The hidden-charm pentaquark and tetraquark states Hua-XingChen1a,b,WeiChen1c,XiangLiud,e,∗,Shi-LinZhua,f,g,∗∗ aSchoolofPhysicsandStateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing100871,China bSchoolofPhysicsandNuclearEnergyEngineering,BeihangUniversity,Beijing100191,China cDepartmentofPhysicsandEngineeringPhysics,UniversityofSaskatchewan,Saskatoon,SaskatchewanS7N5E2,Canada dSchoolofPhysicalScienceandTechnology,LanzhouUniversity,Lanzhou730000,China eResearchCenterforHadronandCSRPhysics,LanzhouUniversityandInstituteofModernPhysicsofCAS,Lanzhou730000,China fCollaborativeInnovationCenterofQuantumMatter,Beijing100871,China gCenterofHighEnergyPhysics,PekingUniversity,Beijing100871,China 6 1 0 Abstract 2 Inthepastdecademanycharmonium-likestateswereobservedexperimentally.Especiallythosechargedcharmonium- y likeZ statesandbottomonium-likeZ statescannotbeaccommodatedwithinthenaivequarkmodel. Thesecharged a c b M Zcstatesaregoodcandidatesofeitherthehidden-charmtetraquarkstatesormoleculescomposedofapairofcharmed mesons. Recently, the LHCb Collaboration discovered two hidden-charm pentaquark states, which are also beyond 2 thequarkmodel. Inthiswork,wereviewthecurrentexperimentalprogressandinvestigatevarioustheoreticalinter- 2 pretationsofthesecandidatesofthemultiquarkstates. Welistthepuzzlesandtheoreticalchallengesofthesemodels when confronted with the experimental data. We also discuss possible future measurements which may distinguish ] h thetheoreticalschemesontheunderlyingstructuresofthehidden-charmmultiquarkstates. p - Keywords: Hidden-charmpentaquark,Hidden-charmtetraquark,Charmonium-likestate,Charmonium,Exoticstate, p Phenomenologicalmodels e PACS:21.10.-k,21.10.Pc,21.60.Jz,11.30.Pb,03.65.Pm h [ 3 v Contents 2 9 0 1 Introduction 3 2 1.1 Quarkmodelandthemultiquarkstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 1.1.1 Quarkmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . 1 1.1.2 Exoticstatesandmultiquarkstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 0 1.1.3 ComparisonofQEDandQCDandtheirspectrum . . . . . . . . . . . . . . . . . . . . . . . 6 6 1.2 Generalstatusofhadronspectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 : v 2 Experimentalprogressonthehidden-charmmultiquarkstates 7 i 2.1 TheCharmonium-likeXYZstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 X 2.1.1 XYZstatesproducedthroughBmesondecays . . . . . . . . . . . . . . . . . . . . . . . . . . 8 ar 2.1.2 Y statesproducedthroughthee+e−annihilation . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.3 Xstatesproducedthroughdoublecharmoniumproduction . . . . . . . . . . . . . . . . . . . 29 2.1.4 TheXYZstatesfromγγfusionprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.5 Chargedcharmonium-likeZ states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 c 2.2 Chargedbottomonium-likestatesZ (10610)andZ (10650) . . . . . . . . . . . . . . . . . . . . . . . 38 b b 2.3 Thehidden-charmpentaquarkstatesobservedbyLHCb . . . . . . . . . . . . . . . . . . . . . . . . . 40 1Theseauthorsequallycontributetothiswork. ∗Correspondingauthor ∗∗Correspondingauthor Emailaddresses:[email protected](Hua-XingChen),[email protected](WeiChen),[email protected](XiangLiu), [email protected](Shi-LinZhu) PreprintsubmittedtoPhysicsReports May24,2016 3 Theoreticalinterpretationsofthehidden-charmpentaquarkstates 41 3.1 Themolecularscheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1.1 Thedeuteronasahadronicmolecule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.2 Themesonexchangemodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.3 Predictionsforthehidden-charmpentaquarksbeforeLHCb’sdiscovery . . . . . . . . . . . . 44 3.1.4 MolecularassignmentsafterLHCb’sdiscovery . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.5 Configurationmixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.6 OrbitalexcitationsandtheP parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 c 3.2 Dynamicallygeneratedresonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3 QCDsumrules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.1 AshortintroductiontothemethodofQCDsumrule . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Pentaquarkcurrents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.3 OperatorProductExpansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.4 ParityofPentaquarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.5 Numericalresultsanddiscussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.4 Tightlyboundpentaquarkstateinthequarkmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.1 Chiralquarkmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.2 Thediquark/triquarkmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.5 Kinematicaleffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.6 Othertheoreticalschemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.7 Productionanddecaypatterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.7.1 ProductionoftheP viaweakdecays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 c 3.7.2 Photo-productionoftheP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 c 3.7.3 StrongdecaypatternsoftheP states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 c 3.8 Thehidden-bottomanddoublyheavypentaquarkstates . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.9 Theoreticalandexperimentalchallenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4 TheoreticalinterpretationsoftheXYZstates 66 4.1 Z (10610)andZ (10650) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 b b 4.1.1 Molecularscheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.1.2 Thetetraquarkassignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.3 Kinematicaleffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.1.4 Productionanddecaypatterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.1.5 Ashortsummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Z (3900),Z (4020)andZ (4025) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 c c c 4.2.1 Molecularscheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.2 Tetraquarkstateassignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2.3 Kinematicaleffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2.4 Productionanddecaypatterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.5 Ashortsummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3 Z+(4430) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.1 Molecularstatescheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.2 Thetetraquarkassignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.3.3 Cuspeffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.3.4 Production,decaypatterns,andothertheoreticalschemes. . . . . . . . . . . . . . . . . . . . 83 4.3.5 Ashortsummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4 Otherchargedstates: Z+(4051),Z+(4248)andZ+(4200) . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.1 Molecularstatescheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.2 Tetraquarkstateassignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.3 Productionanddecaypatterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.4 Ashortsummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5 X(3872) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2 4.5.1 Molecularscheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.5.2 Theaxialvectortetraquarkstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.5.3 Radialexcitationoftheaxialvectorcharmonium . . . . . . . . . . . . . . . . . . . . . . . . 93 4.5.4 LatticeQCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.5.5 Othertheoreticalschemes,productionanddecaypatterns . . . . . . . . . . . . . . . . . . . . 95 4.5.6 Ashortsummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.6 Y(4260) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.6.1 IsY(4260)ahighercharmonium? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.6.2 Thehybridcharmonium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.6.3 Thevectortetraquarkstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.6.4 Themolecularstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.6.5 Non-resonantexplanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.6.6 Othertheoreticalschemes,productionanddecaypatterns . . . . . . . . . . . . . . . . . . . . 105 4.6.7 Ashortsummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.7 Y(3940),Y(4140)andY(4274) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.7.1 Molecularstatescheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.7.2 Othertheoreticalschemes,productionanddecaypatterns . . . . . . . . . . . . . . . . . . . . 108 4.7.3 Ashortsummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.8 Othercharmonium-likestates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.8.1 Y(4008)andY(4360) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.8.2 Y(4660)andY(4630) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.8.3 X(3915),X(4350)andZ(3930) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.8.4 X(3940)andX(4160) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.8.5 Narrowenhancementstructuresaround4.2GeVinthehidden-charmchannels . . . . . . . . 114 4.8.6 X(3823) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.8.7 Ashortsummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5 Outlookandsummary 118 5.1 Currentstatusandfutureconfirmationofthehidden-charmmultiquarkstates . . . . . . . . . . . . . 118 5.2 Non-resonantschemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.3 Partnerstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.4 ConnectionsbetweendifferentXYZstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.5 Open-charm,pionicandradiativedecays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.6 Hidden-charmbaryoniumordibaryonswithtwocharmquarks . . . . . . . . . . . . . . . . . . . . . 121 5.7 Futurefacilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.8 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 1. Introduction 1.1. Quarkmodelandthemultiquarkstates QuantumChromodynamics(QCD)istheunderlyingtheoryofstronginteraction. AccordingtoQCD,quarksand anti-quarksareinthefundamentalrepresentationofthenon-AbelianSU(3)colorgaugegroupwhilegluonsbelongto theadjointrepresentation. TheQCDLagrangianreads (cid:16) (cid:17) 1 L = ψ¯ iγµ(D ) −mδ ψ − Ga Gµν, (1) i µ ij ij j 4 µν a wherethecovariantderivativeisdefinedas (D ) = ∂ δ −igAaTa. (2) µ ij µ ij µ ij In Eq. (1), ψ(x) is the quark field, and Aa is the gluon field, both of which carry the color charge. γ is the Dirac i µ µ matrixandTa =λa/2isthegeneratoroftheSU(3)gaugegroup. ij ij 3 QCD has three important properties: asymptotic freedom, confinement, approximate chiral symmetry and its spontaneous breaking. Quarks and gluons are confined within the mesons and baryons. Their color interactions increase as the involved energy scale decreases. At the hadronic scale, QCD is highly non-perturbative due to the complicatedinfraredbehaviorofthenon-AbelianSU(3)gaugegroup. AtpresentitisstillimpossibleforustoderivethehadronspectrumanalyticallyfromtheQCDLagrangian.Lattice QCDwasinventedtosolveQCDnumericallythroughsimulationsonthelattice,whichhasprovenverypowerfulin thecalculationofthehadronspectrumandhadronicmatrixelements. BesideslatticeQCD,manyphenomenological models with some kind of QCD spirit were proposed. Among them, the quark model may be the most successful one, whichcategorizeshadronsintotwofamilies: mesonsandbaryons. Theformeraremadeofonequarkandone antiquark,andthelatteraremadeofthreequarks. Withtheexperimentalprogressinthepastdecade,dozensofcharmonium-likeXYZstateshavebeenreported[1]. Theyprovidegoodopportunitiestoidentifytetraquarkstates,whicharemadeoftwoquarksandtwoantiquarks.More- over, the LHCb Collaboration recently observed two hidden-charm pentaquark resonances, P (4380) and P (4450), c c in the J/ψp invariant mass spectrum [2]. They are good candidates of pentaquark states, which are made of four quarks and one antiquark. We shall briefly review the experimental progress on these charmonium-like states and hidden-charmpentaquarkresonancesinSec.2. To study these tetraquark and pentaquark candidates, the traditional quark model as well as its updated version seems to be incapable any more. Various theoretical frameworks were proposed to interpret these new multiquark systems, such as the one-boson-exchange (OBE) model, the one-pion-exchange (OPE) model, the chiral unitary model,theQCDsumrule,thechiralquarkmodel,thediquark-antidiquarkmodeletc. Weshallbrieflyintroducethese modelsandreviewtheirapplicationsonthehidden-charmpentaquarkresonancesinSec.3,andreviewtheapplications ofmoretheoreticalframeworksonthecharmonium-likestatesinSec.4.Anoutlookandabriefsummarywillbegiven inSec.5. 1.1.1. Quarkmodel Accordingtothetraditionalquarkmodel,amesoniscomposedofapairofquarkandantiquarkandabaryonis composedofthreequarks. Bothmesonsandbaryonsarecolorsinglets. Thequarkinthequarkmodelissometimes denotedastheconstituentquark,whichisdifferentfromthecurrentquarkintheQCDLagrangian. Forexample,the constituentup/downquarkmassisaboutonethirdofthenucleonmassoronehalfoftheρmesonmass. Attheenergy scalearound2GeV,theup/downcurrentquarkmassisaroundseveralMeV. (cid:112) Within the quark model, each quark carries the energy m2+p2, where m is the constituent quark mass and p denotesitsmomentum. Inthenon-relativisticlimit,theenergytermisexpandedasthesumofthemassandkinetic energy. The inter-quark interactions include the linear confinement force and the one gluon exchange force. There alsoexistvarioushyperfineinteractionssuchasthespin-spininteraction,thecolor-magneticinteraction,thespin-orbit interaction, and the tensor force etc. Up to now, nearly all the mesons and baryons can be classified within such a simplequarkmodelpicture. ThediscoveryofJ/ψ[3,4]in1974inspiredtheoriststoproposepotentialmodels[5,6].Themassspectrumofthe charmonium family was obtained by solving the Schro¨dinger equation. The hadron spectroscopy was reconsidered intheframeworkofquarkmodel[7,8,9,10,11,12,13,14,15,16,17]. Inthefollowing, wetakethewell-known Godfrey-Isgur(GI)quarkmodelasanexampleandintroduceitbriefly[17]. IntheGImodel[17],theinteractionbetweenthequarkandantiquarkisdescribedbytheHamiltonian (cid:113) (cid:113) H = m21+p2+ m22+p2+Veff(p,r) , (3) where the subscripts 1 and 2 denote the quark and the antiquark, respectively. Veff(p,r) is the effective potential of theqq¯ system,andcontainstheshort-distanceone-gluon-exchangeinteractionandthelong-distancelinearconfining interaction. ThelatterwasatfirstemployedbytheCornellgroupandlaterconfirmedbythelatticeQCDsimulations. Veff(p,r) is obtained from the on-shell qq¯ scattering amplitudes in the center-of-mass (CM) frame [17]. In the non-relativisticlimit,Veff(p,r)istransformedintothestandardnon-relativisticpotentialVeff(r): Veff(r)= Hconf +Hhyp+HSO. (4) 4 ThefirsttermHconf includesthespin-independentlinearconfinementandCoulomb-typeinteractions (cid:34) (cid:35) 3 3 α (r) Hconf =− c+ br− s F ·F , (5) 4 4 r 1 2 thesecondtermHhypisthecolor-hyperfineinteraction (cid:34) (cid:35) α (r) 8π 1(cid:16)3S ·rS ·r (cid:17) Hhyp = − s S ·S δ3(r)+ 1 2 −S ·S F ·F , (6) m m 3 1 2 r3 r2 1 2 1 2 1 2 andthethirdtermHSOisthespin-orbitinteraction HSO = HSO(cm)+HSO(tp), (7) whereHSO(cm)isthecolor-magnetictermandHSO(tp)istheThomas-precessionterm,i.e., (cid:32) (cid:33)(cid:32) (cid:33) α (r) 1 1 S S HSO(cm) = − s + 1 + 2 ·L F ·F , (8) r3 m m m m 1 2 1 2 1 2 (cid:32) (cid:33) −1∂Hconf S S HSO(tp) = 1 + 2 ·L. (9) 2r ∂r m2 m2 1 2 Intheaboveexpressions,S /S denotesthespinofthequark/antiquarkand Listheorbitalmomentumbetweenthe 1 2 quark and the antiquark. F is related to the Gell-Mann matrix, F = λ /2 and F = −λ∗/2. Especially, we have 1 1 2 2 (cid:104)F ·F (cid:105)=−4/3forthemesons. 1 2 TherelativisticeffectswerealsotakenintoaccountintheGImodel. MoredetailsoftheGImodelcanbefound in Appendices of Ref. [17]. The GI quark model was very successful in the description of the spectrum and static propertiesofthemesonsandbaryons. 1.1.2. Exoticstatesandmultiquarkstates According to the quark model, the parity for a meson is P = (−)L+1 and theC-parity for a neutral mesonC = (−)L+S, where L and S are the orbital and spin angular momentum, respectively. The allowed JPC reads: 0−+, 0++, 1−−, 1+−, 1++, ···. In contrast, a conventional qq¯ meson in the quark model can not carry the following quantum numbers: 0−−,0+−,1−+,2+−,···. Stateswiththese JPC quantumnumbersarebeyondthenaivequarkmodel,which are sometimes denoted as exotic or non-conventional states. Different from the meson case, the qqq baryon in the quarkmodelcanexhaustalltheJPquantumnumbers,i.e.,JP = 1±,3±,5±,···. 2 2 2 However,theconstituentquarkmodelcannotbederivedrigorouslyfromQCD.Thequarkmodelspectrumisnot necessarilythesameastheQCDhadronspectrum. QCDmayallowamuchricherhadronspectrum. Infact,atthebirthofthequarkmodel[18,19],Gell-MannandZweigproposednotonlytheexistenceoftheqq¯ mesonsandqqqbaryonsbutalsothepossibleexistenceoftheqq¯qq¯ tetraquarksandqqqqq¯ pentaquarks. Theconcept ofthemultiquarkswasproposedevenbeforetheadventofquantumchromodynamics(QCD)! In Ref. [18], M. Gell-Mann wrote: “Baryons can now be constructed from quarks by using the combinations (qqq),(qqqqq¯),etc.,whilemesonsaremadeoutof(qq¯),(qqq¯q¯),etc.” InRef.[19],G.Zweigalsowrote: “Ingeneral,wewouldexpectthatbaryonsarebuiltnotonlyfromtheproduct oftheseaces,AAA,butalsofromA¯AAAA,A¯A¯AAAAA,etc.,whereA¯denotesananti-ace. Similarly,mesonscouldbe formedfromA¯A,A¯A¯AA,etc.” The multiquarks can be further classified into tetraquarks (qqq¯q¯), pentaquarks (qqqqq¯), dibaryon (qqqqqq) and baryonium(qqqq¯q¯q¯)etc. JaffestudiedthetetraquarkstateswithintheframeworkoftheMITbagmodelin1976[20, 21]. This subject was later studied by Chan and Hogaasen [22], and many other theorists. The tetraquark states containing heavy quarks were investigated by Chao in 1979 [23, 24]. The pentaquarks (qqqqq¯) composed of light quarkswereinvestigatedbyHogaasenandSorba[25]in1978andStrotmannin1979[26]. Thename“pentaquark” wasfirstproposedbyLipkinin1987[27]. Twogroupsstudiedpossiblepentaquarkscontainingonecharmquarkin 1987[28,27]. 5 In 2003, the LEPS Collaboration announced the observation of the Θ pentaquark which is composed of uudds¯ [29]. However,thisstatewasnotconfirmedbythesubsequentmoreadvancedexperiments[30]. Jaffe also discussed the H-dibaryon, where six light quarks uuddss are confined within one MIT bag [31]. In nature there exists the deuteron which is also composed of six light quarks (see discussions in Refs. [32, 33]). The difference between the dibaryon and deuteron lies in their color configurations. Within the deuteron, there are two quarkclusters,bothofwhicharecolorsinglets. Forthedibaryon,oneexpectssixquarkswithinonecluster. In QCD, the gluons not only mediate the strong interaction between quarks but also interact among themselves since they carry color charges. Two or more gluons may form the color singlet, which is called the glueball. One or more gluons may interact with a pair of quark and antiquark to form the hybrid meson. The hybrid mesons or tetraquarkstatesortheglueballscancarryalltheso-calledexotic JPC quantumnumbersinthequarkmodel. Strictly speaking, there does not exist any exotic quantum number from the viewpoint of QCD. One can construct color- singlet local operators to verify that these quantum numbers are allowed in QCD. We shall illustrate this point in thefollowingsections. Throughoutthisreview,eithertheword“exotic”or“non-conventional”shouldbeunderstood withinthecontextofthequarkmodel. 1.1.3. ComparisonofQEDandQCDandtheirspectrum Quantum Electrodynamics (QED) is very different from QCD. The gauge group of QED is U(1). The photon mediatestheelectromagneticinteractionsbetweencharges. However,thephotonisneutralanddoesnotcarrycharge. There does not exist the photon self-interaction. We do not have the analogue of the glueball and hybrid meson in QED.Insteadtherearefreeelectronsandphotonswhileallquarksandgluonsareconfinedwithinthehadrons. Excepttheabovebigdifference,it’sintriguingtonoticethesimilaritybetweenQEDandQCD.Inthefollowing, we compare the well-known bound states in QED and possible hadrons in QCD. In QED we have the bound states composed of e+e−, µ+µ−, µ+e−. In QCD we have the light mesons composed of qq¯, ss¯, sq¯, where q = u,d is the up/downquark,andsisthestrangequark. ForthehydrogenatominQED,theelectroncirclesaroundtheproton. For theheavy-flavoredmeson/baryoninQCD,thelightquarkscirclearoundtheheavycharmorbottomquark. In QED there exist the bound states composed of e+e−e+e− and e+e−µ+µ− [34, 35]. In QCD some of the scalar mesons below 1 GeV may have the flavor configurations qq¯qq¯ and qq¯ss¯. In QED we have the hydrogen molecule wheretwoelectronsaresharedbythetwoprotonsandthevalencebondbindsthissystemtightly. InQCDwemay expecttheqQ¯qQ¯ andq¯QqQ¯ tetraquarkstateswithinoneMITbag,wherethetwolightquarksaresharedbythetwo heavyquarks. InQEDthereexistmanymoleculeswhicharelooselyboundbythevanderVaalsforce. ThevanderVaalsforce isnothingbuttheresidualelectromagneticforcearisingfromthetwo-photonexchangeprocessinQED.InQCDwe have the deuteron which is the hadronic molecular state bound by the meson exchange force. At the quark-gluon level, the meson exchange force is the residual strong interaction force arising from the gluon and quark exchange process. In QCD we may also expect other loosely bound deuteron-like molecular states composed of two heavy flavoredhadrons. 1.2. Generalstatusofhadronspectroscopy Althoughmostoftheobservedhadronscanbeclassifiedastheordinaryqq¯ mesonsandqqqbaryons,therehave beenhugetheoreticalandexperimentaleffortstosearchforthecandidatesoftheexotichadrons. Theseexoticstates encodeimportantinformationofQCD.Forexample,theidentificationoftheglueballsandhybridmesonswillestab- lishthedirectevidenceofthedynamicalroleofthegluonsinthelowenergysector. The exotic JPC quantum numbers provide a convenient handle in the search of the nonconventional states. If a resonancedecaysintothefinalstatewithJPC =1−+,theparentresonanceisagoodcandidateofthehybridmeson. On the other hand, the exotic flavor quantum number is also a valuable asset in the experimental search of the exotic states. If the resonance carries the isospin I = 2 or a meson has an isospin I = 3/2, it may be a multiquark candidate. For the Θ resonance, its baryon number is 1 and strangeness S = +1. Hence, it must be a candidate of pentaquarks. Some hadrons do not have exotic JPC or flavor quantum numbers. But they may have exotic color or flavor orspatialconfigurations. Thesestatescanbesearchedforthroughtheoverpopulationofthequarkmodelspectrum. Sometimesthedeviationfromthequarkmodelpredictionsoftheirmasses,decaywidths,variousreactions,production anddecaybehaviorsmayalsoprovideinsightfulcluesinthesearchoftheexoticstates. 6 Let’s take the JPC = 0++ scalar isoscalar mesons as an example. Below 2 GeV, we have σ, f (980), f (1370), 0 0 f (1500), f (1710), f (1790), f (1810) [1]. Within the quark model, there are only four scalar isoscalar mesons 0 0 0 0 withinthismassrangeevenifweconsidertheradialexcitations. Clearlythereisseriousoverpopulationofthescalar spectrum. The quark content of some of the above states can not be qq¯. Overpopulation of the spectrum provides anotherusefulwindowintheexperimentalsearchofthenon-conventionalstates. Let’smoveontotheninescalarmesonsbelow1GeV,whichplayafundamentalroleinthespontaneousbreaking of the chiral symmetry in QCD. The scalar meson carries one orbital excitation. Hence, its mass is expected to be several hundred MeV higher than the ρ meson mass in the quark model. Either lattice QCD simulation or other theoreticalapproachesindicatesthe L = 1qq¯ stateliesaround1.2GeV.Withinthequarkmodel,the f (980)meson 0 withthequarkcontent ss¯shouldbe200 ∼ 300MeVheavierthanthea (980)withthequarkcontentqq¯. However, 0 theyarealmostdegenerateinreality. Theunusuallowmassofthescalarnonetandtheabnormalmassorderingofthe f (980)anda (980)aretwopuzzlesinthequarkmodel. Incontrast,bothpuzzlescanbesolvedverynaturallyifthe 0 0 scalarmesonsbelongtothetetraquarknonet[21,36]. Thechiralunitaryapproachfortheinteractionofpseudoscalar mesonsmayalsogiverisetothesestructures[37,38,39]. Since2003,manycharmonium-likestateshavebeenobservedthroughBmesondecays,theinitialstateradiation (ISR),double charmoniumproduction, two photonfusion, and excitedcharmoniumor bottomoniumdecays. Some of them do not fit into the quark model spectrum easily and are proposed as the candidates of the hidden-charm exotic mesons, including the di-meson molecular states, tetraquarks, hybrid charmonium states and conventional charmoniumstatesdistortedbythecoupled-channeleffects,etc. Molecularstatesarelooselyboundstatescomposed ofapairofheavymesons. Theyareprobablyboundbythelong-rangecolor-singletpionexchange. Tetraquarksare boundstatesoftwoquarksandtwoantiquarks,whichareboundbythecoloredforcebetweenquarksandantiquarks. There are many states within the same tetraquark multiplet. Some members are charged or even carry strangeness. Hybridcharmoniaareboundstatescomposedofacharmquark-antiquarkpairandoneexcitedgluon. In this review, we focus on the recent experimental and theoretical progress on the hidden-charm multiquark systems such as hybrid charmonia, hidden-charm tetraquarks, hidden-charm pentaquarks, and hadronic molecules composedofapairofheavy-flavoredhadrons. InterestedreadersmayalsoconsultreviewsinRefs. [40,41,42,43, 44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,39]. 2. Experimentalprogressonthehidden-charmmultiquarkstates 2.1. TheCharmonium-likeXYZstates Withtheexperimentalprogress,thefamilyofthecharmonium-likestateshasbecomemoreandmoreabundant.To date,dozensofcharmonium-likestateshavebeenobservedbyseveralmajorparticlephysicsexperimentalcollabora- tionssuchasCLEO-c,BaBar,Belle,BESIII,CDF,DØ,LHCb,CMSandsoon.Since2003,thesecollaborationshave beencontinuingtosurpriseuswithnoveldiscoveries,whichhaveinspiredtheorists’extensiveinterestsinexploring theunderlyingmechanismbehindthoseexoticphenomena. Asoneofthemostimportantissuesinhadronphysics, the study of the charmonium-like states provides us a good chance to deepen our understanding of the complicated non-perturbative behavior of QCD in the low energy regime. Especially, investigations of the underlying structures of the charmonium-like states may help us to understand the mechanism of the confinement and chiral symmetry breakingbetter. All the above major particle physics experimental collaborations have contributed to the observations of the charmonium-like states. Before reviewing the experimental status of the charmonium-like states, we would like tointroducethecollaborationsbriefly: 1. CLEO-c: CLEO-c was the experiment at the Cornell Electron Storage Ring (CESR) located at Wilson Lab- oratory of Cornell University. As the upgrade of CLEO, the CLEO-c experiment ran at lower energies and carried out the study of charmonia and charmed mesons due to the competition from two B factories BaBar andBelle. TheCLEO-cexperimentconfirmedtheobservationoftheY(4260)[60]. AlthoughCLEO-cfinished data-collectingon3March2008,theaccumulatedCLEO-cdatawasappliedtoconfirmtheobservationofthe chargedcharmonium-likestructureZ (3900)[61]. c 2. BaBar:AsoneofthetwoBfactories,theBaBarexperimentwasdesignedtostudyCPviolationintheBmeson system. ItsdetectorwaslocatedatSLACNationalAcceleratorLaboratory,whichceasedoperationon7April 7 2008. However, itsdataanalysisisstillongoing. DuetothedevelopmentoftheInitialStateRadiation(ISR) technique, the BaBar experiment also focused on the study of charmonia and charmonium-like states. In the pastdecade,BaBarhasplayedacrucialroleinthediscoveriesofmanycharmonium-likestates. Forexample, BaBarfirstobservedthefamousY(4260)inthee+e− → J/ψπ+π−process[62]. 3. Belle: As the other B factory, the Belle experiment was located at the High Energy Accelerator Research Organization(KEK),whichwasalsosetuptostudyCPviolationinthe Bmesonsystem. Asabyproduct,the BelleCollaborationdiscoveredmanycharmonium-likestates. Forexample, Bellereportedtheobservationof theX(3872)in2003[63],whichisthefirstmemberinthefamilyofthecharmonium-likestates.AlthoughBelle finisheditsdata-takingon30June2010,itsdataanalysisisgoingon. 4. BESIII: BESIII is the experiment at Beijing Electron-Positron Collider II (BEPC II), located at Institute of HighEnergyPhysics(IHEP).Sinceitscenterofmassenergycangoupto4.6GeV,theBESIIIexperimenthas becomeanidealplatformtoexplorethecharmonium-likestates. In2013,BESIIIannouncedtheobservationof thechargedcharmonium-likestructureZ (3900)[64]. c 5. CDF and DØ: CDF and DØ were the two particle experiments located at the Tevatron at Fermilab. They discoveredthetopquarkin1995[65,66]. TheCDFandDØexperimentsbothconfirmedtheX(3872)[67,68]. TheCDFCollaborationalsoreportedthecharmonium-likestateY(4140)[69]. 6. LHCb: AsoneofsevenparticlephysicsexperimentsattheLargeHadronCollider(LHC)atCERN,theLHCb experimentfocusesonB-physics. LHCbalsostudiestheproductionsofthecharmonium-likestatesthroughthe direct ppcollisionsandthe Bmesondecays. Forexample, theLHCbCollaborationmeasuredthespin-parity quantumnumberoftheX(3872)[70]. 7. CMS:CMSisanotherimportantexperimentatLHCatCERN.TheCMSandATLAScollaborationsdiscovered theHiggsBosoninJuly2012[71,72]. Inrecentyears,CMSalsocontributedtothesearchofthecharmonium- likestatessuchastheX(3872)[73]andtheY(4140)[74]. Figure1:(Coloronline)Thelogosoftheexperimentalcollaborationswhichcontributedtotheobservationofthecharmonium-likestates. InFig. 1,wecollectLogosoftheseexperimentalcollaborationswhichhavecontributedtotheobservationsofthe charmonium-likestates. Accordingtothedifferentproductionmechanisms,alltheobservedcharmonium-likestatescanbecategorizedinto fivegroupsasshowninFig. 2. Thestatescollectedinthefirst,second,third,andfourthcolumnsareproducedviathe Bmesondecays, initialstateradiationtechnique(ISR)inthee+e− annihilation, thedoublecharmoniumproduction processes, and two photon fusion processes, respectively. The Z (3900)/Z (4025)/Z (3885)/Z (4200) listed in the c c c c fifthcolumnareproducedfromthehadronicdecaysoftheY(4260). 2.1.1. XYZstatesproducedthroughBmesondecays 2.1.1.1. X(3872). The X(3872) resonance was first observed by the Belle Collaboration in 2003 [63]. Since its discovery,itsexistencewasconfirmedbymanysubsequentexperiments[75,76,77,78,79,80,67,81,82,83,68,84, 85,86,87,88,89,90,91,70,92,73,93]asshowninFig. 3. Despitethehugeexperimentalefforts,westilldonot fullyunderstanditsnature. 8 s c e− γ c e− c γ c π∓ γ* γ* c Y(4260) b c Z± c c q q e+ c e+ J/ψ γ X(3872) Y(4260) X(3940) X(3915) Z (3900) c Y(3940) Y(4008) X(4160) X(4350) Z (4025) c Z+(4430) Y(4360) Z(3930) Z (4020) c Z+(4051) Y(4630) Z (3885) c Z+(4248) Y(4660) Y(4140) Y(4274) Z +(4200) c Z+(4240) X(3823) Figure2:(Coloronline)Fivegroupsofthecharmonium-likestatescorrespondingtofiveproductionmechanisms. 45 GeV )40 a) GeV )35 b) GeV )25 c) Events / ( 0.005 3305 Events / ( 0.005 2350 Events / ( 0.015 20 25 20 15 20 15 10 15 10 10 5 5 5 0 0 0 5.2 5.215.225.235.245.255.265.275.285.29 5.3 3.82 3.84 3.86 3.88 3.9 3.92 -0.1 -0.05 0 0.05 0.1 0.15 0.2 Mbc (GeV) M(J/ψπ π) (GeV) ∆E (GeV) (cid:113) Figure3: (Coloronline)Thebeam-energyconstrainedmass Mbc = (EbCeMam)2−(pCBM)2 (left),theπ+π−J/ψinvariantmass(middle),andthe energydifference∆E=ECM−ECM (right)fortheX(3872)→π+π−J/ψsignalregion,fromBelle[63]. B beam 9 n 107 bi LHCb s / nt 106 e m Simulated JPC=2-+ Simulated JPC=1++ peri 105 x e of er 104 b t m u data N 103 102 -200 -100 0 100 200 t = -2 ln[ L(2-+)/L(1++) ] Figure4:(Coloronline)DistributionoftheteststatistictforthesimulatedexperimentswithJPC =2−+and1++,fromLHCb[70],withtdatathe valueoftheteststatisticforthedata. ThemassandwidthoftheX(3872)fromdifferentexperimentsaresummarizedinTable1.Afittotheseparameters yields an average mass (3871.69±0.17) MeV [1] and a width < 1.2 MeV at 90% C.L. [80]. Its mass is extremely closetotheD0D¯∗0massthreshold,(3871.81±0.09)MeV.WealsocollectitsproductionsanddecaymodesinTable1. The X(3872) was mostly observed in the B meson decay process B±,0 → K±,0X(3872) with the X(3872) decaying (S) into π+π−J/ψ. The X(3872) was also produced in pp¯ annihilations, pp collisions, and e+e− annihilations (possibly throughtheY(4260),seeSec.2.1.2.1)anddecaysintoD∗0D¯0, D0D¯0π0,γJ/ψ,γψ(3686),andωJ/ψwithωdecaying intoπ+π−π0. ItsquantumnumbershavebeenstudiedbyBelle,BaBarandCDF,anddeterminedtobeIGJPC =0+1++ bytherecentLHCbexperiment[70],asshowninFig.4. BesidestheresonanceparameterslistedinTable1,theseexperimentsprovidedmanybranchingfractions.Theyare alsousefulexperimentalinformation,andwesummarizesomeoftheminTable2. Particularly,welistthefollowing isospin-violatingbranchingfractions Γ(X →π+π−π0J/ψ) = 1.0±0.4±0.3, (10) Γ(X →π+π−J/ψ) Γ(X →ωJ/ψ) = 0.7±0.3 for B+ events , (11) Γ(X →π+π−J/ψ) 1.7±1.3 for B0 events whichwereobservedbyBelle[75]andBaBar[90],respectively. The difference between B0 → K0X and B± → K±X also attracted much experimental interest. The Belle Col- laboration measured the ratio of branching fractions Γ(B0 → K0X)/Γ(B+ → K+X) to be (0.82±0.22±0.05) [77], (1.26±0.65±0.06)[78]and(0.50±0.14±0.04)[80],andthemassdifferencebetweentheX(3872)statesproducedinB+ andB0decaytobeδM = M(B+→K+X)−M(B0→K0X) =(0.18±0.89±0.26)MeV[77]and(−0.69±0.97±0.19)MeV[80], whiletheBaBarCollaborationmeasuredthisratiotobe(0.50±0.30±0.05)[85],and(0.41±0.24±0.05)[88],andthis massdifferencetobe(2.7±1.3±0.2)MeV[85]and(2.7±1.6±0.4)MeV[88],wherewehaveassumedexperimental resultsfromB+andB−arethesame. Besidestheaboveobservations,theX(3872)resonancewasnotseen(allvaluesaregivenat90%confidencelevel (C.L.).): 1. intheγχ decaymodeinBelle[63],andtheupperlimitwasmeasuredtobe c1 Γ(X(3872)→γχ ) c1 <0.89. (12) Γ(X(3872)→π+π−J/ψ) 10