ebook img

The History of Mathematics PDF

643 Pages·2014·11.48 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The History of Mathematics

THE HISTORY OF MATHEMATICS THE HISTORY OF MATHEMATICS A BRIEF COURSE THIRD EDITION Roger L. Cooke DepartmentofMathematicsandStatistics UniversityofVermont Burlington,VT Copyright©2013byJohnWiley&Sons,Inc.Allrightsreserved. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada. Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyany means,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunder Section107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthe Publisher,orauthorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter, Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400,fax(978)750-4470,oronthewebat www.copyright.com.RequeststothePublisherforpermissionshouldbeaddressedtothePermissions Department,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201) 748-6008,oronlineathttp://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessof thecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessfora particularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials. Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwitha professionalwhereappropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomer CareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax (317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteatwww.wiley.com. LibraryofCongressCataloging-in-PublicationData: Cooke,Roger,1942- Thehistoryofmathematics:abriefcourse/RogerL.Cooke.–3rded. p.cm. Includesbibliographicalreferencesandindex. ISBN978-1-118-21756-6(cloth) 1. Mathematics–History. I. Title. QA21.C6492013 510’.9–dc23 2012020963 PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 CONTENTS PREFACE xxiii ChangesfromtheSecondEdition xxiii ElementaryTextsontheHistoryofMathematics xxiv PARTI. WHATISMATHEMATICS? ContentsofPartI 1 1. MathematicsanditsHistory 3 1.1. TwoWaystoLookattheHistoryofMathematics 3 1.1.1. History,butnotHeritage 4 1.1.2. OurMathematicalHeritage 4 1.2. TheOriginofMathematics 5 1.2.1. Number 5 1.2.2. Space 5 1.2.3. AreMathematicalIdeasInnate? 7 1.2.4. SymbolicNotation 7 1.2.5. LogicalRelations 7 1.2.6. TheComponentsofMathematics 8 1.3. ThePhilosophyofMathematics 8 1.3.1. MathematicalAnalysisofaReal-WorldProblem 9 1.4. OurApproachtotheHistoryofMathematics 11 QuestionsforReflection 12 2. Proto-mathematics 14 2.1. Number 14 2.1.1. Animals’UseofNumbers 14 2.1.2. YoungChildren’sUseofNumbers 15 2.1.3. ArchaeologicalEvidenceofCounting 15 2.2. Shape 16 2.2.1. PerceptionofShapebyAnimals 16 2.2.2. Children’sConceptsofSpace 16 2.2.3. GeometryinArtsandCrafts 17 2.3. Symbols 18 v vi CONTENTS 2.4. MathematicalReasoning 20 2.4.1. AnimalReasoning 20 2.4.2. VisualReasoning 21 ProblemsandQuestions 22 MathematicalProblems 22 QuestionsforReflection 24 PARTII. THEMIDDLEEAST,2000–1500BCE ContentsofPartII 25 3. OverviewofMesopotamianMathematics 27 3.1. ASketchofTwoMillenniaofMesopotamianHistory 27 3.2. MathematicalCuneiformTablets 29 3.3. SystemsofMeasuringandCounting 30 3.3.1. Counting 31 3.4. TheMesopotamianNumberingSystem 31 3.4.1. Place-ValueSystems 32 3.4.2. TheSexagesimalPlace-ValueSystem 33 3.4.3. ConvertingaDecimalNumbertoSexagesimal 33 3.4.4. IrrationalSquareRoots 36 ProblemsandQuestions 36 MathematicalProblems 36 HistoricalQuestions 36 QuestionsforReflection 37 4. ComputationsinAncientMesopotamia 38 4.1. Arithmetic 38 4.1.1. SquareRoots 39 4.2. Algebra 40 4.2.1. LinearandQuadraticProblems 41 4.2.2. Higher-DegreeProblems 43 ProblemsandQuestions 44 MathematicalProblems 44 HistoricalQuestions 44 QuestionsforReflection 44 5. GeometryinMesopotamia 46 5.1. ThePythagoreanTheorem 46 5.2. PlaneFigures 48 5.2.1. MesopotamianAstronomy 48 5.3. Volumes 49 5.4. Plimpton322 49 5.4.1. ThePurposeofPlimpton322:SomeConjectures 53 CONTENTS vii ProblemsandQuestions 54 MathematicalProblems 54 HistoricalQuestions 55 QuestionsforReflection 55 6. EgyptianNumeralsandArithmetic 56 6.1. Sources 56 6.1.1. MathematicsinHieroglyphicsandHieratic 57 6.2. TheRhindPapyrus 58 6.3. EgyptianArithmetic 58 6.4. Computation 59 6.4.1. MultiplicationandDivision 61 6.4.2. “Parts” 62 ProblemsandQuestions 65 MathematicalProblems 65 HistoricalQuestions 65 QuestionsforReflection 65 7. AlgebraandGeometryinAncientEgypt 66 7.1. AlgebraProblemsintheRhindPapyrus 66 7.1.1. AppliedProblems:ThePesu 67 7.2. Geometry 68 7.3. Areas 69 7.3.1. Rectangles,Triangles,andTrapezoids 69 7.3.2. Slopes 69 7.3.3. Circles 70 7.3.4. ThePythagoreanTheorem 71 7.3.5. SpheresorCylinders? 72 7.3.6. Volumes 73 ProblemsandQuestions 76 MathematicalProblems 76 HistoricalQuestions 76 QuestionsforReflection 76 PARTIII. GREEKMATHEMATICSFROM500BCETO500CE ContentsofPartIII 77 8. AnOverviewofAncientGreekMathematics 79 8.1. Sources 80 8.1.1. LossandRecovery 81 8.2. GeneralFeaturesofGreekMathematics 82 8.2.1. Pythagoras 83 8.2.2. MathematicalAspectsofPlato’sPhilosophy 85 viii CONTENTS 8.3. WorksandAuthors 87 8.3.1. Euclid 87 8.3.2. Archimedes 87 8.3.3. Apollonius 88 8.3.4. Zenodorus 88 8.3.5. Heron 88 8.3.6. Ptolemy 89 8.3.7. Diophantus 89 8.3.8. Pappus 89 8.3.9. TheonandHypatia 89 Questions 90 HistoricalQuestions 90 QuestionsforReflection 90 9. GreekNumberTheory 91 9.1. TheEuclideanAlgorithm 92 9.2. TheArithmeticaofNicomachus 93 9.2.1. Factorsvs.Parts.PerfectNumbers 94 9.2.2. FigurateNumbers 95 9.3. Euclid’sNumberTheory 97 9.4. TheArithmeticaofDiophantus 97 9.4.1. AlgebraicSymbolism 98 9.4.2. ContentsoftheArithmetica 99 9.4.3. Fermat’sLastTheorem 100 ProblemsandQuestions 101 MathematicalProblems 101 HistoricalQuestions 102 QuestionsforReflection 102 10. Fifth-CenturyGreekGeometry 103 10.1. “Pythagorean”Geometry 103 10.1.1. TransformationandApplicationofAreas 103 10.2. ChallengeNo.1:UnsolvedProblems 106 10.3. ChallengeNo.2:TheParadoxesofZenoofElea 107 10.4. ChallengeNo.3:IrrationalNumbersand IncommensurableLines 108 10.4.1. TheArithmeticalOriginofIrrationals 110 10.4.2. TheGeometricOriginofIrrationals 110 10.4.3. ConsequencesoftheDiscovery 111 ProblemsandQuestions 113 MathematicalProblems 113 HistoricalQuestions 113 QuestionsforReflection 114

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.