ebook img

The homotopy theory of -categories infty,1 PDF

288 Pages·2018·0.988 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The homotopy theory of -categories infty,1

LONDON MATHEMATICAL SOCIETY STUDENT TEXTS ManagingEditor:IanJ.Leary, MathematicalSciences,UniversityofSouthampton,UK 51 Stepsincommutativealgebra:Secondedition,R.Y.SHARP 52 FiniteMarkovchainsandalgorithmicapplications,OLLEHA¨GGSTRO¨M 53 Theprimenumbertheorem,G.J.O.JAMESON 54 Topicsingraphautomorphismsandreconstruction,JOSEFLAURI&RAFFAELESCAPELLATO 55 Elementarynumbertheory,grouptheoryandRamanujangraphs,GIULIANADAVIDOFF, PETERSARNAK&ALAINVALETTE 56 Logic,inductionandsets,THOMASFORSTER 57 IntroductiontoBanachalgebras,operatorsandharmonicanalysis,GARTHDALESetal 58 Computationalalgebraicgeometry,HALSCHENCK 59 Frobeniusalgebrasand2Dtopologicalquantumfieldtheories,JOACHIMKOCK 60 Linearoperatorsandlinearsystems,JONATHANR.PARTINGTON 61 AnintroductiontononcommutativeNoetherianrings:Secondedition,K.R.GOODEARL& R.B.WARFIELD,JR 62 Topicsfromone-dimensionaldynamics,KARENM.BRUCKS&HENKBRUIN 63 Singularpointsofplanecurves,C.T.C.WALL 64 AshortcourseonBanachspacetheory,N.L.CAROTHERS 65 ElementsoftherepresentationtheoryofassociativealgebrasI,IBRAHIMASSEM, DANIELSIMSON&ANDRZEJSKOWRON´SKI 66 Anintroductiontosievemethodsandtheirapplications,ALINACARMENCOJOCARU& M.RAMMURTY 67 Ellipticfunctions,J.V.ARMITAGE&W.F.EBERLEIN 68 Hyperbolicgeometryfromalocalviewpoint,LINDAKEEN&NIKOLALAKIC 69 LecturesonKa¨hlergeometry,ANDREIMOROIANU 70 Dependencelogic,JOUKUVA¨A¨NA¨NEN 71 ElementsoftherepresentationtheoryofassociativealgebrasII,DANIELSIMSON& ANDRZEJSKOWRON´SKI 72 ElementsoftherepresentationtheoryofassociativealgebrasIII,DANIELSIMSON& ANDRZEJSKOWRON´SKI 73 Groups,graphsandtrees,JOHNMEIER 74 RepresentationtheoremsinHardyspaces,JAVADMASHREGHI 75 Anintroductiontothetheoryofgraphspectra,DRAGOSˇCVETKOVIC´,PETERROWLINSON& SLOBODANSIMIC´ 76 NumbertheoryinthespiritofLiouville,KENNETHS.WILLIAMS 77 Lecturesonprofinitetopicsingrouptheory,BENJAMINKLOPSCH,NIKOLAYNIKOLOV& CHRISTOPHERVOLL 78 Cliffordalgebras:Anintroduction,D.J.H.GARLING 79 IntroductiontocompactRiemannsurfacesanddessinsd’enfants,ERNESTOGIRONDO& GABINOGONZA´LEZ-DIEZ 80 TheRiemannhypothesisforfunctionfields,MACHIELVANFRANKENHUIJSEN 81 Numbertheory,Fourieranalysisandgeometricdiscrepancy,GIANCARLOTRAVAGLINI 82 Finitegeometryandcombinatorialapplications,SIMEONBALL 83 Thegeometryofcelestialmechanics,HANSJO¨RGGEIGES 84 Randomgraphs,geometryandasymptoticstructure,MICHAELKRIVELEVICHetal 85 Fourieranalysis:PartI-Theory,ADRIANCONSTANTIN 86 Dispersivepartialdifferentialequations,M.BURAKERDOG˘AN&NIKOLAOSTZIRAKIS 87 Riemannsurfacesandalgebraiccurves,R.CAVALIERI&E.MILES 88 Groups,languagesandautomata,DEREKF.HOLT,SARAHREES&CLAASE.RO¨VER 89 AnalysisonPolishspacesandanintroductiontooptimaltransportation,D.J.H.GARLING 90 Thehomotopytheoryof(∞,1)-categories,JULIAE.BERGNER LondonMathematicalSocietyStudentTexts90 The Homotopy Theory of ∞ ( , 1)-Categories JULIA E. BERGNER UniversityofVirginia UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107101364 DOI:10.1017/9781316181874 ©JuliaE.Bergner2018 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2018 PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-107-10136-4Hardback ISBN978-1-107-49902-7Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. AdMajoremDeiGloriam Contents Preface pagexi Acknowledgments xiii Introduction 1 1 ModelsforHomotopyTheories 4 1.1 SomeBasicsinCategoryTheory 4 1.2 WeakEquivalencesandLocalization 13 1.3 ClassicalHomotopyTheory 16 1.4 ModelCategories 18 1.5 HomotopyCategories 22 1.6 EquivalencesBetweenModelCategories 25 1.7 AdditionalStructuresonModelCategories 28 2 SimplicialObjects 34 2.1 SimplicialSetsandSimplicialObjects 34 2.2 SimplicialSetsasModelsforSpaces 37 2.3 HomotopyLimitsandHomotopyColimits 39 2.4 SimplicialModelCategories 42 2.5 SimplicialSpaces 45 2.6 TheReedyModelStructureonSimplicialSpaces 47 2.7 CombinatorialModelCategories 54 2.8 LocalizedModelCategories 56 2.9 CartesianModelCategories 63 3 TopologicalandCategoricalMotivation 66 3.1 NervesofCategories 66 3.2 KanComplexesandGeneralizations 68 3.3 ClassifyingDiagrams 71 3.4 HigherCategories 74 3.5 HomotopyTheories 78 vii viii Contents 4 SimplicialCategories 83 4.1 TheCategoryofSmallSimplicialCategories 83 4.2 Fixed-ObjectSimplicialCategories 84 4.3 TheModelStructure 86 4.4 ProofoftheExistenceoftheModelStructure 88 4.5 PropertiesoftheModelStructure 96 4.6 NervesofSimplicialCategories 99 5 CompleteSegalSpaces 101 5.1 SegalSpaces 102 5.2 SegalSpacesasCategoriesUptoHomotopy 107 5.3 CompleteSegalSpaces 110 5.4 CategoricalEquivalences 113 5.5 Dwyer–KanEquivalences 116 6 SegalCategories 124 6.1 BasicDefinitionsandConstructions 125 6.2 Fixed-ObjectSegalCategories 130 6.3 TheFirstModelStructure 138 6.4 TheEquivalenceWithCompleteSegalSpaces 145 6.5 TheSecondModelStructure 148 6.6 TheEquivalenceWithSimplicialCategories 151 7 Quasi-Categories 157 7.1 BasicDefinitions 157 7.2 PropertiesofAcyclicCofibrations 160 7.3 TheModelStructure 166 7.4 TheCoherentNerveandRigidificationFunctors 171 7.5 NecklacesandTheirRigidification 173 7.6 RigidificationofSimplicialSets 179 7.7 PropertiesoftheRigidificationFunctor 187 7.8 TheEquivalenceWithSimplicialCategories 194 7.9 TheEquivalenceWithCompleteSegalSpaces 207 8 RelativeCategories 213 8.1 BasicDefinitions 213 8.2 SubdivisionFunctors 218 8.3 TheModelStructureandEquivalenceWithComplete SegalSpaces 221 9 ComparingFunctorstoCompleteSegalSpaces 233 9.1 ClassifyingandClassificationDiagrams 234 9.2 SomeResultsforSimplicialCategories 236 Contents ix 9.3 ComparisonofFunctors 239 9.4 CompleteSegalSpacesFromSimplicialCategories 242 10 Variantson(∞,1)-Categories 248 10.1 FiniteApproximations 248 10.2 Stable(∞,1)-Categories 251 10.3 DendroidalObjects 254 10.4 Higher(∞,n)-Categories 256 References 261 Index 267

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.