ebook img

The Heun functions and their applications in astrophysics PDF

0.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Heun functions and their applications in astrophysics

The Heun functions and their applications in astrophysics. DenitsaStaicovaandPlamenFiziev 6 1 0 2 y a M 7 1 AbstractTheHeunfunctionsareoftencalledthehypergemeotrysuccessorsofthe 21stcentury,becauseof the wide numberof their applications.In this proceeding ] we discuss their application to the problem of perturbations of rotating and non- h p rotatingblackholesandhighlightsomerecentresultsontheirlate-timering-down - obtainedusingthosefunctions. h t a m 1 The Heun Functions [ 2 v The Heun functions are gaining popularity due to the vast number of their appli- 1 cations. The Heun project, a site dedicated to gathering scientists working in this 2 area, has already accumulated more than 500 articles on the theory and the ap- 0 plicationsofthose functions.Amongthe topicsare theSchro¨dingerequationwith 4 0 anharmoicpotential,theTeukolskylinearperturbationtheoryfortheSchwarzschild . andKerrmetrics,transversablewormholes,quantumRabimodels,confinementof 1 grapheneelectronsindifferentpotentials,quantumcriticalsystems,crystallinema- 0 6 terials,three-dimensionalatmosphericandoceanwaves,singlepolymerdynamics, 1 economics,geneticse.t.c(seethebibliographysectionin[10]). : ThegeneralHeunfunctionisdefinedasthelocalsolutionofthefollowingsecond v i orderFuchsianordinarydifferentialequation(ODE)[5,6]: X r d2 g d e dH(z) ab z q a H(z)+ + + + − H(z)=0 (1) dz2 z z 1 z a dz z(z 1)(z a) (cid:20) − − (cid:21) − − InstituteforNuclearResearchandNuclearEnergy, Bulgarian Academy of Sciences, bul. “Tsarigrasko shose” 72, Sofia 1784, Bulgaria, e-mail: [email protected] SofiaUniversityFoundationforTheoreticalandComputationalPhysicsandAstrophysics, 5JamesBourchierBlvd.,1164Sofia,BulgariaandJINR,Dubna,141980MoscowRegion,Russia e-mail:[email protected] 1 2 DenitsaStaicovaandPlamenFiziev normalizedto1 atz=0Here e =a +b g d +1.Thisequationposses4reg- ularsingularities:z=0,1,a,¥ andit gene−rali−zesthe hypergeometricfunction,the Lame´ function,the Mathieufunction,the spheroidalwave functionsetc. Itsgroup ofsymmetriesisoforder192. Forcomparison,thehypregeometricdifferentialequationhas3regularsingular- itiesz(z 1)d2w(z)+[c (a+b+1)z]dw(z) abw(z)=0withgroupofsymmetries − dz2 − dz − oforder24. Recallingthedefinitionofirregularsingularity: Definition1. For an ODE of the form: P(x)y (x)+Q(x)y(x)+R(x)y(x)=0, the ′′ ′ point x is singular if Q(x)/P(x) or R(x)/P(x) diverge at x = x . If the limits 0 0 lim Q(x)(x x ) and lim R(x)(x x )2 exist and are finite then the point x→x0 P(x) − 0 x→x0 P(x) − 0 x isregularsingularity,otherwise,itisirregularoressentialsingularity.Thepoint 0 x =¥ istreatedthesamewayunderthechangex=1/z. 0 ThegeneralHeunfunctionhas4regularsingularities,fromwhichunderthepro- cess called confluence of singularities, one obtains 4 different types of confluent Heunfunctionswithfewersingularitiesbutofhighers-rank(SeeFig.1forillustra- tion). FortheconfluentHeunfunctionwhichwewillusebelow,thisprocessmeansthe redefinitionofb =b a,e =e a,q=qaandtakingthelimita ¥ .Thisgivesusthe → followingODE: d2 d g d ab qz q H(z) e H(z) − + H(z)=0 (2) dz2 − −z 1− z dz − z 1 z (cid:18) − (cid:19) (cid:18) − (cid:19) InMaplenotations,thedefaultformofthesolutionofthistypeofODEisdenoted asHeunC(a ,b ,g ,d ,h ,z)whichweadopt.ToobtainfromMaple’sdefaultformEq. 1, one needs to set a = (e 2 4q )1/2,b =g 1,g = 1+d ,d = a b + (1/2)d e +(1/2)e g ,h =− 0(1−/2)d0g (1/2)e0−g +q +−1/2an0dvisev−ers0a(0the 0 0 0 0 0 0 0 0 0 − − “ ”subscriptdenotestheparametersinEq.2. 0 2 Applications oftheHeun functions inastrophysics 2.1 TeukolskyAngular equationand TeukolskyRadialequation In the frame of the Teukolsky linear perturbations theory, the late-time ringing of a black hole due to a perturbation of different spin is described by one Mas- terequation.UnderthesubstitutionY (t,r,q ,f )=ei(w t+mf )S(q )R(r)(wherewhere m=0, 1, 2)thisequationsplitsintwosecondorderODEsoftheconfluentHeun type–T±he±TeukolskyAngularEquation(TAE): d d (m+su)2 du 1−u2 duSlm(u) + (aw u)2+2aw su+E−s2− 1 u2 Slm(u)=0, (3) (cid:16)(cid:0) (cid:1) (cid:17) (cid:18) − (cid:19) andtheTeukolskyRadialEquation(TRE): TheHeunfunctionsandtheirapplicationsinastrophysics. 3 GeneralHeunfunction(GHE) Singularities: regular={0,1,a,∞} d2 γ δ ǫ d αβz−q dz2H(z)+"z+z−1+z−a#dzH(z)+z(z−1)(z−a)H(z)=0 ConfluentHeunfunction(CHE) Singularities: regular={0,1},irregular={∞1} ddz22H(z)+"γz+z−δ1+ǫ#ddzH(z)+ qz−−α1β−zq!H(z)=0 BiconfluentHeunfunction(BHE) DoubleconfluentHeunfunction(DHE) Singularities: regular={0},irregular={∞2} Singularities: regular={},irregular={−11,11} ddz22H(z)+"−2z−β+1+zα#ddzH(z)+ γ−α−2−(1+α2)zβ+δ!H(z)=0 ddz22H(z)−α(+z2+z1+)2α(zz2−−1)22z3ddzH(z)+δ+(z(−2α1+)3γ(z)z++1)β3z2H(z)=0 TriconfluentHeunfunction(THE) Singularities: regular={},irregular={∞3} ddz22H(z)−(γ+3z2)ddzH(z)+(α+βz−3z)H(z)=0 Fig.1 AschemeofthedifferentconfluentODEsobtainablefromtheODEofthegeneralHeun function(inMaple’snotations).Thesubscriptnexttotheirregularsingularitiesistheirrank d2Rl,m(r)+(1+s) 1 + 1 dRl,m(r)++ K2 dr2 (cid:18)r−r+ r−r−(cid:19) dr (r−r+)(r−r−)− is 1 + 1 K l 4isw r Rl,m(r) =0 (4) (cid:18)r−r+ r−r−(cid:19) − − !(r−r+)(r−r−) where D =r2 2Mr+a2 =(r r )(r r ), K = w (r2+a2) ma, l =E + s(s+1)+a2w −2+2amw and u=−co−s(q )−. Here r =−M √M2 −a2 are the inn−er ± ± − and outer horizon of the rotating black hole. Being interested in electromagnetic perturbationswefixthespintos= 1. Inthissystem,theunknownquan−titiesarethecomplexfrequenciesw giving l,m,n usthespectrumandtheconstantofseparationE whichfora=0isE=l(l+1) l,m,n (for s= 1). The only physical parameters of the system, in agreement with the − No-HairTheorem,aretherotationalparameteraandthemassoftheblackholeM, whichweherefixtoM=1/2. Thesingularitiesofthetwoequationsareasfollows:fortheTREr=r –regular and r=¥ – irregular.For the TAE, the regularsingularities are: q = ±p and the irregularisagainq =¥ . ± 2.2 Boundary conditions In order to find the spectrum, we need to solve the central two-point connection problem,imposingappropriateboundaryconditionsontwo ofthesingularpoints. 4 DenitsaStaicovaandPlamenFiziev Detailsontheboundaryconditions,aswellasonthewholeapproachandtheexplicit valuesoftheparameters,canbefoundin[1,2,3,7,4,8,9].Inbrief,werequire: 1. OntheTAE: a. Quasi-normal modes (QNMs): we require angular regularity. This translate intothefollowingdeterminant. W[S1,S2]= HHeeuunnCC′((aa11,,bb11,,gg11,,dd11,,hh11,,((ccooss((pp//66))))22))+ HeunC′(a 2,b 2,g2,d2,h 2,(sin(p /6))2)+p=0 (5) HeunC(a 2,b 2,g2,d2,h 2,(sin(p /6))2) wheredetailsontheparameterscanbeseenin[1,7,4,8] b. Jet modes: A qualitatively new boundary condition has been used in [8] to obtain the so-called primary jet modes. The condition was that of angular singularitywhichtranslatesintopolynomialconditionforthesolutionsofthe TAE,i.e.: d b +g + +N+1=0 a 2 D N+1(m )=0 whereD (m )istridiagonaldeterminant[3]. N+1 2. OntheTRE: a. Black hole boundaryconditions:For any m, the solution R is valid for fre- 2 quenciesforwhich´ (w ) ( ma ,0)andalsothat:sin(arg(w )+arg(r))<0. 6∈ −2Mr+ b. Quasi-boundboundaryconditions:Foranym,thesolutionR isvalidforfre- 1 quenciesforwhich´ (w ) ( ma ,0)andalsothat:sin(arg(w )+arg(r))>0. 6∈ −2Mr+ 2.3 Numericalresults Thesodescribedboundaryconditionsleadtoatwo-dimensionalspectralsystemon theunknownsw andE.BecauseofthecomplexityoftheconfluentHeunfunctions, we use an algorithm developed by the team to find the roots of the system. The numerical results give different spectra of discrete complex frequencies some of whichcanbeseenonFig.2.Aspartofourstudy,weexaminedhowthosespectra changewithintroductionofrotation(a=0),uptothelimita M,andwetestedthe 6 → numericalstabilityoftheso-obtainedfrequencies,inordertoensuretheyrepresent physicalquantitiesandnota numericalartifact(an examplecanbe seenon Fig.2 b).) The physically interesting result are the qualitatively different spectra (Fig. 2 a) ), dependingon the boundaryconditionsimposed on the system, which can be used as an independenttool to discover the nature of the physicalobject emitting electromagneticorgravitationalwaves. TheHeunfunctionsandtheirapplicationsinastrophysics. 5 Fig.2 Examplesofthedifferentspectraobtainedfromthespectralsystem.a)Complexplotofthe first7modesintheQNMs(crosses)andprimaryjetmodes(diamonds)b)QNMs(point-line)and thenon-physicalspuriousmodes(solidlines)fora=[0,M] 3 Conclusion InthisproceedingwediscussedtheapplicationoftheHeunfunctionstotheproblem ofquasinormalmodesofrotatingandnon-rotatingblackholes.Wepresentedsome ofourlatestnumericalresults,keytowhichisthedevelopmentofthetheoryofthe Heunfunctionsandtheirnumericalimplementation. Acknowledgements This article was supported by the Foundation ”Theoretical and Computa- tionalPhysicsandAstrophysics”,bytheBulgarianNationalScientificFundundercontractsDO-1- 872,DO-1-895,DO-02-136,andSofiaUniversityScientificFund,contract185/26.04.2010,Grants oftheBulgarianNuclearRegulatoryAgencyfor2013,2014and2015. References 1. Fiziev P.P.,Class.QuantumGrav.232447-2468(2006) 2. Fiziev P.P.,Class.QuantumGrav.27135001(2010) 3. Fiziev P.P.,J.Phys.A.:MathTheor.43035203(2010) 4. FizievP.,StaicovaD.,Phys.Rev.D84,127502(2011) 5. Heun K.,Math.Ann.33161,(1889) 6. Ronveaux,A.,ed.Heun’sDifferentialEquations.Oxford,England:OxfordUniversityPress, 1995. 7. StaicovaD.R.,FizievP.P.AstrophysSpaceSci332:385-401(2011) 8. StaicovaD.,FizievP.BulgarianAstronomicalJournal23,83,(2015) 9. StaicovaD.,FizievP.AstrophysicsandSpaceScience,358:10(2015) 10. TheHeunProjecthttp://theheunproject.org/bibliography.html

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.