ebook img

The Hilbert schemes of points on surfaces with rational double point singularities PDF

0.4 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Hilbert schemes of points on surfaces with rational double point singularities

THE HILBERT SCHEMES OF POINTS ON SURFACES WITH RATIONAL DOUBLE POINT SINGULARITIES XUDONGZHENG 7 Abstract. WeprovethattheHilbertschemeofpointsonanormalquasi-projectivesurfacewithat 1 worstrationaldoublepointsingularitiesisirreducible. 0 2 n TheprimarypurposeofthisarticleistoexplorethegeometryoftheHilbertschemeofpoints a Hilbd(X) for a surface X with certain isolated singularities. We confirm the irreducibility of J 0 Hilbd(X)forXwithonlyrationaldoublepoints. 1 Hilbertschemesofpointsonquasi-projectivecomplexvarieties,especiallysmoothcurvesand surfaces have been studied extensively in recent years. One of the common themes underlying G] the existing literature is that studying the Hilbert schemes Hilbd(X) for varying d all at once canrevealstructureaboutthevarietyX,suchassomeenumerativegeometricinformation. The A smoothnessofHilbd(X)oftenallowsinvestigationoftheirfurtherstructures. Ontheotherhand, . h the complexity of the singularities of Hilbd(X) if X is three-dimensional or higher has been one t a of the obstructions to generalizing results on smooth curves and surfaces. In the case that X m is singular, the geometry of the Hilbert schemes become more complicated. It is necessary to [ understandtheHilbertschemesofpointsofasingularvarietysincesingularvarietiesarenatural degenerations of smooth varieties in families. For a singular curve C, a naturally related object 1 v is the compactified Jacobian J(C) of C, which admits the Abel-Jocobi map from Hilbd(C), and 5 Hilbd(C) is irreducible if and only if locally any point of C has embedding dimension at most 2 3 (locallyplanarsingularities) ([AIK,R80]). AgeneralizedMacdonald’sformula isappliedinthe 4 contextoftheuniversalHilbertschemesofpointsofafamilyofcurvesleadingtoaproofofGöttsche’s 2 conjectureonthenumberofnodalcurvesonsurfaces([G98,T12,S12]). Indimension2,ifasurface 0 . X has a single isolated cone singularity over a smooth curve of degree at least 5, then Hilbd(X) 1 0 isreducibleforsufficientlylargenumberd([MP13]). Yetitisanopenquestionwhetherthereis 7 asingularsurfacewhoseHilbertschemesofpointsareirreducibleforanyd > 0,particularlyfor 1 surfaceswithmildsingularities. : v Rationaldoublepointsonsurfacesinsomesenseareamongthesimplestsurfacesingularities i withacompleteclassification. Aswewillseethestudyofreflexivemodulesandtheirdeformations X is essential in the proof of the main theorem, whereas we take advantage of the following facts r aboutrationaldoublepoints. First,therearefinitelymanyisomorphismclassesofindecomposable a reflexive modules; and second, every module admits a free resolution over the local ring of the singularity via a matrix factorization. However, the irreducibility of the Hilbert scheme is not valid for the affine cone over a twisted cubic curve, casting doubts on generalizing our results to other quotient singularities. For a general rational surface singularity other than a rational double point, the Hilbert scheme will become reducible if d is sufficiently large. We will leave the investigation of the Hilbert schemes on surfaces with minimally elliptic singularities as a separatedproject. Date:January11,2017. Keywordsandphrases. Hilbertschemeofpoints,smoothability,maximalCohen-Macaulaymodules,rationaldouble pointsurfacesingularities. 1 2 XUDONGZHENG TheoremA(Theorem3.3). SupposeXisaquasi-projectivenormalsurfacewithatworstrationaldouble pointsingularities. LetHilbd(X)betheHilbertschemeoflengthdsubschemesofX. Thenforanypositive integerd,Hilbd(X)isirreducibleofdimension2d. We collect some geometric consequences of the irreducibility of Hilbd(X). First of all, one canproveFogarty’ssmoothnesstheoremforHilbd(X)onasmoothsurfaceusingthetheoremof Hilbert-Burch on free resolutions of ideal sheaves of zero-dimensional subschemes (see [FGA, Chap. 7]). Inourcase,weshowasimilarsmoothnesscriterion: TheoremB(Theorem4.1). SupposeZbealengthdsubschemeofthesurfaceXwithonlyADEsingu- larities. ThenHilbd(X)issmoothat[Z]ifandonlyifI hasfinitehomologicaldimensionoverX. Z WealsoobtainsomegeneralizationsonresultsontheaffineplaneduetoHaiman. Thesmooth quasi-projectivevarietyHilbd(A2)hastrivialcanonicalbundle,whereas: TheoremC(Theorem4.2). SupposeX=Spec(C[x,y,z]/(cid:104)xz−yn+1(cid:105))istheaffinesurfacewithonlyA n singularityattheorigin. ThenHilbd(X)hasanowherevanishing2d-form. HaimanalsoshowsthatHilbd(A2)isisomorphictotheblow-upofthesymmetricproductA2(d) alongsomeideal,wherethisblow-upisidentifiedwiththeHilbert-Chowmorphism. Weobtain analogousstatementfortheaffinequadricconeQ=Spec(C[x,y,z]/(cid:104)xz−y2(cid:105)). TheoremD(Theorem4.5). TheHilbertschemeHilbd(Q)togetherwiththeHilbert-Chowmorphismis isomorphictotheblow-upofthed-thsymmetricproductQ(d) alongtheidealconsistingofproductsoftwo S -alternatingfunctionsonQ. d Thestudyofdeformationsofclosedsubschemesthataresupportedataclosedpointinavariety reliesheavilyontheformalanalyticpropertiesofaneighborhoodofthepoint. Wenotethatthisis allowableforourpurposeaszero-dimensionalschemesarealgebraicinanyeventandembedded deformationofclosedsubschemesisformalinessence. The paper is organized as follows. In section 1, we fix terminologies on Hilbert schemes of points and review the structure of reflexive modules on ADE surface singularities. Section 2 contains the results on deformations of reflexive modules, which, as syzygy modules of zero- dimensionalsubschemes,willgiverisetodeformationsofthecorrespondingsubschemes. Section 3 contains the main theorem on the irreducibility of the Hilbert scheme on surfaces with ADE singularities (Theorem 3.3). Section 4 collects a few geometric applications of the irreducibility ofHilbd(X). Inparticular,ifXistheaffinequadricconein3-space,theHilbert-Chowmorphism hasanalternativeinterpretationanalogoustothecaseoftheaffineplane. Inthelastsection,we providesomeexamplesofreducibleHilbertschemes,inparticular,ofatleast8pointsonthecone overatwistedcubiccurve. Acknowledgement. The results on the A singularities case have appeared as parts of the n author’sPh.D.ThesisattheUniversityofIllinoisatChicago. Itisapleasuretoacknowledgethe overwhelminginfluenceofProfessorsLawrenceEinandKevinTuckeronthiswork. Hethanks ProfessorsFrank-OlafSchreyerandRobinHartshorneforinspiringconversationscontributingto thepaper. HeisgratefultoProfessorsHailongDao, TrondGustavsen, AkiraIshii, andMichael Wemyssforansweringquestionsrelatedtothepaperinemailcorrespondence. 1. Preliminaryandmotivations Throughoutthisarticle,weworkoverthefieldofcomplexnumberswithinthecategoryC−Sch oflocallyNoetherianC-schemes. FiberproductsareoverSpec(C)ifnotspecified. HILBERTSCHEMESOFPOINTSONSINGULARSURFACES 3 1.1. Definitions and background. Suppose X is a (quasi)-projective scheme and P(x) ∈ Q[x] a numericalpolynomial. The Hilbert functor on X (with Hilbert polynomial P) HilbP is the contravariant functor from X thecategoryC−SchtothecategorySetofsets,whichassignstoeachschemeUthesetofclosed U-flat subschemes Z ⊂ U×X that have Hilbert polynimal P; and for a morphism φ : U → V ∈ MorC−Sch(U,V),HilbX(φ)istheinducedmapofsetsviafiberproduct. TheHilbertschemeofXwith Hilbert polynomial P, denoted by HilbP(X), is the quasi-projective scheme which represents the functorHilbP. Inparticular,ifP(x)=d∈Nistheconstantpolynomial,theschemeHilbd(X)isthe X HilbertschemeofdpointsofX. ThereistheuniversalfamilyH(cid:103)ilbd(X)→−π Hilbd(X). Let S be the symmetric group in d elements, and let Xd = X × ··· × X be the d-fold fiber d product of X. The group S acts on Xd by permuting the factors. The d-th symmetric product of d XistheprojectiveschemeofS -quotientofXd,denotedbyX(d). Explicitly,fixinganembedding d X(cid:44)→P(E),bygeometricinvarianttheoryonecanequiptheset-theoreticalquotientXd/S witha d quasi-projectiveschemestructure. TheclosedpointsofX(d) aretheeffective0-cyclesoflengthd, henceX(d) isregardedasaChowvarietyof0-cycles. ThesymmetricproductX(d) coincideswith Rydh’s scheme of divided powers Γd(X) as over C. Over an arbitrary field k, for an affine scheme Y = Spec(A)theaffineschemeofdividedpowersofY isthespectrumofthealgebraofdivided powers Γd(A), which is not necessarily isomorphic to the d-th symmetric algebra Symd(A) (see k [R08]fordetails). TheHilbert-Chowmorphismisthefollowingmorphism,denotedbyh:Hilbd(X)→X(d). Suppose Z ⊂ X is a length d scheme supported at r distinct points z ,...,z ∈ X, giving rise to a closed 1 r point [Z] ∈ Hilbd(X). Then h([Z]) = (cid:80)ri=1mizi, where mi = dimkOZ,zi. This description of the Hilbert-Chow morphism is only on the set of closed points. The target X(d) should adapt the reducedschemestructure. Foraprecisedefinitionsee[FGA,Chap. 7]. If X is a non-singular connected curve, then h is an isomorphism between two non-singular varieties. Inparticular,thecohomologyringofX(d) isexpressedintermsofthecohomologyring ofthecurveXbyMacdonald’sformula. IfXisanon-singularconnectedsurface,thenHilbd(X)is non-singularofdimension2dandisacrepantresolutionofsingularitiesofX(d)viah([F68]). Let I ⊂ O be an ideal sheaf which defines a zero-dimensional subscheme Z of X of length X d=l(Z),i.e.,dimCOX/I=d. WesaythattheidealIhascolengthd. TheHilbertfunctionofIisthe integral-valued vector h = (h0,h1,...) where hi = dimCH0(X,OX(i))−dimCH0(X,I(i)) for i ≥ 0. Localizing at a closed point x ∈ X, the punctual Hilbert scheme Hilbd(X,x) is the reduced closed subschemeofHilbd(X)parameterizinglengthdsubschemesofXsupportedatx. Ifx∈Xisanon- singularpointonasurface,thenHilbd(X,x)isirreducibleofdimensiond−1([B77,I72,ES98,EL99]). When X = P2, the schemes Hilbd(P2) and Hilbd(P2,x) are stratified into affine spaces whose numbers of affine cells of each dimension compute the ranks of their Borel-Moore homology groups([B77,ES87,ES88,G88]). TheBettinumbersofHilbd(X),ChowgroupsandtheChowmo- tivewithQ-coefficientswerecomputedforanarbitrarysmoothprojectivesurface([G90,deCM]). IfXisaK3surface,Hilbd(X)isahyperKählermanifold([B83,F83]). WriteH (cid:66) H∗(Hilbd(X),Q) d (cid:76) fortherationalcoefficientcohomologyoftheHilbertschemeofpointsandH(cid:66) H ,thenH n≥0 d isanirreduciblemoduleoveraHeisenbergalgebra([N97,G96]). Inthecaseoftheaffineplane, thenaturaltorus-actiononA2 extendstoHilbd(A2). Thehighercohomologygroupsoftwistsof thetautologicallinebundlesonHilbd(A2,0)vanish. ThereisanAtiyah-BottformulafortheEuler characteristic of the twists of the tautological line bundle on Hilbd(A2,0) which has seen some combinatorial applications including the Macdonald positivity conjecture and the n! conjecture ([H98,H01]). 4 XUDONGZHENG 1.2. Maximal Cohen-Macaulay modules. In this subsection we review some well-known facts about maximal Cohen-Macaulay modules over ADE singularities. The standard references are [GV83,AV85,E85,A86]. Definition1.1. Let(B,m,k)beaNoetherianlocalring,andMafinitelygeneratedB-module. The B-moduleMissaidtobemaximalCohen-Macaulay,orMCM,ifMsatisfiesdepth(M) = dimB. M issaidtobereflexive,ifM (cid:27) M∗∗,wherethefunctor(•)∗ isthedualHom (•,B)onthecategoryof B B-modules. Example1.2. LetBbeanytwo-dimensionalnormaldomainandI⊂Banidealoffinitecolength. ThenthefirstsyzygymoduleofIisMCMoverBandisreflexive. Now let R be any 2-dimensional rational double point singularity (i.e., the completion Rˆ is a two-dimensional normal local domain with singularity one of the types A ,D ,E ,E or E ), n n 6 7 8 then R is a hypersurface ring, in particular, Gorenstein. What follows about free resolutions of finitelygeneratedR-modulesholdstrueforanyabstracthypersurfaceinthesenseof[E80,Remark 6.2] (the maximal ideal of R is minimally generated by dimR+1 elements, and the zero ideal of R is analytically unmixed, or alternatively, Rˆ is the quotient of a regular local ring modulo a principalideal. MinimalfreeR-resolutionofanyfinitelygeneratedR-module,ifnotfinite,willbe periodicofperiod2afteratmost3steps([E80,Theorem6.1]). Aperiodicresolutionofperiod2is necessarilygivenbyamatrixfactorizationassociatedtothehypersurface. Example1.3. InthecaseofthequadricconeR=C[x,y,z]/(cid:104)xz−y2(cid:105)andQ=Spec(R)thereisonly onenon-freeindecomposableMCMR-moduleuptoisomorphismwhichisgivenbythematrix factorizationsM=M(φ,ψ),where (cid:34) (cid:35) (cid:34) (cid:35) x −y z y φ= −y z , and ψ= y x , andthisMCMmoduleisgivenbythecokernelofeitheroneofthetwomatricesabove. Wedenote the cokernel of φ by P. Note that P has rank 1 corresponding to a Weil divisor. Geometrically, PisisomorphictothefractionalidealdefiningareducedlineLthroughthesingularpointonQ, which can be understood as the first Chern class of P in Cl(R). The projective line L¯ as a Weil divisorintheprojectiveclosureQ¯ isnotCartier,but2L¯ isCartier,i.e.,[P]is2-torsioninCl(R). The φ ψ ψ φ minimalR-freeresolutionofPisF•(P) : ··· → R⊕2 →− R⊕2 −→ ... −→ R⊕2 →− R⊕2 → 0. Truncating thesequencewehaveashortexactsequence (1.1) 0→P→R⊕2 →P→0. Thissequenceisaspecialcasethatwillbestudiedindetail. Ingeneral,theclassificationofindecomposablereflexivemodulesover2-dimensionalrational doublepointsingularitiesarefullyunderstood([AV85,Theorem1.11]). Evenmoregenerally,for anytwo-dimensionalquotientsingularitygivenbyafinitegroupG ≤ GL(2,C)thereisaone-to- one correspondence between the finite set of isomorphism classes of indecomposable reflexive modulesandthatofisomorphismclassesofirreduciblerepresentationsofthefinitegroupG. In the case that G ≤ SL(2,C), there is a third finite set which yields a bijection with the preceding two,namelytheverticesofthedualgraphoftheintersectionpairingoftheexceptionaldivisorin theminimalresolutionofsingularity,theDynkindiagram. ThisisreferredasthegeometricMcKay correspondence. AlltheindecomposablereflexiveR-modulescanbeexhaustedintheconcreteway as follows: regarding the 2-dimensional regular ring C[u,v] as a regular representation of the finitegroupGovertheringofinvariantsR=C[u,v]G,thenC[u,v]decomposesintothedirectsum ofirreduciblerepresentationsofGoverRwitheachirreduciblerepresentationappearingexactly once,thenthesearepreciselyalloftheindecomposablereflexiveR-modules. HILBERTSCHEMESOFPOINTSONSINGULARSURFACES 5 Example1.4. ExplicitlyintheA singularitycase,wecanexpressRasR=C[un+1,uv,vn+1]. Then n anynontrivialindecomposablereflexiveR-modulehastheformM = R(cid:104)uavb | a,b ∈ N,a+b ≡ i( i mod n+1)(cid:105)fori=1,...,n. Ontheotherhand,asanirreduciblerepresentationofG,eachmodule M asasubmoduleofC[u,v]isisomorphictoafractionalidealinC(u,v),M (cid:27) R(cid:104)1,ui/vn+1−i(cid:105)for i i i=1,...,n. 2. DeformationsofMCMmodules Suppose (X,p) is the germ of a rational double point. In this section, we prove the following resultsinthecontextofanarbitrary2-dimensionalrationaldoublepoints: (1)giventhesyzygy module M = Ω(I ) of a zero-dimensional subscheme Z on X, a deformation of M induces a flat Z embedded deformation of Z in X (Proposition 2.3); (2) closed subschemes of finite projective dimensiononXissmoothable(Theorem2.4). Bothstatementscontributetothecoreoftheproof ofthemaintheoremontheirreducibilityoftheHilbertschemes(Theorem3.3). And(3),ifthesocle dimensionsoc(O )ofazero-dimensionalsubschemeZ⊂Xsatisfiestheequalitye(I )−soc(O )=1 Z Z Z thenZhasfiniteprojectivedimension. Wealsoincludesomeexplicitstudiesoftheextensionsof reflexivemodules. The first proposition motivates the entire investigation of subschemes of finite homological dimension. Proposition2.1. SupposeasubschemeZhasfiniteprojectivedimensiononthesurfaceX,thentheZariski tangentspaceofHilbd(X)at[Z]hasdimension2d. Proof. The proof of smoothness of the Hilbert scheme of points on a smooth surface works ver- batim. We write I for the ideal sheaf of Z in O . Under the assumption of the finiteness Z X of the homological dimension of Z, by the Auslander-Buchsbaum formula and the theorem of Hilbert-Burch-Schaps,aminimalfreeresolutionofI ofZtakestheform: Z 0→O⊕r →O⊕r+1 →I →0 X X Z forsomepositiveintegerr. WecancomputethatExt2(I ,O )=0andExt1(I ,O )(cid:27)Ext1(I ,O )(cid:27) X Z Z X Z Z X Z X ω ,whichimplythatχ(O ,O )=0. HencetheZariskitangentspaceT Hilbd(X)(cid:27)Hom (I ,O )(cid:27) Z Z Z [Z] X Z Z Ext1(O ,O )hasdimension2d. (cid:3) X Z Z Remark 2.2. The preceding proposition does not necessarily prove that the closed point [Z] in Hilbd(X)isasmoothpoint,asitisunclearwhetherHilbd(X)locallyat[Z]hasdimensionsmaller than2d. The key construction is given in the following proposition, which produces a family of sub- schemesfromafamilyofreflexivemodules. WewriteX0 =X\{p}andX=X×A1fortheisotrivial 1-parameterfamilyofXwithtwoprojectionsπX :X→XandπA1 :X→A1. Proposition2.3. LetM beafamilyofreflexiveO -modulesofconstantrankroverA1. SupposeM is t X 0 the syzygy module of the ideal I of a zero-dimensional subscheme Z of X with Supp(Z ) = {p}. Then 0 0 0 thereexistsanopenneighborhoodUof0∈A1suchthatforanyt∈UthecorrespondingmoduleM isthe t syzygymoduleoftheidealI ofazero-dimensionalsubschemeZ ofXwiththesamelengthasZ . t t 0 Proof. Byassumption,thereisashortexactsequenceofR-modules: φ 0→M −→0 Or+1 →I →0. 0 X 0 WeconsiderthefollowingsequenceonX: φ 0→F →− F →Q(cid:66)Coker(φ)→0, 1 0 whichsatisfiesthefollowingproperties: 6 XUDONGZHENG 1. F isafreeO [t]-moduleofrankr+1; 0 X 2. F isareflexiveO [t]-moduleofrankrwithdepth (F )=3foranyclosedpointq∈X; 1 X q 1 3. therestrictionofφtotheclosedfiberX over0∈A1isφ . 0 0 Therestoftheproofwillbeaseriesofrestrictionsintheaffinelinetoanopenneighborhoodof0 suchthatineachfiberthemoduleQrestrictstoanidealofasubschemeofX = Xwithconstant t lengthasZ . 0 To begin with, note that the support of the torsion part of Q in A1 is disjoint from 0. We let U ⊂ A1 bethecomplementofthetorsionpartofQandletX = X×U betherestrictedfamily. 1 1 1 NowwecanassumethatQisarank1torsionfreesheafonX suchthatQ| (cid:27)I . The double dual Q∗∗ of Q with respect to R[t] is a rank 1 r1eflexive R[t]-mX0odu0le. Hence there existsaWeildivisorDofX1withQ∗∗ (cid:27)OX1(D). SinceXisatrivialfamilyofXovertheaffineline, wehaveisomorphismoftheirfirstChowgroups,whichsurjectsontotheChowgroupofX : 1 CH1(X)(cid:27)CH1(X)→CH1(X )→0. 1 Therefore there exists a Weil divisor D0 of X0 such that OX1(D) (cid:27) π∗XOX(D0). Restricting this identificationtoX0weseethatD0ishomologousto0,soitiswithD. SowehaveQ∗∗ (cid:27)OX1. WecanwriteQ = I astheidealsheafofaclosedsubschemeW ofX . ThissubschemeW is W 1 notnecessarilyequidimensionalandhencenotfiniteflatoverU . WewillfurtherrestrictinU to 1 1 whereW becomefiniteflatoverthebaseofdegreeequaltothelengthofZ . FirstletW bethe 0 1 union of the 2-dimensional components of W (possibly empty). We see that W is disjoint from 1 X . 0 LetX (cid:66) X \W . RestrictingonX wecanassumethatW isaone-dimensionalscheme(not 2 1 1 2 necessarilyreducedorirreducible). WehaveapresentationofI : W φ 0→F →− F →I →0. 1 0 W Bycondition3onthedepthofF above,weconcludethatWisaCohen-Macaulaycurve. Moreover, 1 therecouldbecomponentsofWwhicharecontractedbyπA1. Theseverticalcomponentsarenot contractedtotheclosedpoint0. Byfurtherrestrictingtoapossiblysmalleropenneighborhood U ⊂U of0wecanassumethatWdoesnotcontainanyverticalcomponentsandhenceflatover 2 1 U . 2 Writeψ:W →U2fortherestrictionoftheprojectionπA1 fromX2. Notethatψ−1(0)red ={(p,0)}, and that both X and U are affine schemes. We can apply Zariski’s main theorem to obtain a 2 2 factorization of ψ through ψ˜ : Z → U and we can find an open neighborhood U of (p,0) in W 2 suchthattheinducedmorphismU →Zisanopenimmersion. (cid:3) Theorem2.4. Suppose(X,p)isthegermofarationaldoublepointsurfacesingularitywithX=Spec(R), theclosedpointp∈Xbeingtheonlysingularpoint. SupposeZ isaclosedsubschemeofXsupportedatp 0 withidealI . WeassumethatI hasalength2freeresolutiononX. ThenZissmoothable. 0 0 Proof. Theproofisstreamlinedbyaconcreteconstructionofaflatfamilysmoothingthesubscheme Z. WriteX =X\{p}andX=X×A1fortheisotrivial1-parameterfamilyofXwithtwoprojections 0 πX :X→XandπA1 :X→A1. SupposeI0hasaminimalR-freeresolutionoftheform φ (2.1) 0→R⊕r−1 −→0 R⊕r →I →0, 0 whereφ isar×(r−1)matrixwithallentries f inthemaximalidealmofR. Nowweconstruct 0 ij athreeshortexactsequenceofR[t]-modulesasintheproofoftheprecedingpropositionwhich restrictsto(2.1): φ (2.2) 0→R[t]⊕r−1 →− R[t]⊕r →Q→0. BythepreviousconstructionwecanassumethatQ=I forsomeclosedsubschemeWofXfinite W andflatoveranopenneighborhoodof0∈A1. HILBERTSCHEMESOFPOINTSONSINGULARSURFACES 7 Nowweneedtodeform(2.2)sothattherestrictiontoageneralfiberisthefreeresolutionof (cid:34) (cid:35) anotherideal. Wedefinea1-parameterfamilyofmatrices: φ˜ (cid:66)φ+tI(cid:48) ,whereI(cid:48) = Ir−1 . r−1 r−1 0 Note that for t = 0 we have φ˜ = φ , and for any t (cid:44) 0, the top (r−1)×(r−1)-minor of φ˜ is 0 0 invertiblesinceitsdeterminantistr−1. Consequently,thecokernelofφ˜ fort (cid:44) 0istheidealofa t closedsubschemeofXoflengthdwhichdoesnothavepinitssupport. (cid:3) Remark2.5. See[Y04,Theorem2.2,3.2]forresultsondegenerationsofmodulesinamoregeneral setting,and[Y04,Remark2.5]forastatementonspecializationsofanextensionclass. Nextweprovidewithaclassofexamplesofsubschemesoffinitehomologicaldimension,for whichtheassumptionisclearinthecasewherethesurfaceissmooth([EL99,Lemma2]). Proposition2.6. SupposethesyzygymoduleΩ(I )ofI isgivenbyaminimalpresentation Z Z 0→Ω(I )→Rr+3 →I →0, Z Z for some integer r ≥ 0, i.e., Ω(IZ) has free rank zero. Suppose dimCExt1R(IZ,R) = r+2, then IZ has homologicaldimension1overR. Proof. Supposeη1,...,ηr+2formasetofgeneratorsofExt1R(IZ,R). Thenonecanformtheextension η(cid:66)(η1,...,ηr+2)forsomeR-moduleM(IZ): φ η:0→Rr+2 →− M(I )→I →0. Z Z ApplyingHom (•,R)toη,wehave R 0→R→(M(I ))∗ →Rr+2→−γ Ext1(I ,R)→Ext1(M(I ),R)→0. Z R Z R Z By construction, γ : Rr+2 → Ext1(I ,R) is surjective. Hence Ext1(M(I ),R) = 0. Then M(I ) is R Z R Z Z maximalCohen-Macaulay. Infact,HerzogandKühl([HK])showthatM(I )(cid:27)Ω(I )∗⊕R. Z Z The r+2 components of the map φ : Rr+2 → M(I ) projecting to Ω(I )∗ defines a map φ˜ : Z Z Ω(I )→Rr+2ofrankr+2. Onecantakethepush-outdiagram Z The bottom row of the diagram is denoted by (∗). Now the two extensions η and (∗) differ possibly by an automorphism of Rr+2 since φ˜ has full rank. Comparing η with (∗), we get the followingdiagram Bytheshort-fivelemma,themiddleverticalmapisanisomorphism: M(I )(cid:27)M(cid:48). Combining Z thiswiththepreviousdiagramwehave 8 XUDONGZHENG Sinceτhasfullrank,bytheSnakeLemmaweseethatker(τ) = 0. Nowsupposethecokernal of the left two vertical maps τ and ρ is K. Then K is an R-module of finite length. Applying Hom (•,R)tothelefttwocolumnswegetExt1(Ω(I ),R)(cid:27)Ext2(K,R). ButsinceΩ(I )ismaximal R Z Z Cohen-Macaulay,thisext-groupiszero. ByMatlisduality,K=0. HenceΩ(I )isaR-free. (cid:3) Z The rest of the section is devoted to the study of deformations of reflexive modules which appearassyzygiesofzero-dimensionalsubschemesonthesurface. Roughlyspeaking,ifthereis ashortexactsequenceofreflexivemodules 0→M→M(cid:48)(cid:48) →M(cid:48) →0 thenthedirectsumM⊕M(cid:48)canbeconsideredasaspecializationofM(cid:48)(cid:48)bytrivializingtheextension. Ontheotherhand,forafixedpairofmodulesMandM(cid:48),theC-vectorspaceExt1(M(cid:48),M)isstratified R into finitely many strata according to the isomorphism classes of the middle term, and there is a “generic extension”, i.e., a dense subset of Ext1(M(cid:48),M) which all have the same middle term, R denotedbyE(M(cid:48),M). Consequently,alloftheextensionscanbethoughtasspecializationsofthe genericextension. To proceed, we first compute the dimensions of the ext-groups of pairs of reflexive modules. Suchcomputationsappearin[G80]andinabroadercontextin[IM]. SupposeM ,...,M arethe 1 n distinct isomorphism classes of indecomposable reflexive R-modules. For each M there are at i leasttwonaturalshortexactsequencesendingwithM: oneisthepresentationafterchoosinga i minimalsetofgeneratorsofM: i (2.3) 0→M∗ →R⊕2rk(Mi) →M →0 i i ∗ whereM istheR-dualofM. TheotheristheAuslander-Reitensequence,whichhasbothendings i i M: i (2.4) 0→M →E(M)→M →0, i i i where E(M) is the direct sum of all the indecomposable modules corresponding to the vertices i adjacent to the one for M in the extended Dynkin diagram. For the reader’s convenience, i we briefly reproduce the construction of both cases below. For a rigorous exposition on the sequence (2.4) in an appropriate generality, see [W88]. For the coincidence between the McKay quiverassociatedthethefinitegroupG ≤ SL (C)andtheAuslander-Reitenquiveronthesetof 2 indecomposablereflexivemoduleswereferthereadertoAuslander’soriginalpaper([A86]). AnextendedDynkindiagramisobtainedfromtheusualDynkindiagrambyaddingonevertex correspondingtothetrivialmoduleRattheappropriateplace. Inthediagramsbelow,welabel the vertices in the A case 1,...,n from the left to the right, and in the D case 1,...,n from the n n lefttotheright(thelasttwoverticesn−1andnarenotdistinguished). ForA ,oneputstheextra n vertexontopofthechainofnexistingverticesandclosetheloopbyaddingedgesfromvertices 1andntothis(n+1)-stvertex. ForD ,the(n+1)-stvertexisaddedtovertex2onthelefttailso n thatthepicturewouldbecomesymmetric. ForE theextravertexisplacedandconnectedbyan 6 edgeontopofvertex4;forE andE theextravertexisconnectedtovertex1(labelledbyacircle). 7 8 HILBERTSCHEMESOFPOINTSONSINGULARSURFACES 9 DynkindiagramsofADEsingularities (ineachcasesofD andE nodesofthesamecolorcorrespondtomodules n n withthesamedeterminantinthelocalclassgroupofthesingularity) Toexplainsequence(2.3),wehavethefollowing Lemma2.7. TheR-dualofeachfiniterankreflexivemoduleislistedasbelow: A . M (cid:27)M∗ fori=1,...n. n i n+1−i 10 XUDONGZHENG Dn. Mi (cid:27) M∗i fori = 1,...,n−2. Ifniseven,thenMn−1 andMn arealsoself-dual;ifnisodd,then theyaredualtoeachother. E . In E , M (cid:27) M∗,M (cid:27) M∗, and M and M are self-dual. In E and E every indecomposable n 6 1 6 2 5 4 3 7 8 moduleisself-dual. LetΩ(cid:102) bethereflexivehullofthesheafofholomorphic1-formsontheopensurfaceX extended X 0 toX. ThenΩ(cid:102) isareflexiveO -module. ThereisthefundamentalsequenceonX: X X (2.5) 0→ω →Ω(cid:102) →O →C→0. X X X Suppose M is a non-trivial indecomposable reflexive module on X, then the Auslander-Reiten sequence ending with M can be obtained by tensoring the sequence (2.5) with M and taking reflexivehulls,resultingwithasequenceoftheform 0→τ(M)→(Ω(cid:102) ⊗M)∗∗ →M→0, X whereτ(M) = (ω ⊗M)∗∗ iscalledtheAuslander-ReitentransposeofM. Inthecurrentcase, since X thesurfaceisGorensteinτ(M)(cid:27)M,andthemiddletermwasdenotedbyE(M)in(2.4). However,thereareinfactmanymoreextensionsofreflexivemodules. Acombinatorialwayto findthedimensionsofExt1(M,M )foranypairofmodulesM andM isdeveloppedbyIyama R i j i j andWemyss([IM,Theorem4.4,4.5]). Inthisarticlewecomputesomeexamplesfollowing([IM]). Example 2.8. (An) In the An case, for any integers 1 ≤ a ≤ b ≤ n we have dimCExt1R(Mb,Ma) = dimCExt1R(Ma,Mb)=max{a,n+1−b}. Example2.9. (D6)SaywewanttocomputedimCExt1R(M2,M1). Wewillproduceachainoftuples oftheindicesontheDynkindiagram. Westartwiththetuple(2)indicatingtheextensionsshould endatM . Thenexttupleisthecollectionofallindicesadjacentto2,namely(1,3),andwewrite 2 (2)(cid:55)→(1,3). Thenexttupleisthecollectionofalladjacentverticesof(1,3)countingmultiplicities subtracting the previous one, hence it is (2,2,4)−(2) = (2,4) and we write (2) (cid:55)→ (1,3) (cid:55)→ (2,4). Thischainkeepsgoing: (2)(cid:55)→(1,3)(cid:55)→(2,4)(cid:55)→(3,5,6)(cid:55)→(4,4)(cid:55)→(3,5,6)(cid:55)→(2,4)(cid:55)→(1,3)(cid:55)→(2)(cid:55)→0. Eventually the sequence will stop at 0 and we count how many 1’s showing up in this entire sequence. Therearetwo1’s,sodimExt1(M ,M )=2. ThismethodworksforanyADEsingulari- R 2 1 ties. Example2.10. (D4)ThesamecalculationasforD6saysthatdimCExt1R(Mi,Mi)=2foranyi=1,3,4. Knowingthedimensionsoftheextensionsforeachpairofreflexivemodulesgivesapreliminary estimationforthedeformationsofthemodules,andweneedtofindthestratificationwithineach Ext-group and to determine the most general extensions. For a fixed singularity and a fix pair ofreflexivemodulesM andM onit,wedeclareapartialorderonExt1(M,M ): twoextensions i j R i j satisfyη>τifτisaspecializationofη. Lemma2.11. IneachcomplexvectorspaceExt1(M,M )thereisauniquemaximalelement,corresponding R i j tothe“genericextension”. Proof. Thisshouldbeageneralhomologicalstatement. Supposetothecontrarythattherearetwo non-isomorphicextensionsη,τ ∈ Ext1(M,M )suchthateachhasanopenneighborhoodU and R i j 1 U in Ext1(M,M ) in its usual Euclidean topology. Then we connect η and τ by a line segment 2 R i j andconstructahomotopyfromonetotheother. ThislinesegmentwillintersectwithU andU 1 2 bothonanopensubset. Thisisimpossiblesinceaone-dimensionalsubspaceofExt1(M,M )can R i j haveonlyonegenericclass. (cid:3)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.