ebook img

The Hodge-Laplacian: Boundary Value Problems on Riemannian Manifolds PDF

528 Pages·2016·2.739 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Hodge-Laplacian: Boundary Value Problems on Riemannian Manifolds

DorinaMitrea,IrinaMitrea,MariusMitrea,andMichaelTaylor TheHodge-Laplacian De Gruyter Studies in Mathematics | Editedby CarstenCarstensen,Berlin,Germany FarkasGavril,Berlin,Germany NicolaFusco,Napoli,Italy FritzGesztesy,Waco,Texas,USA NielsJacob,Swansea,UnitedKingdom ZenghuLi,Beijing,China Karl-HermannNeeb,Erlangen,Germany Volume 64 Dorina Mitrea, Irina Mitrea, Marius Mitrea, and Michael Taylor The Hodge- Laplacian | Boundary Value Problems on Riemannian Manifolds MathematicsSubjectClassification2010 31B10,31B25,31C12,35A01,35B20,35J08,35J25,35J55,35J57,35Q61,35R01,42B20,42B25, 42B37,45A05,45B05,45E05,45F15,45P05,47B38,47G10,49Q15,58A10,58A12,58A14,58A15, 58A30,58C35,58J05,58J32,78A30 Authors DorinaMitrea IrinaMitrea DepartmentofMathematics DepartmentofMathematics UniversityofMissouriatColumbia TempleUniversity Columbia,MO65211,USA Philadelphia,PA19122,USA e-mail:[email protected] e-mail:[email protected] MariusMitrea MichaelTaylor DepartmentofMathematics DepartmentofMathematics UniversityofMissouriatColumbia UniversityofNorthCarolina Columbia,MO65211,USA ChapelHill,NC27599-3250,USA e-mail:[email protected] e-mail:[email protected] ISBN978-3-11-048266-9 e-ISBN(PDF)978-3-11-048438-0 e-ISBN(EPUB)978-3-11-048339-0 Set-ISBN978-3-11-048439-7 ISSN0179-0986 LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2016WalterdeGruyterGmbH,Berlin/Boston Typesetting:PTP-Berlin,Protago-TEX-ProductionGmbH,Berlin Printingandbinding:CPIbooksGmbH,Leck ♾Printedonacid-freepaper PrintedinGermany www.degruyter.com Preface ThismonographisdevotedtoanaturalclassofboundaryproblemsfortheHodge- Laplacian,actingondifferentialforms.Thisclassincludestheabsoluteandrelative boundaryconditions,usedintheHodge-stylerepresentationofabsoluteandrelative cohomologyclassesoftheunderlyingdomainbyharmonicforms. Continuingtheprogramin[86]aimedatunderstandingthesolvabilityproperties ofsuchboundaryproblemsunderminimalgeometricandanalyticregularityassump- tions,herewepushfurthertheanalysisdevelopedin[50]ofalayerpotentialattack onellipticboundaryproblemsonaclassofdomainsintroducedbySemmes[112]and KenigandToro[66],whichwecallregularSemmes-Kenig-Toro(SKT)domains. We initiatethestudyofboundaryvalueproblemsfordifferentialformsinthisclassofdo- mains.Inadditiontotheabsoluteandrelativeboundaryconditionsmentionedearlier, wealsotreattheHodge-LaplacianequippedwithclassicalDirichlet,Neumann,Trans- mission,Poincaré,andRobinboundaryconditionsinregularSKTdomains,withdata inLpspaces,forarbitraryp∈(1,∞). Inabroadperspective,ourresultsmayberegardedasanaturalcompletion,of anoptimalnature,oftheworkinitiatedbyE.Fabes,M.Jodeit,andN.Rivièrein[32], whosescopeisextendedherethroughtheconsiderationofdifferentialformsinplace ofscalarfunctions,the(variable-coefficient)Hodge-Laplacianinlieuofthe(constant coefficient)Laplaceoperator,andregularSKT subdomainsofRiemannianmanifolds, witharbitrarytopology,replacingC1domainswithconnectedcompactboundariesin theflatEuclideansetting. Instarkcontrasttothescalarcasefrom[32],thestructuralrichnessofthehigher degreecaseconsideredhereallowsforamuchlargervarietyofnaturalboundaryvalue problemsfortheHodge-Laplacian,whichweformulateandstudysystematicallyvia potentialtheoreticmethods. DorinaMitrea,Columbia,MO,USA IrinaMitrea,Philadelphia,PA,USA MariusMitrea,Columbia,MO,USA MichaelTaylor,ChapelHill,NC,USA Contents Preface|v 1 IntroductionandStatementofMainResults|1 1.1 FirstMainResult:AbsoluteandRelativeBoundaryConditions|3 1.2 OtherProblemsInvolvingTangentialandNormalComponentsof HarmonicForms|11 1.3 BoundaryValueProblemsforHodge-DiracOperators|21 1.4 Dirichlet,Neumann,Transmission,Poincaré,andRobin-TypeBoundary Problems|24 1.5 StructureoftheMonograph|43 2 GeometricConceptsandTools|49 2.1 DifferentialGeometricPreliminaries|49 2.2 ElementsofGeometricMeasureTheory|67 2.3 SharpIntegrationbyPartsFormulasforDifferentialFormsinAhlfors RegularDomains|91 2.4 TangentialandNormalDifferentialFormsonAhlforsRegularSets|96 3 HarmonicLayerPotentialsAssociatedwiththeHodge-deRhamFormalism onURDomains|109 3.1 AFundamentalSolutionfortheHodge-Laplacian|109 3.2 LayerPotentialsfortheHodge-Laplacian intheHodge-deRhamFormalism|117 3.3 FredholmTheoryforLayerPotentials intheHodge-deRhamFormalism|128 4 HarmonicLayerPotentialsAssociatedwiththeLevi-CivitaConnection onURDomains|139 4.1 TheDefinitionandMappingPropertiesoftheDoubleLayer|140 4.2 TheDoubleLayeronURSubdomainsofSmoothManifolds|169 4.3 CompactnessoftheDoubleLayeronRegularSKTDomains|173 5 DirichletandNeumannBoundaryValueProblemsfortheHodge-Laplacian onRegularSKTDomains|185 5.1 FunctionalAnalyticPropertiesforHarmonicLayerPotentials inURDomains|186 5.2 InvertibilityResultsforLayerPotentialsAssociated withtheLevi-CivitaConnection|196 5.3 SolvingtheDirichlet,Neumann,Transmission,Poincaré,andRobin BoundaryValueProblems|204 viii | Contents 6 FatouTheoremsandIntegralRepresentationsfortheHodge-Laplacian onRegularSKTDomains|231 6.1 ConvergenceofFamiliesofSingularIntegralOperators|231 6.2 AFatouTheoremfortheHodge-Laplacian inRegularSKTDomains|250 6.3 SpacesofHarmonicFieldsandGreenTypeFormulas|261 7 SolvabilityofBoundaryProblemsfortheHodge-Laplacian intheHodge-deRhamFormalism|275 7.1 PreparatoryResults|275 7.2 SolvabilityResults|288 8 AdditionalResultsandApplications|315 8.1 deRhamCohomologyonRegularSKTSurfaces|315 8.2 Maxwell’sEquationsinRegularSKTDomains|336 8.3 Dirichlet-to-NeumannOperatorsfortheHodge-Laplacian inRegularSKTDomains|339 8.4 FatouTypeResultswithAdditionalConstraints orRegularityConditions|347 8.5 WeakTangentialandNormalTracesinRegularSKTDomains withFriedrichsProperty|352 8.6 TheHodge-PoissonKernelandtheHodge-HarmonicMeasure|367 9 FurtherToolsfromDifferentialGeometry,HarmonicAnalysis, GeometricMeasureTheory,FunctionalAnalysis, PartialDifferentialEquations,andCliffordAnalysis|371 9.1 ConnectionsandCovariantDerivativesonVectorBundles|371 9.2 TheExtensionoftheLevi-CivitaConnectiontoDifferentialForms|381 9.3 TheBochner-LaplacianandWeintzenböck’sFormula|386 9.4 SobolevSpacesonBoundariesofAhlforsRegularDomains: TheEuclideanSetting|393 9.5 SobolevSpacesonBoundariesofAhlforsRegularDomains: TheManifoldSetting|408 9.6 IntegratingbyPartsontheBoundaries ofAhlforsRegularDomains|417 9.7 AGlobalSobolevRegularityResult|444 9.8 ThePVHarmonicDoubleLayeronaURDomain|446 9.9 Calderón-ZygmundTheoryonURDomainsonManifolds|451 9.10 TheFredholmnessandInvertibilityofElliptic DifferentialOperators|474 9.11 CompactandClose-to-CompactSingularIntegralOperators|482 9.12 ASharpDivergenceTheorem|490 Contents | ix 9.13 CliffordAnalysisRudiments|493 9.14 SpectralTheoryforUnboundedLinearOperators SubjecttoCancellations|496 Bibliography|501 Index|507

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.