ebook img

The Higher Transvectants are Redundant PDF

0.34 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Higher Transvectants are Redundant

THE HIGHER TRANSVECTANTS ARE REDUNDANT ABDELMALEKABDESSELAMANDJAYDEEPCHIPALKATTI 8 0 0 2 n ABSTRACT. Let A,B denote generic binary forms, and letur = (A,B)r denote their a r-thtransvectant inthesenseofclassicalinvariant theory. Inthispaperweclassifyall J thequadraticsyzygiesbetweenthe ur .Asaconsequence,weshowthateachofthe 0 { } higher transvectants ur : r 2 isredundant inthe sense thatitcan becompletely 1 { ≥ } recovered fromu0 andu1. Thisresultcanbegeometrically interpreted intermsofthe ] incomplete Segre imbedding. The calculations rely upon the Cauchy exact sequence G of SL2-representations, and the notion of a 9-j symbol from the quantum theory of A angularmomentum. . h We give explicit computational examples for SL3,g2 and S5 to show that this result at haspossibleanaloguesforothercategoriesofrepresentations. m [ MathematicsSubjectClassification(2000): 13A50,22E70. Keywords: angular momentum in quantum mechanics, binary forms, Cauchy exact 1 v sequence,9-jsymbols,representations ofSL2,transvectants. 3 3 5 CONTENTS 1 1. Introduction 1 . 1 2. TheCauchyexactsequence 6 0 8 3. TheincompleteSegreimbedding 15 0 4. SL -representations 18 : 3 v 5. Thestandardrepresentationofg 21 2 i X 6. ThestandardrepresentationofS 24 d r 7. Wignersymbols 27 a References 36 1. INTRODUCTION TransvectantswereintroducedintoalgebramoreorlessindependentlybyCay- ley and Aronhold (see [11, 13]). The German school of classical invariant theo- rists used them dexterously in the symbolical treatment of algebraic forms (for instances,see [23, 41]). In theirmodernformulation,they encodethe decompo- sition of the tensor productof two finite-dimensionalSL -representationsover a 2 fieldofcharacteristiczero. 1 2 ABDESSELAMANDCHIPALKATTI We begin by giving an elementary definition of transvectants. In §1.3-1.5 we describetheirreformulationinthelanguageofSL -representations.Anoutlineof 2 themainresultsisgivenin§1.9(onpage5)aftertherequirednotationisavailable. We will use [21, 24] as standard references for classical invariant theory, and inparticularthesymboliccalculus. Modernaccountsofthissubjectmaybefound in[15,31,35]. Thereaderisreferredto[19,Lecture6],[40,Ch.3]and[42,Ch.4] forthebasictheoryofSL -representations. 2 1.1. Let m n m n A = a xm ixi, B = b xn ixi; i i 1 − 2 i i 1− 2 i=0 (cid:18) (cid:19) i=0 (cid:18) (cid:19) X X denote binary forms of orders m,n in the variables x = x ,x . (The coeffi- 1 2 { } cientsareassumedtobeinafieldofcharacteristiczero.) Letr denoteaninteger suchthat0 r min(m,n). Ther-thtransvectantofAandB isdefinedtobe ≤ ≤ thebinaryform (m r)!(n r)! r r ∂rA ∂rB (A,B) = − − ( 1)i (1) r m!n! − i ∂xr i∂xi ∂xi ∂xr i i=0 (cid:18) (cid:19) 1− 2 1 2− X oforderm+n 2r. Inparticular(A,B) istheproductofA,B,and(A,B) is 0 1 − (uptoamultiplicativefactor)theirJacobian. Byconstruction, (B,A) = ( 1)r(A,B) . (2) r r − Theprocessoftransvectioncommuteswithachangeofvariablesinthefollow- α β ingsense. Letg = denoteamatrixofindeterminates.Define γ δ (cid:18) (cid:19) m m A = a (αx +βx )m i(γx +δx )i, ′ i 1 2 − 1 2 i i=0 (cid:18) (cid:19) X andsimilarlyforB etc. Thenwehaveanidentity ′ (A,B ) = (detg)r[(A,B) ]. ′ ′ r r ′ Inclassicalterminology,(A,B) isajointcovariantofA,B. r 1.2. NowletA,B denotegenericformsofordersm,n,thatistosay,theircoef- ficients are assumed to be independentindeterminates. Write u = (A,B) for r r the r-th transvectant.1 Broadlyspeaking,the main resultof this paperis thatthe highertransvectants u : r 2 are redundantin the sense that each of them r { ≥ } canberecoveredfromtheknowledgeofu andu . Webeginwithanillustration. 0 1 1 ‘Uberschiebung’inGerman. HIGHERTRANSVECTANTS 3 Example1.1. Assumem = 5,n = 3. Thenwehaveanidentity 21 21 315 (u ,u ) + (u ,u ) + u2 = u u , (3) 8 0 0 2 16 0 1 1 256 1 0 2 which gives a formula for u in terms of u ,u . (This is an instance of general 2 0 1 formulaetobeprovedbelow.) Similarly, 20 20 25 (u ,u ) + (u ,u ) + u u = u u , (4) 0 1 2 0 2 1 1 2 0 3 3 9 14 which indirectly expresses u in terms of u ,u . Our result shows the existence 3 0 1 ofsuchformulaeingeneral. Theorem1.2. Assumem,n,r 2. Withnotationasabove,thereexistconstants ≥ c Qsuchthatwehaveanidentity i,j ∈ 1 u = c (u ,u ) . r i,j i j r i j u0 −− 0 i j<r ≤X≤ Since the right hand side depends only on u ,...,u , it follows by in- 0 r 1 { − } duction that u ,u determine the rest of the higher transvectants. In fact, more 0 1 generally we will exhibit explicit formulae for all the quadratic syzygies between the u ,ofwhich(3)and(4)arespecialcases. i { } The titleof thepapershouldnotbeunderstoodto meanthat‘highertransvec- tion’ is redundant. Notice, for instance, that the formula for u itself involves 2 (u ,u ) . 0 0 2 1.3. SL -representations. Throughoutthispaperweworkoveranarbitraryfield 2 k of characteristic zero. Let V denote a two-dimensional k-vector space with basis x = x ,x . For m 0, the symmetric power S = SymmV is the 1 2 m { } ≥ space of binary m-ics, with an action of the linearly reductive group SL(V) = ϕ End(V) : det ϕ = 1 . The S : m 0 areacompletesetofirreducible m { ∈ } { ≥ } SL(V)-representations, and any finite-dimensional representation decomposes asa directsumofirreducibles. By Schur’slemma,ifalinearmapS S is m m −→ SL(V)-equivariant,thenitisnecessarilyascalarmultiplication. Henceforth, V will not be explicitly mentioned if no confusion is likely; for in- stance,S (S )willstandforSymm(SymnV)etc. m n 1.4. Itwillbeconvenienttointroduceseveralpairsofvariables y = (y ,y ), z = (z ,z ),... 1 2 1 2 all on equal footing with x. Then, for instance, an elementof the tensor product S S can be representedas a bihomogeneousform F(x,y) of orders m,n m n ⊗ inx,yrespectively.DefineCayley’sOmegaoperator ∂2 ∂2 Ω = , xy ∂x ∂y − ∂x ∂y 1 2 2 1 4 ABDESSELAMANDCHIPALKATTI andthepolarisationoperator ∂ ∂ y∂ = y +y . x 1 2 ∂x ∂x 1 2 Ifc standsforthesymboliclinearformc x +c x ,then x 1 1 2 2 m! (y∂ )ℓcm = cm ℓcℓ. x x (m ℓ)! x− y − The operators Ω , y∂ etc. are similarly defined. The symbolic bracket (xy) xz z standsforx y x y ,andlikewisefor(xz)etc. 1 2 2 1 − 1.5. Wehaveadirectsumdecompositionofthetensorproduct min(m,n) S S S , (5) m n m+n 2r ⊗ ≃ − r=0 M usuallycalledtheClebsch-Gordandecomposition.Let π :S S S r m n m+n 2r ⊗ −→ − denotetheprojectionmap,whichactsbytherecipe F(x,y) πr f(m,n;r)[Ωr F(x,y)] ; (6) xy y x −→ → where (m r)!(n r)! f(m,n;r)= − − . m!n! Wehavewritteny xforthesubstitutionofx ,x fory ,y respectively,sothat 1 2 1 2 → therighthandsideof(6)isoforderm+n 2r inxasrequired. − InparticularifA(x) S ,B(x) S ,thenastraightforwardbinomialexpan- m n ∈ ∈ sionshowsthattheimageπ (A(x)B(y))coincideswiththetransvectant(A,B) r r asdefinedin(1). Insymbols,ifA = αm,B = βn,thenwehavetheformula x x (A,B) = (αβ)rαm rβn r. (7) r x− x− Theinitialscalingfactorin(6)issochosenthat(7)hasthesimplestpossibleform. 1.6. The map π is a splitsurjection,letı : S S S denoteits r r m+n 2r m n − −→ ⊗ section. Forcm+n 2r S ,itisgivenby x − m+n 2r ∈ − cm+n 2r ır g(m,n;r)(xy)rcm rcn r, x − x− y− −→ where m n g(m,n;r) = r r . (8) m+n r+1 (cid:0) (cid:1)r−(cid:0) (cid:1) Define (cid:0) (cid:1) (m+n 2r+1)! h(m,n;r) = f(m,n;r)g(m,n;r) = − . (9) (m+n r+1)!r! − HIGHERTRANSVECTANTS 5 Nowobservethatbytheformulaon[24,p.54], 1 Ωr [(xy)rcm rcn r] = cm+n 2r, { xy x− y− }y→x h(m,n;r) x − whichverifiesthatπ ı is theidentitymaponS (alsosee[17]and[30, r r m+n 2r ◦ − §18.2]). 1.7. Angular momenta. There is a process analogous to transvection in the quantumtheoryof angularmomentum. In brief, the eigenvectors(of the Casimir element for the Lie algebra su ) can exist in any of the states j labelled by the 2 nonnegativehalf-integers 0,1/2,1,3/2,... . The coupling of two states j ,j 1 2 { } producesafinitesetofangularmomentumstates j j , j j +1, j j +2,...,j +j . 1 2 1 2 1 2 1 2 | − | | − | | − | If we letm = 2j ,n = 2j , then thisreducesto the Clebsch-Gordandecompo- 1 2 sition. (Thestandardaccountofthis theorymaybefoundin [6, 16].) Ata crucial placeinourstudyoftransvectantsyzygieswewillneedtheconceptof9-jsymbol whicharises from the possiblecouplingsoffour angularmomentumstates. This is further explained in §7, where an introductionto the relevant notions from the quantumtheoryofangularmomentumwillbegiven. 1.8. Self-duality. ThemapS S kestablishesacanonicalisomorphism m m ⊗ −→ of S with its dual representationS = Hom(S ,k). It identifiesA S with m m∨ m ∈ m thefunctional S k, B (A,B) . m m −→ −→ Consequently,everyfinite-dimensionalSL -representationiscanonicallyisomor- 2 phic to its own dual.2 We have a canonical trace element in S S which m m ⊗ correspondstotheform(xy)m. 1.9. Results. We can now state the main results of this paper. Let the u be i { } as in §1.2. For an integer r such that 2 r min(m,n), define a (quadratic) ≤ ≤ syzygyofweightrtobeanidentity ϑ (u ,u ) = 0, ϑ Q (10) i,j i j r i j i,j −− ∈ X wherethesummationisquantifiedoverallpairs(i,j)suchthat 0 i j, i+j r. ≤ ≤ ≤ Noticethatonlyonesummandin(10)involvesu ,namelyϑ u u . r 0,r 0 r 2ThisisnolongertrueofSLN-representationswhenN >2. Insomecontextsthisself-duality leadstosimplification,andinsomeotherstoconfusion. 6 ABDESSELAMANDCHIPALKATTI Let K(m,n;r) denote the vector space of weight r syzygies. In §2.3–2.4 we will show that there is a natural isomorphism of K(m,n;r) with the space of equivariantmorphisms Hom (S , 2S 2S ). SL(V) 2(m+n r) m n − ∧ ⊗∧ ThiswillimplythatK(m,n;r)hasabasiswhichisinnaturalbijectionwiththeset ofintegralpoints r 2 Π(m,n;r) = (a,b) N2 :a+b − . { ∈ ≤ 2 } Since (a,b) = (0,0) is such as point, there exist nontrivial syzygies of any (p) weight r 2. For an arbitrary p = (a,b) Π(m,n;r), let ϑ denote the ≥ ∈ i,j correspondingsyzygycoefficients. (p) In§2.10wewillgiveanexplicitformulafortherationalnumberϑ . Itwillfollow i,j (p) thatifwespecialisetop = (0,0),thenϑ = 0. Wecanthenrewriteidentity(10) 0,r 6 intheform (p) 1 ϑ i,j u = (u ,u ) , r i j r i j u0 −ϑ(p) −− 0,r X and thereby complete the proof of Theorem 1.2. In Theorem 3.1 we prove the thematicallyrelatedresultthatthemorphism PS PS P(S S ) m n m+n m+n 2 × −→ ⊕ − whichsendsapairofforms(A,B)to(AB,(A,B) ),isanimbeddingofalgebraic 1 varieties. Of courseit wouldbe of interestto findsimilarredundancytheoremsfor other categoriesof representations. In sections 4,5 and 6, we give one example each ofthisphenomenonrespectivelyforrepresentationsofSL ,g andS . 3 2 5 2. THE CAUCHY EXACT SEQUENCE Inthissectionweestablishthebasicset-upwhichleadstothecharacterisation ofquadraticsyzygiesbetweentransvectants. 2.1. Given any two finite-dimensionalvector spaces W ,W , we have a short 1 2 exactsequence(see[4,§III.1])ofGL(W ) GL(W )-representations 1 2 × 0 2W 2W δ S (W W ) ǫ S (W ) S (W ) 0, (11) 1 2 2 1 2 2 1 2 2 −→ ∧ ⊗∧ −→ ⊗ −→ ⊗ −→ C which we may call the Cauchy exact sequence. (The correspondingformula on | {z } charactersisduetoCauchy–see[19,AppendixA].) Letthedotstandforsymmetrisedtensorproduct,i.e.,wewriteg hinsteadof · 1(g h+h g). Withthisnotation,ǫisthe‘regrouping’map 2 ⊗ ⊗ (g g ) (h h ) (g h ) (g h ), 1 2 1 2 1 1 2 2 ⊗ · ⊗ −→ · ⊗ · HIGHERTRANSVECTANTS 7 andδ isthemap (g h ) (g h ) (g g ) (h h ) (g h ) (h g ). 1 1 2 2 1 2 1 2 1 2 1 2 ∧ ⊗ ∧ −→ ⊗ · ⊗ − ⊗ · ⊗ Theexactnessof(11)isaninstanceofageneralresultaboutSchurfunctors(see loc. cit.), but it is elementary to check in this case. Indeed, it is immediate that ǫ δ = 0, implyingimδ kerǫ. Now write w = dimW , and observethat the i i ◦ ⊆ dimensionsofthefirstandthethirdvectorspaceadduptothesecond: w w w +1 w +1 w w +1 1 2 1 2 1 2 + = , 2 2 2 2 2 (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) henceimδ = kerǫ. 2.2. ConsidertheSegreimbedding PS PS P(S S ), [(A,B)] [A B] m n m n × −→ ⊗ −→ ⊗ with image X, and ideal sheaf . Since X is projectively normal, we have an X I exactsequence 0 H0( (2)) g H0( (2)) h H0( (2)) 0. (12) X P X −→ I −→ O −→ O −→ Letusintroduceaseriesofgenericforms m n m n A= a zm kzk, B = b zn kzk, (13) k k 1 − 2 k k 1− 2 k=0 (cid:18) (cid:19) k=0 (cid:18) (cid:19) X X ofordersm,n,and m+n 2ℓ − m+n 2ℓ Uℓ = k− qk,ℓ z1m+n−2ℓ−kz2k, (14) k=0 (cid:18) (cid:19) X of orders m + n 2ℓ for 0 ℓ min(m,n). (That is to say, the a,b,q are − ≤ ≤ assumedtobesetsofdistinctindeterminates.)Considerthepolynomialalgebras Q =k[ q ], R = k[a ,...,a ;b ,...,b ]. k,ℓ 0 m 0 n { } The former is graded by N, and the latter by N N. If we write U = (A,B)z × ℓ ℓ (where the transvectant is taken with respect to z variables) and equate coeffi- cientsinz,theneachq isgivenbyapolynomialexpressionina,b. Thisdefines k,ℓ a ring morphismQ R. Now, we have isomorphismsof graded(respectively −→ bigraded)rings Q ∼ Se([Sm Sn]∨), −→ ⊗ e 0 M≥ R −∼→ Se(Sm∨)⊗Se′(Sn∨) e,e′ 0 M≥ definedasfollows: observethat ( 1)k (U ,zm+n 2ℓ kzk)z = q , − × ℓ 2 − − 1 m+n−2ℓ k,ℓ 8 ABDESSELAMANDCHIPALKATTI hence we identify q with the functional in [S S ] which sends the biform k,ℓ m n ∨ ⊗ αmβn S S to x y m n ∈ ⊗ ( 1)k ((αβ)ℓαm ℓβn ℓ,zm+n 2ℓ kzk)z . − × z − z− 2 − − 1 m+n−2ℓ This extends to give an isomorphism of Q with the symmetric algebra on the space [S S ] . The second isomorphism is defined similarly. The induced m n ∨ ⊗ map Q R on vector spaces may be naturally identified with the map h 2 2,2 −→ from(12). 2.3. Consideraformalexpression Ψ = ϑ (U ,U )z , i,j i j r i j −− i,j X where ϑ are arbitrary elements in Q. We should like to determine whether Ψ i,j correspondstoaweightr syzygy. Now,thedatumΨisequivalenttoamorphism ofSL(V)-representations f :S Q , H(z) (H(z),Ψ)z . Ψ 2(m+n−r) −→ 2 −→ 2(m+n−r) Thisistobeinterpretedasfollows: Ψ,H(z)arebothformsoforder2(m+n r) − inthez-variables.Henceaftertransvectiontherighthandsidehasnoz-variables remaining,andwegetaquadraticexpressioninthe q . k,ℓ { } Now Ψ represents a bona fide weight r syzygy iff the following condition is satisfied: if we substitute (A,B) for U , then Ψ vanishes. This is equivalent to i i the requirement that h f = 0, i.e., f factor through kerh. Hence we have Ψ Ψ ◦ provedthefollowing: Proposition 2.1. The vector space K(m,n;r) of weight r syzygies is naturally isomorphictoHom (S ,H0( (2))). (cid:3) SL(V) 2(m+n r) X − I 2.4. Now,byspecialising(11)wehavetheexactsequence 0 2S 2S δ S (S S ) ǫ S (S ) S (S ) 0. (15) m n 2 m n 2 m 2 n −→ ∧ ⊗∧ −→ ⊗ −→ ⊗ −→ C D E Byself-du|ality(s{eze§1.8})weca|nide{nztifyH}0(P(S|m Sn),{zP(2))a}ndH0( X(2)) ⊗ O O respectivelywith and ,inducinganisomorphismofH0( (2))with . X D E I C 2.5. Wehaveisomorphisms m−1 ⌊ 2 ⌋ 2S S (S ) S , m 2 m 1 2(m 1) 4a ∧ ≃ − ≃ − − a=0 M andsimilarlyfor 2S . Hence,foreachpairp = (a,b)intheset n ∧ Π(m,n;r) = (a,b) N2 : 2(a+b+1) r , (16) { ∈ ≤ } HIGHERTRANSVECTANTS 9 wehaveamorphismφ definedtobethecomposite a,b S θ1 S S θ2 S (S ) S (S ) 2(m+n r) 2(m 1) 4a 2(n 1) 4b 2 m 1 2 n 1 − −→ − − ⊗ − − −→ − ⊗ − θ3 2S 2S . m n −→ ∧ ⊗∧ Hereθ is dualto the(r 2a 2b 2)-th transvectantmap,θ is dualtothe 1 2 − − − tensorproductof2a-thand2b-thtransvectantmaps,andθ isanisomorphism. 3 By construction the φ : (a,b) Π form a basis of the space of SL(V)- a,b { ∈ } equivariantmorphisms S . Let K(a,b) denote the corresponding 2(m+n r) − −→ C weightr syzygy,writtenas κ (u ,u ) = 0, (17) i,j i j r i j −− X wherethesumisquantifiedoverpairs(i,j)suchthat0 i,j randi+j r. ≤ ≤ ≤ (We havenotyetimposedtheconditioni j.) In orderto extractthe coefficient ≤ κ ,wewillconstructasequenceofmorphisms i,j S (S S ) η1 (S S ) 2 η2 ( S ) ( S ) 2 m n m n ⊗ m+n 2i m+n 2j ⊗ −→ ⊗ −→ − ⊗ − i j M M η3 S S η4 S , m+n 2i m+n 2j 2(m+n r) −→ − ⊗ − −→ − whereη isthenaturalinclusion 1 1 v v (v v +v v ), 1 2 1 2 2 1 · −→ 2 ⊗ ⊗ η isanisomorphism,η isthetensorproductofnaturalprojections,andη isthe 2 3 4 (r i j)-thtransvectionmap. − − In §2.6 – 2.7 below, we will give precise symbolic formulae for these maps. Oncethisisdone,thefollowingpropositionisimmediate. Proposition2.2. Foranyp = (a,b) Π(m,n;r),theendomorphism ∈ η η η η δ θ θ θ :S S 4 3 2 1 3 2 1 2(m+n r) 2(m+n r) ◦ ◦ ◦ ◦ ◦ ◦ ◦ − −→ − ξ | (a{,zb) } isthemultiplicationbyκ . i,j 2.6. In order to describe θ we will realise S as the space of order 1 2(m+n r) − 2(m+n r)formsinz,andS S asthespaceofbihomogeneous 2m 2 4a 2n 2 4b − − − ⊗ − − formsoforders(2m 2 4a,2n 2 4b)inx,y respectively.Then − − − − θ :f(z) 1 −→ (xy)r 2a 2b 2 − − − [(x∂ )2m 2a+2b r(y∂ )2n+2a 2b rf(z)]. z − − z − − (2m+2n 2r)! − 10 ABDESSELAMANDCHIPALKATTI We realiseS (S ) S (S )as the spaceof quadrihomogeneousforms of 2 m 1 2 n 1 − ⊗ − orders(m 1,m 1,n 1,n 1)respectivelyinp,q,u,v,whicharesymmetric − − − − inthevariablepairsp,qandu,v. Then (pq)2a(uv)2b θ :g(x,y) 2 −→ (2m 4a 2)!(2n 4b 2)! × − − − − [(p∂ )m 2a 1(q∂ )m 2a 1(u∂ )n 2b 1(v∂ )n 2b 1g(x,y)]. x − − x − − y − − y − − 2.7. Now realise S (S S ) as the space of forms of orders (m,n,m,n) 2 m n ⊗ respectively in p,u,q,v which are symmetric with respect to the simultaneous exchange of variable pairs p q,u v. Inside this space, the image of δ ↔ ↔ consists of those forms which are antisymmetric in each of the pairs p,q and u,v. Then δ θ : h(p,q,u,v) (pq)(uv)h(p,q,u,v). 3 ◦ −→ RealisingS S as biforms in x,y, the compositemorphismη m+n 2i m+n 2j 3 − ⊗ − ◦ η η sendsQ(p,u,q,v) to 2 1 ◦ h(m,n;i)h(m,n;j)[Ωi Ωj Q(p,u,q,v)], pu qv followed by the substitutions p,u x and q,v y. The multiplier h is as → → in§1.6. Finally, η :R(x,y) 4 −→ h(m+n 2i,m+n 2j;r i j)[Ωr i jR(x,y)] . x−y− x,y z − − − − → 2.8. The h factors are introduced to ensure that if Ψ = (u ,u ) , then the i j r i j −− map(see§2.3) η η f : S S 4 1 Ψ 2(m+n r) 2(m+n r) ◦···◦ ◦ − −→ − is the identity. By contrast, the normalising factors appearing in θ are not so i crucial;their purposeis merelyto simplifysome intermediateexpressions. Their omissionwouldhavetheharmlesseffectofmultiplyingeachsyzygycoefficientby thesamefactor. 2.9. Torecapitulate,foreach(a,b) Π(m,n;r),theendomorphismofS 2(m+n r) ∈ − definedbythecomposite

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.