OreGeologyReviews36(2009)65–89 ContentslistsavailableatScienceDirect Ore Geology Reviews journal homepage: www.elsevier.com/locate/oregeorev The Himalayan Mianning–Dechang REE belt associated with carbonatite–alkaline complexes, eastern Indo-Asian collision zone, SW China Zengqian Houa,b,g,⁎, Shihong Tianc, Yuling Xied, Zhusen Yangc, Zhongxin Yuanc, Shuping Yinb, Longsheng Yid, Hongcai Feie, Tianren Zouc, Ge Baic, Xiaoyu Lif aEastChinaInstituteofTechnology,Fuzhou344000JiangxiProvince,PRChina bInstituteofGeology,ChineseAcademyofGeologicalSciences,Beijing100037,PRChina cInstituteofMineralResources,ChineseAcademyofGeologicalSciences,Beijing100037,PRChina dCivil&EnvironmentalEngineeringSchool,BeijingUniversityofScienceandTechnology,Beijing100083,PRChina eChineseAcademyofGeologicalSciences,Beijing100037,PRChina f109TeamofGeology,SichuanBureauofGeologyandMineralResources,Chengdu610100,SichuanProvince,PRChina gSchoolofEarthandGeographicalSciences,UniversityofWesternAustralia,Australia a r t i c l e i n f o a b s t r a c t Articlehistory: TheHimalayanMianning–DechangREEbelt,westernSichuan,SWChina,isapproximately270kmlongand Received11February2008 15 kmwide, and contains total reserves of N3 Mt of LREE, including one giant (Maoniuping), one large Receivedinrevisedform27February2009 (Dalucao)andanumberofsmall-mediumREEdeposits(Muluozhai,Lizhuang)andoccurrences.Thebeltis Accepted3March2009 tectonically located within a continental collision zone, i.e., the eastern Indo-Asian collision zone. REE Availableonline16March2009 mineralizationisassociatedwithHimalayancarbonatite–alkalinecomplexes,whichconsistofcarbonatitic sillsordykesandassociatedalkalinesyenitestocks.AvailabledatingdatadefineaHimalayanmetallogenic Keywords: Carbonatite epoch(40–10Ma).Themagmatic–hydrothermalREEsystemswerecontrolledbyCenozoiclarge-scalestrike- Syenite slipfaultingandtheresultanttensionalfissurezones,developedinatransformphasefromatranspressional REEdeposit toatranstensionalregime. Indo-Asiancollisionzone Alterationischaracterizedbyfenitization,whichformedfenitehalosenvelopingtheREEorebodies.Associated SWChina REEmineralizationoccursascomplexveinsystemsconsistingofvariousveinlets,stringerandstockwork Maoniuping zones,andbreccia-pipesystems.TheREEorebodiesshowvariousshapesfromplate-like,lenticulartopipe-like Dalucao indifferentdistricts.Oretypesaredominatedbypegmatitic,carbonatitic,breccia,andstringer(stockwork), Muluozhai and disseminated ores, mainlycomposed of barite + fluorite + aegirine-augite + calcite + bastnaesite Lizhuang assemblages. Bastnaesite precipitation (275–325 °C) appears in three assemblages: earlyclastics-bearing barite+arfvedsonite+calcite+bastnaesite;intermediatequartz+fluorite+barite+bastnaesite;andlate fluorite+barite+bastnaesiteassemblages.Thesewerefollowedbylow-temperaturepyrite+galena+ sphaleriteassemblages.Fluidinclusionstudiesindicatethatganguequartzandfluoritehostsnumerousmelt/ fluidinclusionswithalargeproportionofsulfate(i.e.,BaSO ,K SO ,andCaSO ),inadditiontoCaCO andCaF , 4 2 4 4 3 2 yieldingabnormallyhigh(upto750°C)butwide-ranginghomogenizationtemperatures(750–125°C).The similarityofSr–Ndisotopiccompositionsforganguemineralswiththoseofthehostcarbonatite–syenite suggeststhatore-formingfluids,especiallytheF−,HCO2−,SO2−components,werederivedfromcarbonatite– 3 4 syenitemagmas.TheO–D–Cisotopicdatafromganguecalcite,fluoriteandquartzindicatethatthefluidswere oforthomagmaticorigin,butalsoinvolvedmixingwithanexternalfluid. Onthebasisofoursynthesis,weproposeapossiblegeneticmodelforREEmineralization,inwhich the hydrothermalsystemtemporallyunderwentacomplicatedevolutionfromseparationofhigh-Tsulfate-bearing NaCl–KClbrineresultingineffectiveprecipitationofREE-fluorocarbonateandsulfate,tosubsequentmixing withlow-temperaturemeteoricwaterprecipitatingminorsulfideassemblages.Spatially,thissequenceof events generated a three-tier REE mineralized architecture, in which pipe-like breccia orebodies grade downwardsfromshallowtodeepstructurallevelsintolargeveinletoresystems,andveinlet-disseminated orebodies. ©2009PublishedbyElsevierB.V. 1.Introduction Inthelastfewdecades,awidely-acceptedconceptualmodelforthe ⁎ Correspondingauthor.InstituteofGeology,CAGS,Beijing100037,PRChina. genesis of primary REE deposits has been developed. In this model, E-mailaddress:[email protected](Z.Hou). primary REE deposits are mainlyassociated with carbonatite–alkaline 0169-1368/$–seefrontmatter©2009PublishedbyElsevierB.V. doi:10.1016/j.oregeorev.2009.03.001 66 Z.Houetal./OreGeologyReviews36(2009)65–89 Fig.1.SimplifiedtectonicmapoftheHimalayan–TibetanOrogen(modifiedafterYinandHarrison,2000;Houetal.,2003). complexesandoccurincontinentalriftzones.Thisfacthasbeenverified StudiesintheREEbeltduringthepasttwodecadeshavefocused bystudiesonnumerousREEdeposits,widelydevelopedinriftzones, mainly on individual deposits (e.g., Maoniuping, and Dalucao) (Niu such as the East African Rift (Mitchell and Garson, 1981) or the andLin,1994;Yuanetal.,1995;Niuetal.,1996;Yangetal.,1998,2000, Proterozoic Langshan–Baiyan Obo Rift of North China (Wang and Li, 2001;Pu,2001;Xuetal.,2002,2004;Tianetal.,2003,2005;Li,2005). 1992).However,notallREEdepositsoccurincontinentalriftenviron- However,therelationshipsbetweenREEmetallogenyandHimalayan ments;theycanalsobedevelopedincontinentalcollisionzones.The collisionorogenyandthegeneticlinksamongtheseREEdepositsin Himalayan Mianning–Dechang (MD) REE belt, western Sichuan, SW thebeltarelesswellconstrained.Thispaperdescribesthegeologyand China,isthefirsttypicalexampleofsuchatype.Here,REEdepositsare mineralizationfeaturesofdepositswithinthebelt.Basedonthelatest associated with Cenozoic carbonatite–alkaline complexes that occur observationsandasynthesisoftheentireEIACZ,REEmetallogensis tectonicallyintheeasternIndo-Asiancollisionzone(EIACZ),aregionof andthegeodynamicsettingoftheMDREEbeltarediscussed. hightopographicreliefboundedbyaseriesofCenozoicstrike-slipfaults (Fig.1;YinandHarrison,2000;Houetal.,2003,2006a,HouandCook, 2.Geologicaltectonicsetting 2009-thisissue).Ingeneral,REEdepositsincollisionalenvironmentsare lesswellunderstoodthanthoseinanorogenicriftenvironments. TheHimalayanMDREEbeltislocatedonthewesternmarginof TheMDREEbeltisoneofthemosteconomicallysignificantbeltsin the Yangtze craton (Fig. 1), a Cenozoic EIACZ. Available age date China.Itisupto270kminlengthand15kminwidth,andhostsone defines a Himalayan metallogenic epoch (40–10 Ma) for REE giantdeposit(Maoniuping),onelargedeposit(Dalucao),twomedium- mineralization associated with Cenozoic carbonatite–alkaline com- sizeddeposits(MuluozhaiandLizhuang),andnumerousotherminer- plexes (cf. Hou et al., 2006a). The basement of the Yangtze craton alizedcarbonatite–alkalinecomplexes(Table1;Fig.2).TheREEbeltis consists of Archaean high-grade metamorphic rocks, Proterozoic locatedwithinthePanxiRift,aPermianpaleo-riftzone(Zhangetal., meta-sedimentary rocks and overlying Phanerozoic clastic and 1988;Cong,1988),butavailableagedataforthehostrocksandgangue carbonatesequences (Cong,1988; Luo et al.,1998). The Proterozoic mineralsshowtheybelongtotheHimalayanmetallogenicepoch(40– Kangdinggranitoidbatholiths(Xuetal.,1995),~150kmnorthofthe 10Ma;Yuanetal.,1995,1998;Pu,2001;Tianetal.,2008a,b),suggesting REEbelt, were associatedwith contemporaneous arcvolcanic rocks formation in a collisional orogenic environment rather than a within the western mobile belt of the Yangtze craton, suggesting continentalrift.ThisledWang,D.-H.etal.(2001)tosimplyregardthe subduction of the Pro-Tethyan oceanic plate beneath the Yangtze Maoniupingdepositasaspecial“orogenic-type”REEdeposit. craton during the Proterozoic (Xu et al., 1995; Luo et al., 1998). A Table1 SummaryofgeologicalcharacteristicsofthemaindepositsintheMDREEbelt,westernSichuan,SWChina. Deposit Structure Wallrock Hostrock Mineralassemblage Alteration Gradeandtonnage Orebodyform Oretype Orestructure Ref. Maoniuping Hahastrike-slip Granite, Nordmarkite Microcline,quartz,biotite,aegirine,aegirine-augite, Fenitization; About1.2Mt Semi-layered, Pegmatitic,carbonatitic, Massive,Mottle, Yuanetal., fault basalt, arfvedonite,chevkinite;calcite+fluorite+barite+ carbonatization; ofREO;gradingon banded, breccia,andstringer ribbon-banded, 1995;Yang Z. rhyolite, celestine+bastnaesite;fluorite+barite+quartz+ aegirineor averageof irregular (stockwork) banded etal.,2000; Ho nordmarkite, bastnaesite;Fe–Mnoxidesandcalcite;cerussite+ aegirine–augite 2.89%REO lensand Tian,2005 ue carbonatite witherite+strontianite+wulfenite alteration pocket ta l. / O re G Dalucao sDluiplcfaaoulSttrike- qnuoardrtmsadrikoirtiete,, Nordmarkite aMrfivcreodcolinniete,,qcuhaervtzk,inbiitoet;itcea,laceitgeir+inefl,uaoergiitrein+e-abuargiittee,+ Fcaernbitoinzaattiioznat;ion AofbRouEOt0;.76Mt Laenndtipciuplea-rlike Bbaresctnciaaesoirtee;obraersi;tece+lesfltuinoeri+te+ Bmraescsciivaes,,block, S19h9i6a;ndYaLni,g eology carbonatite celestine+bastnaesite;fluorite+barite+quartz+ gradingon withminor fluorite+bastnaesite;stringer banded, etal.,1998; Re bastnaesite;Fe–Mnoxidesandcalcite;cerussite+ averageof vein-like ore;massive,block-like disseminated Tian,2005 vie witherite+strontianite+wulfenite 5.0%REO disseminatedore andstringer ws Lizhuang Intersectionsof Granite, Nordmarkite ThemineralassociationsatLizhuangare Fenitization 1.05–6.69% Semi-layered, Browndisseminatedore; Massive, Tian,2005 36 NE-strikingwith nordmarkite, relativelysimple REO banded, Yellowbandedore;Stockwork banded (2 0 NW-striking carbonatite irregularlens ore;Blackpowder-likeore 0 9 strike-slip ) 6 faults 5– Muluozhai Yalongjiang Granite, Nordmarkite ThemineralassociationsatMuluozhaiare Fenitization; About0.45Mt Semi-layered, Massivefluorite–bastnaesite, Massive, Tian,2005 89 strike-slipfault nordmarkite, relativesimple carbonatization; ofREO, banded, impregnated,abandedores banded carbonatite aegirineor gradingon irregularlens aegirine-augite averageof andveinlets alteration 3.97%REO 6 7 68 Z.Houetal./OreGeologyReviews36(2009)65–89 Fig.2.(A).CenozoictectonicmapofeasternTibet(Wang,J.-H.etal.,2001),showingthedistributionoftheHimalayanpotassicrockbelt(Chungetal.,1998;ZhangandXie,1997), shoshoniticlamprophyredistrict(Guoetal.,2005),andcarbonatite–alkaliccomplexbelt(Yuanetal.,1995),whichformaCenozoicsemi-discontinuousigneousprovinceinthe easternIndo-Asiancollisionzone.(B).SketchtectonicmapshowingdistributionoftheHimalayancarbonatite–alkaliccomplexescontrolledbyreactivatedfaultsinwesternSichuan (modifiedfromYuanetal.,1995). sequenceofmid-Permianfloodbasaltswithminorpicriteandpicritic shuiheandXiaojiangfaultsintheYangtzecraton(Fig.2A).Associated basaltscoversthewesternpartoftheYangtzecraton,anearlyPermian Cenozoicdeformation ischiefly manifestedbyPaleocene–Oligocene passive continental margin (Hou et al., 2006b), forming a large (55–32Ma)transpression,early–middleMiocene(26–17Ma)trans- igneousprovince(LIP)withanareaof~500,000km2(Lu,1996;Xu, tension,andalateNeogene–QuaternaryE–WextensionintheEIACZ Y.-G. etal.,2001). LIP development hasbeenwidelyconsideredto (Wang,J.-H.etal.,2001). relatetotheEmeishanmantleplume(ChungandJahn,1995;Lu,1996; Himalayan magmatic activity in the EIACZ forms a semi-contin- Xu,Y.-G.etal.,2001;Houetal.,2006b).ThisPermianmantleplumealso uous potassic igneous province in SW China (Guo et al., 2005). It resultedinformationofthePanxipaleo-riftzone(Cong,1988),bounded includes fromwest to east: (1) a 1000-km-long potassic rock belt, by NS-striking faults along thewestern margin of the Yangtze craton associated with a series of early-middle Cenozoic pull-apart basins (Zhangetal.,1988). anddevelopedalonganarrowbeltfollowingtheNanqianthrust,the Indo-Asiancollisionat65–50MaintheHimalayanorogen(Yinand Batang–Lijiangfault,andtheRedRivershearzone(RRSZ)(Zhangand Harrison,2000; Zhongetal., 2001; Moet al., 2003) resultedin the Xie,1997;Wang,J.-H.etal.,2001;Houetal.,2003);(2)a50,000km2 western margin of the Yangtze craton, forming a collision orogenic shoshonitic(calc-alkaline)lamprophyredistricteastoftheRRSZ(Luo belt, i.e., the NS-striking Jinpingshan Orogen in the EIACZ (Fig. 2A) and Yu, 2001; Guo et al., 2005); and (3) a 270 km-long belt of (Luoetal.,1998).AseriesofCenozoicstrike-slipfaults(Fig.2B)were carbonatite–alkalinecomplexesinwesternSichuan,boundedbythe subsequently developed in the EIACZ to accommodate stress and NS-strikingYalongjiangandAnninghefaultswhichwerereactivated strainproducedbythecollision.Thesestrike-slipfaultsinclude,from duringtheperiodofIndo-Asiancollision(Fig.2B).Alltheseigneous west to east, the Jiali and Gaoligong faults around the eastern activities took place over a relatively short duration of 40–24 Ma, Himalayansyntaxis;theBatang–Lijiangfault(northernsegment)and peakingat35Ma(ZhangandXie,1997;Wang,J.-H.etal.,2001;Chung the Ailaoshan–Red River fault (southern segment); and the Xian- et al.,1998; Hou et al., 2003; Guo et al., 2005). The monzogranite Z.Houetal./OreGeologyReviews36(2009)65–89 69 Fig.3.Simplifiedgeologicalmapshowingthedistributionofcarbonatite–alkaliccomplexesandassociatedREEorebodiesatMaoniuping(modifiedfromYuanetal.,1995). stocks in the potassic felsic rock belt were associated with Cu syenite (Luoand Yu, 2001)and 31.7 Ma forcarbonatite (Pu,2001). mineralization,whichformtheHimalayanYulongporphyryCubelt SyenitefromtheMuluozhaicomplexyieldeda40Ar/39Arageof31.2Ma in eastern Tibet (Hou et al., 2003), whereas carbonatite–alkaline (Tianetal.,2006),whereasthatfromtheLizhuangcomplexgavea complexes were associated with REE mineralization (Tian, 2005), younger40Ar/39Arageof21.7Ma(Tian,2005).Inthesoutherndistrict, whichproducedtheMDREEbeltinwesternSichuan(Fig.1). thecarbonatite–alkalinecomplexiscontrolledbytheDalucaostrike- slip fault (Fig. 2B), and intruded both a Proterozoic quartz diorite 3.Geologyandgeochemistryofthecomplexes plutonwithaSHRIMPU-Pbzirconageof764Ma(Tianetal.,2008a) andaTriassic–Jurassicsedimentarysequence,suggestingarelatively 3.1.Spatial–temporaldistribution shallowdepthforthecomplex.Thecomplexconsistsofsyenitestocks, carbonatite sills, and REE-bearing breccia-pipes (Fig. 6, Yang et al., The carbonatite–alkaline complexes in western Sichuan are 1998).SHRIMPU-Pbzircondatingforcarbonatiteandnordmarkiteare located in the eastern part of the Cenozoic igneous province 12.99±0.94Ma,and14.53±0.31Ma,respectively(Tianetal.,2008a). (Fig.2A).TheymainlyintrudeProterozoiccrystallinebasementand anoverlyingPaleozoic–Mesozoicvolcano-sedimentarysequence,and 3.2.Geochemistry constituteanarrow,NS-tendingREE-bearingbelt.Thebeltisbordered by NS-striking strike-slip faults (Figs.1 and 2), whereas individual Thedominantlithologiesofcarbonatitesfromthesecomplexesare complexes with irregular shapes were controlled by second-order pinkcoarse-grainedandwhitefine-medium-grainedcalcitecarbona- strike-slipfaultsortranstensionalfaults(Fig.2B). tites, with 80–90% modal calcite and subordinate aegirine, aegirine- Atleasttwodistrictsofcarbonatite–alkalinecomplexeshavebeen augite,riebeckite,arfvedsonite,biotite,microcline,andquartz.Allrocks recognized.Thenortherndistrictincludesthreecomplexes:Maoniup- arelowSiO (b10.22%),FeO(b1.20%)andMgO(b0.73%),butwitha 2 ing(Fig.3);Lizhuang(Fig.4);andMuluozhai(Fig.5),whichgenerally rangeofCaOcontents(40.65–55.40%)(Liuetal.,2004;Tian,2005;Hou strike in an almost N–S direction (Fig. 2B). These complexes are etal.,2006c),distinguishingthemfromprimary,calcitecarbonatites. dominatedbybodiesofsyenite,withminorcarbonaticsillsanddykes Themainphaseintheassociatedsyeniticrocksisnordmarkite,with (Figs.3–5).Availableagedatedefinesamagmaticdurationof27.1to minor aegirine-augite syenite and porphyritic syenite, with high 40.8 Ma for these complexes. Bulk-rock and arfvedsonite separated Al O (N13.3%) and alkali contents (K O + Na O N9.1%) and awide 2 3 2 2 from the Maoniuping complex yielded a K–Ar age of 40.8 Ma for rangeofK Ocontents(3.63–5.94%)andK O/Na Oratios(0.41–1.45), 2 2 2 70 Z.Houetal./OreGeologyReviews36(2009)65–89 Fig.4.Schematicmapshowingthefeaturesofcarbonatite–syenitecomplexandassociatedREEorebodiesatLizhang. thusdistinguishingthemfrompre-Cenozoicgranitoidplutonsbytheir suggestingametasomatizedmantlesource(Tatsumietal.,1986;Foley lowSiO (b71.5%)andmodalquartzcontents(b20%)(Yuanetal.,1995). andWheller,1990).AssociatedsyenitesarerelativelyenrichedinLILE 2 ThecarbonatitesareenrichedinLREEandlarge-ionincompatible andHFSE,showingsimilartraceelementpatternsandREEpatterns, elements (LILE: Sr: 1002–56,300 ppm; Ba: 378–125,750 ppm), and butwithLREEenrichment(Houetal.,2006c). thus similar to carbonatites that host REE-Nb–Fe orebodies in Carbonatites from these complexes yield a range of δ18O values anorogenic environments (Liu et al., 2004; Tian, 2005; Hou et al., varyingfrom6.4to10.5‰andδ13Cvaluesbetween−3.9and−8.5‰ 2006c).Theyarerelativelydepletedinhigh-fieldstrengthelements (Yangetal.,1998;Xuetal.,2002;Niuetal.,2003;Tian,2005;Houetal., (HFSE),andshownegativeanomaliesinNb,Ta,P,Zr,Hf,andTiina 2006c),whichgenerallyfallinthefieldoftheprimary,mantle-derived mantle-normalizedtraceelementpatterndiagram(Houetal.,2006c), carbonatitesonaδ18Ovs.δ13Cdiagram(Fig.7;Tayloretal.,1967).Bulk- Fig.5.SketchgeologicalmapoftheMuluozhaioredistrict(modifiedfromTian,2005). Z.Houetal./OreGeologyReviews36(2009)65–89 71 Fig.6.Sketchgeologicalmapshowingthefeaturesofcarbonatite–syenitecomplexandassociatedREEorebodiesatDalucao(modifiedfromHouetal.,2006a). rockδ18Ovaluesoftheassociatedsyenitesare3.5–7.9‰(Tian,2005) etal.,2001b;Xuetal.,2002,2004;Huangetal.,2003;Tianetal.,2003). and~1–2.5‰,whicharesimilarorslightlylightlylighterthanthoseof Geologyandmineralizationfeaturesarebrieflydescribedhere. calcitesfromcarbonatites(Xuetal.,2002;Tian,2005).TheNdandSr isotopiccompositionsofthecarbonatitesarecharacterizedbyanegative 4.1.1.Geology ε of −3.2 to −6.4 and relative high (87Sr/86Sr) of 0.706020– Fourmainlithologicunitsarerecognizedinthedistrict(Fig.3):(1) Nd(t) i 0.707922 (Hou et al., 2006c). They are thus distinct from most a90km-long,6to14km-wide,NS-strikinggraniticplutonunitwitha carbonatites with positive ε and negative ε , generated by Nd(t) Sr(t) anorogenicprocesses(BellandBlenkinsop,1987)andfromthePakistan collision zone carbonatites with negative ε but low ε (Tilton Nd(t) Sr(t) etal.,1998)(Fig.8).Associatedsyenitesshowasimilarε butwider Nd(t) rangeof(87Sr/86Sr),comparedwiththecarbonatites(Yuanetal.,1995; i Liuetal.,2004;Tian,2005;Houetal.,2006c). Insummary,theclosespatialandtemporalassociationofcarbonatites withsyenitesinwesternSichuansuggestsageneticlink.TheirSr–Ndand C–Oisotopesignaturesindicatethattheyarederivedfrompartialmelting ofametasomatized,enrichedmantlesource(Houetal.,2006c). 4.Mineralization The Himalayan MD REE belt was discovered in the 1990s, and related REE deposits were subsequently explored by 109 Team of Geology, Sichuan Bureau of Geology and Mineral Resources. Pre- liminaryevaluation indicates that the REE belt contains reserves of over 3 Mt REO, including one giant (Maoniuping), one large (Dalucao), one intermediate (Muluozhai) and a number of small REEdeposits(e.g., Lizhuang)andoccurrences. Mostdepositsin the REEbelthavebeenminedbydomesticminingcompanies,andhave met most of the demand for REE metals in China. Geological and mineralization features of the deposits are summarized in Table 1. SignificantREEdepositsaredescribedinthefollowingsections. 4.1.Maoniupingdeposit TheMaoniupingdepositisaworld-classdeposit,followingonlythe BayanOboREE-Nb–Fe(China)andMountainPass(USA)REEdepositsin Fig. 7. Carbon and oxygen isotope compositions of calcites from carbonatites and associatedREEorebodies(gangueminerals)intheMDREEbelt.Thefieldofprimary, termsofsize.Maoniupingcontainsca.1.2MtREO,gradinganaverage mantle-derived carbonatites is shown. Arrows schematically indicate the main 2.89%REO.Thedeposithasbeenstudiedbymanyresearchers(Niuand processesresponsibleforchangeintheC–Oisotopiccomposition(Tayloretal.,1967; Lin,1994;Yuanetal.,1995;Niuetal.,1996;Yangetal.,2000,2001;Wang Rayetal.,1999,2000). 72 Z.Houetal./OreGeologyReviews36(2009)65–89 Fig.8.Nd–Srisotopecorrelationdiagramforcarbonatite–syeniteandassociatedREEorebodiesintheMDREEbelt.Comparativedatafromyoung(b200Ma)carbonatitesfrom aroundtheworldareincluded.EACL:EastAfricanCarbonatiteLine(BellandBlenkinsop,1987),EA:EastAfricanriftcarbonatites(BellandBlenkinsop,1987);AD:AmbaDongar carbonatites(60Ma)(SimonettiandBell,1995);PC:Pakistancollision-zonecarbonatites(30Ma)(Tiltonetal.,1998).PG—FluoritefromtheGalwaydeposit,Ireland(Menugeetal., 1997),FAD—FluoritefromtheSierradelGuadarramadeposit,Spain(Galindoetal.,1994);FSP—FluoritefromtheSierrasPampeansdepositinArgentina(cf.Houetal.,2008), andFSG—FluoritefromtheAmbaDongarcarbonatiteinIndia(SimonettiandBell,1995).DM,EMI,EMIIandHIMUareend-membercomponentsfromZindlerandHart(1986). M-Maoniuping,ML-Muluozhai,D-Dalucao,L-Lizhuang. zirconU–Pbageof146Ma(Zhangetal.,1988),whichintrudes;(2)a TheMaoniupingcomplexiscontrolledbytheHahastrike-slipfault 1100 m-thick metamorphosed sequence consisting of Devonian– and intrudes a Mesozoic granitic pluton and nearby rhyolitic Permian clastic rocks, limestones and flood basalts; and (3) an succession (Fig. 3). It is a multiphase complex with a length of ca. overlying,700m-thickcoal-bearingTriassicsedimentarysequence,as 1400mandwidthof260to350m,andmainlyconsistsofsyenitic wellas;(4)arhyoliticsuccession,theageofwhichremainsunknown. stocks,carbonatitesills,andassociatedporphyriticgranitedykesand Fig.9.Geologicalcross-sectionsalongexplorationlines31(A)and47(B)intheMaoniupingREEdeposit(modifiedfromYuanetal.,1995). Z.Houetal./OreGeologyReviews36(2009)65–89 73 Fig.10.OreveinsystemoftheMaoniupingREEdeposit(modifiedfromYangetal.,2000). numerous alkaline pegmatite dyke swarms with complex composi- replacement of K-feldspar and quartz by aegirine and/or aerigine- tions (Fig. 3; Yuan et al.,1995; Yang et al., 2000). Steeply-dipping augite, and albite, mainly developed in the carbonatite–alkaline carbonatite dykes or sills grade downwards into a 90 m-wide complex itself. The intensity of this zone increases toward the medium- and coarse-grained calcite carbonatite body (Yang et al., pegmatitic vein swarms. A biotite–arfvedonite zone overprints the 2000). Aegirine-augite-bearing granitic dykes locally cut these aegirinezoneaspatches,andismainlydevelopedintheinteriorofthe carbonatite sills and pegmatitic swarm, suggesting they represent carbonatiteandassociatedpegmatiticsill. thefinalphaseofthecomplex. Although minor bastnaesite occurs as a dissemination in the fenitization halo, the main REE mineralization is related to intense 4.1.2.Alteration late-stage alteration, dominated by carbonatization and aegirine or Widespreadfenitizationcharacterizesalterationinthedistrict,and aegirine-augitealteration(Yuanetal.,1995).Bothstylesofalteration forms a 1800 m-long, 100 to 600 m-wide fenitization halo, that overprinttheearly-formedfenitizationhalo,andwereassociatedwith envelopes almost all orebodies at Maoniuping. This alteration is ore vein assemblages of calcite + fluorite + barite + celestine + characterized by replacement of plagioclase and quartz by alkalic aegirine-augite+bastnaesite. feldspar and the formation of secondary aegirine, aegirine-augite, arfvedoniteandassociatedMg-enrichedbiotite.Alateralzonationin 4.1.3.Mineralizationstyle the halo, ranging from an inner biotite–arfvedonite zone outwards TheMaoniupingdepositisaveinsystemconsistingofmineralized throughanaegirinezonetoanouteralbitezone,hasbeenrecognized veinlets,stringersandstockworkzones(Fig.3).Themineralizedvein (Yang et al., 2000). The albite zone is characterized by fine REE- systemextendstotheNNEfor2.65km,andexhibitsan“S”shapein bearingalbiteveinsandstockworksthatoccurintheMesozoicgranite planeview(Fig.3),indicatingconstraintsfromthestrike-slipfaultingon plutonandrhyoliticsuccession.Anaegirinezoneischaracterizedby theveinsystem.Theoreveinletsareusuallymorethan30cmthick,and 74 Z.Houetal./OreGeologyReviews36(2009)65–89 Fig.11.PhotographsshowingkeyoretypesintheMaoniupingandDalucaodeposits.(A)pegmatiticbarite+fluorite+aegirine-augite+bastnaesiteore.(B)pegmatiticorthoclase+ aegirine-augite+fluorite+bastnaesiteore.(C)Brecciatedoresgradinglaterallyintostringeroreanddownwardsintoparallelzonesofveining.(D.Brecciaedoreinthebrecciaspipe,in whichclastsconsistpredominatelyofmagmaticdetritusandorefragmentshostedwithinacalcite-richmatrixwithsubordinatequartzandREEminerals.(E).Taxiticoreinthebrecciaspipe. mainly occur as swarms in the centre of the complex (Fig. 9). The morphologiesvaryfromsemi-layeredandbandedtoirregularlenses mineralized stringers have a various thicknesses (1–30 cm), and andpocket-shaped(Fig.9). commonly constitute parallel vein zones that enveloped the central ore veinlets. Stockwork zone generally occurs at the margins of the 4.1.5.Oretypeandzonation veinlets and vein zones, and mainly consists of various fine-vein Fourmainoretypeshavebeenrecognized:pegmatitic;carbonatitic; assemblagesofbastnaesite-bearingbarite+aegirine-augite,fluorite+ brecciated; and stringer (stockwork) ores. The pegmatitic ore occurs orthoclase,andcalcite+fluorite.Ingeneral,thickoreveinletswarms mainly as thick ore veinlets or pockets, clustering in the northern aremainlydistributedinthenorthernsegmentofthedeposit,locally segment(Figs.9Aand10),andcanbedividedintopegmatiticbarite+ formingveinletnetworks(Fig.9;Yangetal.,2000),inwhichabundant fluorite + aegirine-augite + bastnaesite and orthoclase + aegirine- bastnaesite occurs as mega-crystals (50×15 cm) and shows mineral augite+fluorite+bastnaesiteores(Fig.11A,B).Therearetwozonation zonationvaryingfromacentralfluorite–quartz–barite–bastnaesitezone modesforpegmatiticbarite+aegirine-augite+bastnaesiteore.When toanouterbarite–aegirine-augitezone(Yangetal.,2000).Brecciated bastnaesiteoccursasbandsinbothsidesoftheoreveinlets,zonationcan mineralizationoccurslocallyinthecentreoftheveinletnetwork,andis bedescribedasaninnerzoneofaegirine-augite,atransitionalzoneof associatedwithpegmatiticmineralization(Fig.10). barite and aegirine-augite, and an outer zone of alternating barite– aegirine-augiteandbastnaesite–fluoritebands.Ifthebastnaesitebands 4.1.4.Orebodyshape concentrateinthecentreoftheoreveinlets,mineralzonationisinthe About71orebodieshavebeenoutlinedbydrillingandchemical oppositesense(Yangetal.,2000).Pegmatiticorthoclase+aegirine- analysis. They have a length varying from 10 to 1168 m, thickness augite+fluorite+bastnaesiteoresarecharacterizedbytheappearance varyingfrom1.2to32m,andgradeonaveragefrom1.04to9.05%REO ofquartzandmicrocline,andshowalateralzonationvaryingfroma (Yuanetal.,1995).TheseorebodiesdipsteeplytowardsNWat65–80° quartzcorethroughamicroclineorbarite–microcline–aegirine-augite– and show an S-shaped layers in plane view (Fig. 3). Orebody bastnaesitetransitionalzonetoanaegirine-augiteouterzone.
Description: