ebook img

The History of Mathematics: A Source-Based Approach, Volume 2 (AMS/MAA Textbooks, 61) PDF

704 Pages·2022·90.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The History of Mathematics: A Source-Based Approach, Volume 2 (AMS/MAA Textbooks, 61)

AMS / MAA TEXTBOOKS VOL 61 The History of Mathematics: A Source-Based Approach Volume 2 June Barrow-Green, Jeremy Gray, and Robin Wilson The History of Mathematics: A Source-Based Approach Volume 2 FrontispiecetoEuler’sIntroductioinAnalysinInfinitorum,1748 AMS/MAA TEXTBOOKS VOL 61 The History of Mathematics: A Source-Based Approach Volume 2 June Barrow-Green Jeremy Gray Robin Wilson MAATextbooksEditorialBoard StanleyE.Seltzer,Editor MatthiasBeck SuzanneLynneLarson JeffreyL.Stuart DebraSusanCarney MichaelJ.McAsey RonD.Taylor,Jr. HeatherAnnDye VirginiaA.Noonburg ElizabethThoren WilliamRobertGreen ThomasC.Ratliff RuthVanderpool 2020MathematicsSubjectClassification.Primary01-01,01A05; Secondary01A45,01A50,01A55. Foradditionalinformationandupdatesonthisbook,visit www.ams.org/bookpages/text-61 TheISBNnumbersforthisseriesofbooksincludes ISBN978-1-4704-4382-5(number2) ISBN978-1-4704-4352-8(number1) LibraryofCongressCataloging-in-PublicationData Thefirstvolumewascataloguedasfollows: Names:Barrow-Green,June,1953–author.|Gray,Jeremy,1947–author.|Wilson,RobinJ.,author. Title: Thehistoryofmathematics: asource-basedapproach/JuneBarrow-Green, JeremyGray, Robin Wilson. Description: Providence,RhodeIsland: MAAPress,animprintoftheAmericanMathematicalSociety, [2018]-|Series:AMS/MAAtextbooks;volume45|Includesbibliographicalreferencesandindex. Identifiers:LCCN2018034323|ISBN9781470443825(paperback)|9781470456931(ebook) Subjects: LCSH:Mathematics–History. |Mathematics–Studyandteaching. |AMS:Historyandbiography –Instructionalexposition(textbooks,tutorialpapers,etc.). |Historyandbiography–Historyofmath- ematicsandmathematicians–Generalhistories,sourcebooks. |Historyandbiography–Historyof mathematicsandmathematicians–IndigenousEuropeancultures(pre-Greek,etc.).|Historyandbiog- raphy–Historyofmathematicsandmathematicians–Egyptian. |Historyandbiography–Historyof mathematicsandmathematicians–Babylonian.|Historyandbiography–Historyofmathematicsand mathematicians–Greek,Roman.|Historyandbiography–Historyofmathematicsandmathematicians –China. |Historyandbiography–Historyofmathematicsandmathematicians–India. |Historyand biography–Historyofmathematicsandmathematicians–Medieval.|Historyandbiography–History ofmathematicsandmathematicians–17thcentury. Classification:LCCQA21.B242018|DDC510.9–dc23 LCrecordavailableathttps://lccn.loc.gov/2018034323 Copyingandreprinting. Individualreadersofthispublication,andnonprofitlibrariesactingforthem, arepermittedtomakefairuseofthematerial,suchastocopyselectpagesforuseinteachingorresearch. Permissionisgrantedtoquotebriefpassagesfromthispublicationinreviews,providedthecustomaryac- knowledgmentofthesourceisgiven. Republication,systematiccopying,ormultiplereproductionofanymaterialinthispublicationispermit- tedonlyunderlicensefromtheAmericanMathematicalSociety.Requestsforpermissiontoreuseportions ofAMSpublicationcontentarehandledbytheCopyrightClearanceCenter. Formoreinformation,please visitwww.ams.org/publications/pubpermissions. Sendrequestsfortranslationrightsandlicensedreprintstoreprint-permission@ams.org. ©2022bytheAmericanMathematicalSociety.Allrightsreserved. TheAmericanMathematicalSocietyretainsallrights exceptthosegrantedtotheUnitedStatesGovernment. PrintedintheUnitedStatesofAmerica. ⃝1Thepaperusedinthisbookisacid-freeandfallswithintheguidelines establishedtoensurepermanenceanddurability. VisittheAMShomepageathttps://www.ams.org/ 10987654321 272625242322 Contents Acknowledgments ix Permissions&Acknowledgments x Introduction 1 PartI The17thand18thcenturies 5 1 Introduction: The17thand18thcenturies 7 2 TheInventionoftheCalculus 13 Introduction 13 2.1 Tangents,maxima,andminima 14 2.2 Areaandvolumeproblems 29 2.3 Thesituationmid-century 44 2.4 Furtherreading 50 3 NewtonandLeibniz 51 Introduction 51 3.1 Newton 51 3.2 Newtonandhiscalculus 59 3.3 Leibnizandhiscalculus 67 3.4 Furtherreading 75 4 TheDevelopmentoftheCalculus 77 Introduction 77 4.1 Inversetangentproblems 78 4.2 Newton’scalculusandinversetangentproblems 86 4.3 Newton’smaturecalculus 97 4.4 Leibniz’smaturecalculus 105 4.5 Acomparison 118 4.6 Furtherreading 121 5 Newton’sPrincipiaMathematica 123 Introduction 123 5.1 ThecreationofNewton’sPrincipia 124 5.2 ThecontentofthePrincipia 132 5.3 ResponsestothePrincipia 148 5.4 Newton’sfinalyears 151 5.5 Furtherreading 153 v vi Contents 6 TheSpreadoftheCalculus 155 Introduction 155 6.1 Thenextgeneration 155 6.2 Thecalculus,1690–1730 158 6.3 TheContinentalreceptionofthePrincipia 172 6.4 Furtherreading 189 7 The18thcentury 191 Introduction 191 7.1 Euler 192 7.2 D’AlembertandLagrange 204 7.3 Algebra 207 7.4 Furtherreading 217 8 18th-centuryNumberTheoryandGeometry 219 Introduction 219 8.1 Numbertheory 219 8.2 Infiniteseries 225 8.3 Eulerandgeometry 229 8.4 Thestudyofcurves 232 8.5 Furtherreading 244 9 Euler,Lagrange,and18th-centuryCalculus 247 Introduction 247 9.1 Earlycritiquesofthecalculus 247 9.2 Euler’scalculus 255 9.3 Differentialequations 265 9.4 Thefoundationsofthecalculus 274 9.5 Furtherreading 281 10 18th-centuryAppliedMathematics 283 Introduction 283 10.1 Thevibratingstring 286 10.2 Euler’svisionofmechanics 298 10.3 Furtherreading 307 11 18th-centuryCelestialMechanics 309 Introduction 309 11.1 TestingthePrincipia 309 11.2 Academyprizes 310 11.3 Laplace 311 11.4 Thestabilityofthesolarsystem 314 11.5 JupiterandSaturn 322 11.6 Furtherreading 329 PartII The19thCentury 331 12 Introduction: The19thCentury 333 Contents vii 13 TheProfessionofMathematics 335 Introduction 335 13.1 Thesocialcontext 335 13.2 MathematicsinFrance 336 13.3 MathematicsinGermany 350 13.4 Journalsandpublishing 360 13.5 Thelater19thcentury 368 13.6 Furtherreading 371 14 Non-EuclideanGeometry 373 Introduction 373 14.1 ThefirstWesternattempts 377 14.2 LobachevskiiandBolyai 390 14.3 Thereformulationofmetricalgeometry 401 14.4 Furtherreading 412 15 ProjectiveGeometryandtheAxiomatisationofMathematics 413 Introduction 413 15.1 TherediscoveryofprojectivegeometryinFrance 413 15.2 ProjectivegeometryinGermany 426 15.3 Theestablishmentofprojectivegeometry 432 15.4 There-unificationofgeometry 434 15.5 Theaxiomatisationofgeometry 442 15.6 Furtherreading 449 16 TheRigorisationofAnalysis 451 Introduction 451 16.1 Bolzano,Cauchy,andcontinuity 451 16.2 Cauchy’smistake 463 16.3 Cauchyondifferentiationandintegration 469 16.4 Conclusion 472 16.5 Furtherreading 473 17 TheFoundationsofMathematics 475 Introduction 475 17.1 Dedekind’sdefinitionoftherealnumbers 475 17.2 Cantor,sets,andtheinfinite 481 17.3 Foundationalquestions 490 17.4 Thephilosophyofmathematics 494 17.5 Settheoryandlogic 502 17.6 Furtherreading 508 18 AlgebraandNumberTheory 511 Introduction 511 18.1 Numbertheory 511 18.2 Primenumbers 520 18.3 Complexnumbersandquaternions 528 18.4 Vectors 538 18.5 Furtherreading 543 viii Contents 19 GroupTheory 545 Introduction 545 19.1 Solvingpolynomialequations 545 19.2 GaloisandGaloistheory 552 19.3 Impossibilitytheorems 560 19.4 Galois’stheoryofgroupsandequations 563 19.5 Grouptheory 565 19.6 Furtherreading 566 20 AppliedMathematics 569 Introduction 569 20.1 TheusesofFourierseries 570 20.2 Potentialtheory 581 20.3 Transatlanticcables 590 20.4 Furtherreading 593 21 PoincaréandCelestialMechanics 595 Introduction 595 21.1 Late19th-centurycelestialmechanics 595 21.2 HenriPoincaré 599 21.3 Poincaréanddifferentialequations 601 21.4 Poincaréandcelestialmechanics 603 21.5 Poincaré’smemoir 610 21.6 Poincaré’slaterworkincelestialmechanics 619 21.7 Conclusion 621 21.8 Furtherreading 622 22 Coda 623 Introduction 623 22.1 Theinternationalcommunityofmathematicians 623 22.2 Furtherreading 633 23 Exercises 635 Adviceontacklingtheexercises 635 Exercises: PartA 641 Exercises: PartB 657 Exercises: PartC 660 Bibliography 663 Index 683

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.