratiorelativetotheGalacticvaluesκ =κ /κ (Jisone GRB J differentcomponentsintheMilkyWay(Savage&Sembach1996),which ofthe4depletionpatterns).Thesecondisproportionaltothemetal- areobserved patterns that canbeadjusted bychanging thedust-to-metal licity(notknownbecauseNHIisnotmeasuredinGRB100901A). ratioκ.ThecolumndensityofNiiiisnotdirectlymeasuredbutfollowsfrom The two parameters are scaled until they reproduce the observed themodellingofthefine-structureandmetastablelevels,seeSection3.2.1. heavy-elementdepletionpatternbest(minimumχ2). Weincludea3σupperlimitforTiiibasedontheabsenceofthedoubletat Resultsusingmeasurementsof7elementsareshowninFig- arestwavelengthof1910Å. ure4.TheWHdepletionpatterngivesthesmallestχ2 amongthe 4patterns,buttheWDpatternisalsoareasonablefit.Thedust-to- metalsratioisbetweentheMWvalueand10%higher.NiandMg arethemostuncertainmeasurements.TheMgiicolumndensityis likelyalowerlimitbecauseitsuffersfromverystrongsaturation. TheNiiicolumndensityisnotmeasuredfromtheresonancelines directly, but follows from the modelling of the time evolution of theNiii4F metastablelevel(seeSection3.2.1andTable5).Ex- 9/2 cludingthesetwoelementsfromthefitdoesnotchangeourresults much. For the observed column of metals, and assuming a rate of visual extinction per column density of metals like in the MW (Bohlin,Savage&Drake1978),theexpectedopticalextinctionin GRB100901AwouldbeA 0.5.Thisishigherthantheonede- V ∼ rivedfromthespectralenergydistribution(SED)ofGRB100901A (A =0.21,Gombocetal.,inprep).Thisinconsistencyistypically V observedinGRBsightlines(Schadyetal.2011)andindicatesthat therateofextinctionintheISMofGRBhostspercolumnofmetals isdifferentfromwhatisobservedintheMW. 3.1.3 Interveningabsorbers Two intervening absorbers are detected: int1 at z = 1.3147 and 1 int2 at z = 1.3179. If these two systems are not physically as- 2 sociatedwitheachother, andtheredshift differenceisdominated bycosmologicalexpansion,thevelocitydifferencecorrespondsto aco-movingseparationof3.9Mpc.Iftheabsorbersbelongtoone system,thevelocitydifferenceis414kms 1,andcouldbedueto − motionofgalaxieswithinacluster. Because of the long time span that our observations cover (until long after the jet break, Gomboc et al., in prep), the data set is suited to look for variations in the strength of the lines fromtheinterveningabsorbers.Thiscanbeinterestinginthecon- Figure5.Curve-of-growthforthetwointerveningsystemsinthesightline text of the previously supposed discrepancy between the number toGRB100901A.Thelinesusedandthebest-fitcolumndensitiesarelisted of strong Mgii absorbers (Wλ(2796) > 1Å) in QSO and GRB inTable3. sight lines; in the latter the redshift number density was found tobeabout twotimesashigh(Prochteretal.2006; Verganietal. 2009;Cucchiaraetal.2009.However,Cucchiaraetal.(2012)used alargersampleanddidnotreproducethisdiscrepancy. We do not detect variability above the 2σ level in any of the two intervening absorbers of GRB100901A, and we see no c 2013RAS,MNRAS000,1–?? (cid:13) 8 OlgaE. Hartoogetal. systematictrendintheensembleoflinesperabsorber,norperion excited stateinan epoch, the equivalent widths of the transitions species.Inprinciple,thenon-variationoftheequivalentwidthsof arising from thisexcited level are placed on the COG by assign- theinterveningabsorberresonancelinesgivesalowerlimitonthe inganN tothislevel.Thebest-fit N isthevalueforwhich level level sizeoftheabsorbingclouds(i.e.,thescaleonwhichtheabsorbing theensembleof transitionsfittheCOGbest(minimisationofthe gasishomogeneous).Iftheprojectedapparentsizeoftheafterglow χ2).Figures6and7showtheCOGoftheNiii4F andtheFeii 9/2 becamelargerthantheprojectedsizeoftheinterveningabsorber, 6D levelperepoch(columns),togetherwiththeobservedtransi- 7/2 theabsorptionlinesfromthissystemwouldbecomeweakersince tionsfromthislevelandgaussianfitstothelineprofiles.Thebest- partofthelightwouldreachtheobserverunabsorbed.Weuse the fit N and its errors are found with a Monte Carlo simulation, level descriptionoftheapparentsizeoftheBlandford-McKeespherical which weapply asfollows. In every iteration, for each transition expansiondescribedbyGranot,Piran&Sari(1999),whereweuse anequivalentwidthisrandomlypickedfromanormaldistribution E = 6.3 1052 erg (Gorbovskoyetal. 2012). We assume the with as mean the measured value and as sigma the measured er- iso × closecircum-burstmediumtohaveaconstantdensityn=1cm 3. ror.Forthissimulatedensembleof equivalent widths, thebest-fit − Atthetimeofthelastepoch(7.027days),wefindthesourcetobe N isdeterminedbyminimisingtheχ2.After10000iterations, level 9.6 1016cm.Thisgivesalowerlimitonthesizeof eachof the thedistributionofbest-fitN ’sisfitwithanasymmetricgaussian × level absorbingcloudsof0.03pc.Althoughthisisnotaverymeaningful (i.e.,anormaldistributionwithadifferentσonbothsides),from lower size-limit for a gas cloud, we point out that in general it whichwederivetheoverallbest N anditslowerandupper1σ level is difficult to put limits on absorber sizes, but see D’Eliaetal. error.Becausethefine-structurelinesliemostlyonthelinearpart (2010a)formethodsappliedtoGRBabsorbersandPetitjeanetal. oftheCOG,theeffectofbissmall,andtheuncertaintyofthisvalue (2000); Ellisonetal. (2004); Balashevetal. (2011) for examples isnottakenintoaccount.Iftwoormoretransitionsofalevelare ofsizeestimatesofQSOline-of-sightobjects. detectedinanepoch(i.e.,if W > σW ),weobtainavaluefor | λ| | λ| N ,otherwiseweobtainanupperlimit(seeTable4). level Because the lines of the intervening systems do not vary in strength, we can average the equivalent widths measured in 3.2.1 UV-pumpingmodels epoch1 and epoch2. The MISC-COG analysis can be applied, because wedetect many clearlines fromthese systems. Figure5 Thecolumndensitiesofthefine-structureandmetastablestatesare shows the best fitting COGs for both intervening absorbers. We found to vary in time (see Table 4 and Figure 8). The presence, carryoutthesameapproachasforthehost,byfirstconstrainingb andvariation,offine-structurelinesinGRBafterglowspectracan withtheFeiitransitions.Wefindb = 12.6+11..42kms−1 forint1and generallywellbeexplainedbyexcitationduetotheUVfluxofthe b=20.6+45..67kms−1forint2.Theequivalent−widthsandthecolumn GRBafterglow.Prochaska,Chen&Bloom(2006)suggestthatthis densities−ofeachionspeciesarelistedinTable3. isthedominantexcitationmechanism,especiallywhenvariability ismeasured.Theearlyhigh-resolutionspectroscopicdataobtained forGRB060418(Vreeswijketal.2007)allowedsystematictestsof otherexcitationmechanismssuchasabackgroundIRfieldandcol- 3.2 Detectionandvariabilityoftransitionsarisingfrom excitedlevelsofFeiiandNiii. lisionalexcitation,butalsostronglyfavourstheUV-pumpingsce- nario.ForGRB100901AweassumethatUV-pumpingistheonly Attheredshiftofthehostgalaxywedetectlinesfromfine-structure relevantphoto-excitationmechanism. levelsofFeii(6D ,6D ,6D and6D )andmetastablelevels We apply the photo-excitation model introduced by 7/2 5/2 3/2 1/2 ofFeii(4F and4D )andNiii(4F ).Theequivalentwidthof Vreeswijketal. (2007, 2011, 2013). For technical details we 9/2 7/2 9/2 manyoftheselinesvarieswithtime.Thisprovidestheopportunity refer to the 2013 paper. The general idea is that the UV-flux of to derive the distance between the burst location and the absorb- the afterglow temporarily excites ions in a cloud with thickness ingmaterial,assumingthatthepopulationoftheseexcitedstatesis l at a distance d from the location of the burst. As the afterglow duetotheUV-radiationoftheafterglow(seeSection3.2.1).With brightnessfadesintime,theexcitedlevelsdepopulateafteratime high-resolutionspectraitwouldbepossibletodirectlymeasurethe whichisdeterminedbytheEinsteincoefficientA or,equivalently, ul columndensitiesoftheionsthatareintheexcitedstates,viaVoigt theoscillatorstrengthofthetransitionsconsidered.Foragivenset profile fits to the fine-structure lines (see e.g., D’Eliaetal. 2007; ofinputparameters,thecolumndensityofeachexcitedlevelasa Vreeswijketal. 2007). In order to obtain column densities from functionoftime,N (t),ispredictedbythemodel.Bycomparing level the equivalent widths, we need to take an intermediate step with this temporal behaviour to the measured N (t) for all levels level the COG, where we fix b to the value found from the resonance simultaneously,wecanoptimisetheparameters. Feiilines(seeSection3.1.1);i.e.,weassumethat theionsinthe Theafterglowfluxisincludedasaninterpolatedseriesof R- excited statesareinthesame absorbing clouds astheions in the band magnitudes2 m (t) (seeupper panel Figure8),which corre- R groundstate;fortheimplicationsofthisassumptionseetheendof spondstotherest-frameUV-flux(at 2700Å)responsibleforpop- ∼ Section3.2.1.Notethatthevalueofbwillonlyhaveaverysmall ulatingthelevels.Themonochromaticfluxinthehost-galaxyrest influenceonthecolumndensitiesoftheexcitedions,becausethe frameattheGRB-facingsideoftheabsorbingcloudiscomputed linesareallweakandliemostlyonthelinearpartoftheCOG. asfollows: of allTatrbalnessitAio1n,sAf2ro,mA3thaendfinAe4-sitnrutchteurAepapnedndmixetgaisvteabalneolevveervlsieowf Frest(t)= F0·10[mR(t)−AR,gal]/−2.5 λrest(1+zh) βν DL 2 (3) FeiiandNiiithatwouldinprinciplebeobservableintheGMOS ν 1+zh " 6415Å # (cid:20) d (cid:21) spectral range at thisredshift. Dueto thelow spectral resolution, manyoftheselinesareblendedsuchthattheindividual variation 2 The observed R-band magnitudes come from GCNs ofthecomponentscannotbemeasured.Thelinesthatareusedin Andreev,Sergeev&Pozanenko (2010a,b,c,d); Andreevetal. (2010); themodellingareshowninboldfaceinTablesA1toA4. Kurodaetal.(2010a,b);Volnovaetal.(2010);assembledbyGombocetal. InordertoobtainthecolumndensityNlevelofionsinaspecific (inprep.). c 2013RAS,MNRAS000,1–?? (cid:13) Theafterglowspectrum ofGRB100901A 9 Table3.Therest-frameequivalentwidthsWλforthelinesfromtwointerveningsystemsint1andint2atrespectivelyz1=1.3147andz2=1.3179.<Wλ/Å> istheweightedaverageoftherestframeequivalentwidth(inÅngstrom)measuredinGMOSepoch1andepoch2.TheCOGsforthetwosystemsareshown inFigure5.ThecolumndensitiesperionspecieshavebeencalculatedwiththeCOGwiththebestfittingb;theerrorsonthecolumndensitiesaretheresultof takingintoaccounttherangeinb.EspeciallyforlinesontheflatpartoftheCOG(e.g.,Mgii),theeffectonNduetobislarge. int1(z1=1.3147) int2(z2=1.3179) b=12.6+11..42kms−1 b=20.6+45..67kms−1 Line fλ <Wλ/Å> −log(Nion/cm−2) <Wλ/Å> − log(Nion/cm−2) Aliii 1854.7164 0.539 0.053 0.046 12.74+0.29 0.229 0.049 13.42+0.27 Aliii 1862.7895 0.268 0.073±0.047 ...−0.43 0.171±0.049 ...−0.17 ± ± FFFeeeiiiiii 222332474449...248167205944 132...221599270××111000−−123 000...310183722±±000...000323086 14.2..8....−+00..0195 00..107364±a 00..002274 13.5.7..−+00..0089 Feii 2382.7641 3.432×10−1 0.365±0.030 ... 0.325±0.029 ... Feii 2586.6495 7.094×10−2 0.296±0.027 ... 0.136±0.023 ... Feii 2600.1722 2.422×10−1 0.405±0.028 ... 0.344±0.027 ... × − ± ± Mgii2796.352 6.123 10 1 0.532 0.030 14.86+0.26 0.845 0.035 14.83+1.39 Mgii2803.531 3.054×10−1 0.531±0.030 ...−0.47 0.792±0.034 ...−0.68 × − ± ± Mgi 2852.9642 1.83 0.143 0.023 12.17+0.09 0.118 0.022 12.01+0.09 ± −0.11 ± −0.11 athislineisblendedwithNiii4F9/2λ2166.23atthehostredshift. Table 4. Lowerlevel column densities log Nlevel(t)/cm−2 for Feii and Niiiexcited states derived from fine-structure line equivalent widths with COG analysis.Allerrorsandlimitsare1σ. (cid:16) (cid:17) Feii Niii time(d) 6D9/2 6D7/2 6D5/2 6D3/2 6D1/2 4D7/2 4F9/2 epoch1 0.0526 15.20+0.0813.77+0.0513.58+0.0613.30+0.0712.92+0.1112.54+0.1113.25+0.10 0.09 0.04 0.10 0.09 0.14 0.18 0.15 epoch2 1.0095 15.29+−0.0713.68+−0.0513.46+−0.0913.14+−0.09<12.8−3 12.54+−0.1113.73+−0.07 0.10 0.05 0.13 0.15 0.24 0.12 xsh 2.7492 15.16+−0.12<13.4−6 <14.0−2 <13.4−7 <13.40 <13.0−3 13.54+−0.09 0.18 0.13 epoch3 7.0270 15.34+−0.21<13.37 <13.80 <13.39 <13.47 <12.97 <13.7−5 0.48 − in which F = 3.02 10 20ergs 1cm 2Hz 1 is the flux tion A = 0.2, the data favoursaconfiguration withavery large 0 × − − − − V of Vega at the effective wavelength (6410Å) of the R-band (> 1kpc) absorbing cloudat asmallerdistance. Fixingthecloud (Fukugita,Shimasaku&Ichikawa 1995), A = 0.264 is the size l leads to absorber distances of d 165 275pc. Figure 8 R,gal ∼ − Galacticextinction(Schlegel,Finkbeiner&Davis1998),λ isthe showsthefittothedataforthemodelwithl6500pc(solidlines) rest wavelengtharrayoftherelevanttransitionsatwhichthefluxisre- andthemodelwithl=1pc(dottedlines).Bothmodelsaredecent quiredtocalculatetheamountofexcitation,β isthespectralslope fits:ourdataarenotconstrainingenoughtodiscriminatebetween ν andD = 9.968 109pcistheluminositydistance.Theeffective the close-large and the distant-small cloud case. But in all cases, L × Dopplerparameterbisfixedto22.1kms 1,consistentwithhowwe the influence of theGRB reaches distances of a few hundreds of − convertedequivalentwidthstocolumndensities(seeSection3.2). parsecs.InSection4.1wewilldiscusstheimplicationsofthises- Parametersthatcanbeconstrainedfromthelightcurveand/orSED timatedabsorberdistanceandcompareittovaluesfoundinother fitting(Gombocetal.,inprep)arekeptfixed:opticalspectralslope GRBs. β = 0.82, and optical extinction in the host galaxy A = 0.21 ν V assumingaSmallMagellanicCloudextinctionprofile(Gombocet al.,inprep).WeperformedmodelswithA =0aswelltostudythe Though not detectable with the spectral resolution used, it effect.A isnotincludedinEquation3bVecausethemodelallows couldbepossiblethatground-stateFeiiispresentinmorevelocity tospecifyVwheretheopticalextinctiontakesplace.Weplacetheex- componentsthanexcitedFeii,i.e.,thatthereisFeiithatisnotasso- ciatedwiththeexcitedgas.IfthereexistsmoreFeiifurtheraway, tinctionintheabsorbingcloud,andapplythenecessarycorrections thenthiswoulddecreasetheamountofFeiithatisassociatedwith totheflux. the excited Feii, and hence this would move the absorber closer Table 5 shows the fit results of the model to the measured totheburst,i.e.,wewouldinferasmallerGRB-absorberdistance. N (t) as listed in Table 4, with different requirements for the Veryroughly, if thisfraction of Feii associated toexcited Feii is level parameters. The model without extinction fits the data best with only50%(ratherthanthenowassumed100%),thenitwouldde- a small cloud at 250pc, but when we include optical extinc- creasethedistancebyafactorof √2.Soevenwhenassumingsuch ∼ c 2013RAS,MNRAS000,1–?? (cid:13) 10 OlgaE. Hartooget al. Figure6.Curves-of-growth(COG)andspectrumexcerptsforthethreedetectedlinesfromtheNiii4F9/2metastablelevel.Everycolumnrepresentsanepoch, withtheobservedtimesincetheburstindicatedontop.TheupperplotshowstheCOGforb=22.1kms−1towhichwefittheequivalentwidthsforthethree transitions(reddiamonds).Thebest-fitcolumndensityNlevelisindicated,togetherwiththeχ2νoftheCOG-fit.BelowtheCOG,thethreeindividuallinesare displayedonavelocityscale,withthecorrespondinggaussianlineprofilefit.Therestframeequivalentwidthandoscillatorstrengthareindicated.Weusethe samelinelabelcolouringasinFigure1. Table5.Photo-excitation modellingresultsfortheenvironmentofGRB100901Awithdifferentsettings.Column(1)extinction AV inthehostgalaxy,(2) requirementforthedistance dfromthebursttotheabsorber,(3)requirementforthethicknessloftheabsorbingcloud,(4)fitresultd,(5)fitresultl,(6) pre-burstcolumndensitiesofFeiiand(7)Niii(groundstate)and(8)thereducedchi-squareofthefit.SeealsoFigure8. input output AV d l d/pc l/pc log NFeII/cm−2 log NNiII/cm−2 χ2ν (cid:16) (cid:17) (cid:16) (cid:17) 0.0 free free 250 75 0+240 15.25+0.05 13.91+0.07 1.54 0.2 minimal100pc free 100+±61 1−127 569 15.26−+00..0055 14.14−+00..0180 0.73 0.2 free fixedto1pc 275− 12 1 ± 15.24−+00..0065 13.94−+00..1036 1.35 ± 0.06 0.07 0.2 free fixedto100pc 249 13 100 15.24−+0.05 13.95−+0.06 1.33 ± 0.06 0.07 0.2 free maximal500pc 165 73 500+ 15.22−+0.05 14.02−+0.10 1.15 ± −469 −0.06 −0.13 c 2013RAS,MNRAS000,1–?? (cid:13)