ebook img

The Harmonic Distortion Reduction of Phase-Angle Fired SCRs Feeding a Resistive Load using ... PDF

100 Pages·2016·3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Harmonic Distortion Reduction of Phase-Angle Fired SCRs Feeding a Resistive Load using ...

WWrriigghhtt SSttaattee UUnniivveerrssiittyy CCOORREE SScchhoollaarr Browse all Theses and Dissertations Theses and Dissertations 2010 TThhee HHaarrmmoonniicc DDiissttoorrttiioonn RReedduuccttiioonn ooff PPhhaassee--AAnnggllee FFiirreedd SSCCRRss FFeeeeddiinngg aa RReessiissttiivvee LLooaadd uussiinngg FFuuzzzzyy LLooggiicc Matthew A. Clark Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Electrical and Computer Engineering Commons RReeppoossiittoorryy CCiittaattiioonn Clark, Matthew A., "The Harmonic Distortion Reduction of Phase-Angle Fired SCRs Feeding a Resistive Load using Fuzzy Logic" (2010). Browse all Theses and Dissertations. 330. https://corescholar.libraries.wright.edu/etd_all/330 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. The Harmonic Distortion Reduction of Phase-Angle Fired SCRs Feeding a Resistive Load using Fuzzy Logic A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering by Matthew A. Clark B.S.E.E, Wright State University, 2000 2010 Wright State University WrightStateUniversity SCHOOLOFGRADUATESTUDIES April12,2010 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER- VISIONBYMatthewA.ClarkENTITLEDTheHarmonicDistortionReductionofPhase-Angle Fired SCRs Feeding a Resistive Load using Fuzzy Logic BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science inEngineering. KuldipS.Rattan,Ph.D. ThesisDirector KefuXue,Ph.D. DepartmentChair Committeeon FinalExamination KuldipS.Rattan,Ph.D. MarianKazimierczuk,Ph.D. XiaodongZhang,Ph.D. JohnA.Bantle,Ph.D. VicePresidentforResearchand GraduateStudiesandInterimDean ofGraduateStudies ABSTRACT Clark,Matthew. M.S.Egr.,,WrightStateUniversity, 2010. TheHarmonicDistortionReductionof Phase-AngleFiredSCRsFeedingaResistiveLoadusingFuzzyLogic. High power silicon controlled rectifiers (SCR) are used in the application of infrared radiation testing. A case study has been performed on a department of defense facility utilizing SCRs to transfer electrical energy to thermal energy. The facility is capable of generating up to 5000◦F across large cross-sectional areas, requiring tens of megawatts of power. The combination of high power, unbalanced loads, and SCR switching gen- erate high harmonic disturbances that offer significant challenges for conventional linear control systems. In addition, unbalanced three-phase distribution systems are difficult to model, specifically during switching transients. Fuzzy logic is used to characterize the non-linearplantdynamics,controlthesystemoutput,andreduceharmonics. Althoughthe use of fuzzy logic for harmonic reduction has been used extensively in the power industry, most applications focus on compensating for harmonic disturbance rather than avoiding it. Harmonic compensation adds hardware in the system, which adds maintenance costs and inefficiency. This thesis introduces a technique to eliminate harmonic content in the con- trol loop without adding additional hardware. A simulation of the system was created and fuzzylogicwasusedtocharacterizethebehaviorofthesimulation. Thesimulationresults demonstrated the non-linear control problem and identified key harmonic areas to avoid. A fuzzy proportional-integral controller along with a fuzzy harmonic reduction controller is implemented in this thesis to improve the control response while avoiding harmful har- monic interference. The fuzzy harmonic reduction controller yielded a hybrid pulse width modulation output that eliminated the most harmful harmonics while maintaining closed loopcontrol. iii List of Symbols Chapter 1 Q HeatFlux A Areaofaradiatingbody (cid:15) Emissivity σ Stefan-Boltzmanconstant5.67x10−8W/m2K4 iv Contents 1 Introduction 1 1.1 ProblemDefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ProposedSolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 SignificanceofResearch 11 2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 CaseStudyBackground . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 CaseStudyRequirements . . . . . . . . . . . . . . . . . . . . . . 14 2.2 HarmonicMitigationOptions . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 ImplementPassiveCircuits . . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 Multi-phasingofLoadviaanIGBT . . . . . . . . . . . . . . . . . 18 2.2.3 SwitchtheSCRstoZero-CrossTechnology . . . . . . . . . . . . . 18 2.2.4 ActiveLineCompensation . . . . . . . . . . . . . . . . . . . . . . 19 3 SystemModeling 21 3.1 TheSiliconControlledRectifier . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 TheTransformerandTotalLoads . . . . . . . . . . . . . . . . . . . . . . . 26 4 IntroductiontoFuzzyLogic 30 4.1 FuzzySets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 FuzzyPartitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 Linguisticvariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4 FuzzyRules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.5 FuzzyControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5 FuzzyLogicImplementation 40 5.1 PlantCharacterizationusingFuzzyLogic . . . . . . . . . . . . . . . . . . 40 5.2 ThePIControllerImplementation . . . . . . . . . . . . . . . . . . . . . . 51 5.2.1 TheRadiantHeatSystemPlant . . . . . . . . . . . . . . . . . . . 51 5.2.2 TheInitialLinearController . . . . . . . . . . . . . . . . . . . . . 59 5.2.3 TheFuzzyPIController . . . . . . . . . . . . . . . . . . . . . . . 64 5.3 TheFuzzyHarmonicReductionController . . . . . . . . . . . . . . . . . 69 v 6 Conclusions 79 Bibliography 81 7 AppendixA:MatlabCode 84 vi List of Figures 1.1 Singlephase,phaseanglefiredSCRrepresentativecircuit. . . . . . . . . . 2 1.2 Representative circuit of three single phase SCRs connected in a Delta Loadconfiguration,fedbyaDeltatransformer. . . . . . . . . . . . . . . . 3 1.3 RMSPowerofuncontrolledsinglephaseignitronwithgraphiteheaterload. 4 1.4 Result of SCR prematurely turning off due to phase A and B combined transientspike. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Result of SCR prematurely turning on due to phase A and B combined transientspike. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.6 LinesidetransientsfromSCRfiringatcomplementaryphases45,90,135 ◦. 6 1.7 LoadsidetransientsfromSCRfiringatcomplementaryphases45,90,135 ◦. 7 1.8 GASMGSchematicofa600Vdelta-deltatransformeranddeltaloads. . . . 8 2.1 Graphiteheaterarray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Quartzheaterarray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 SimultatedtransformervariancesofTHDgivenbytheavailableKVA. . . . 17 3.1 SimulatedSCRusingidealswitch. . . . . . . . . . . . . . . . . . . . . . . 23 3.2 ZeroCrossDetectionforSCRtriggering. . . . . . . . . . . . . . . . . . . 27 3.3 OnedimensionalmodelrepresentationoftransientTURNONcurrenteffects. 28 3.4 GraphofsinglephaselineandloadvoltageswithandwithoutSCRsnubber present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.5 FullthreephaseDelta-Deltatransformer. . . . . . . . . . . . . . . . . . . . 29 4.1 Comparisonofconventionalandfuzzysets[1]. . . . . . . . . . . . . . . . 31 4.2 Complementofafuzzyset[1]. . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 Unionoftwofuzzysets[1]. . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4 Intersectionoftwofuzzysetsusingtheproductmethod[2]. . . . . . . . . . 33 4.5 FuzzypartitioningofaphaseanglespaceU. . . . . . . . . . . . . . . . . . 34 4.6 Fuzzylinguisticvariablesofcoffeepouringrate[1]. . . . . . . . . . . . . . 35 4.7 Blockdiagramofthefuzzycontroller[2]. . . . . . . . . . . . . . . . . . . 36 4.8 Anexampleoffuzzification. . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.9 Min-Maxmethodofinferencetoproducefuzzysets[1]. . . . . . . . . . . 38 5.1 Representationoftheplantinputsandoutputs. . . . . . . . . . . . . . . . . 41 vii 5.2 Representationoftheplantinputfuzzification. . . . . . . . . . . . . . . . . 41 5.3 Representationoftheplantoutputfuzzification. . . . . . . . . . . . . . . . 41 5.4 Fuzzificationofcrispphaseanglevalues. . . . . . . . . . . . . . . . . . . 43 5.5 Fuzzificationofcrisp%V errorvalues. . . . . . . . . . . . . . . . . . 44 RMS 5.6 FuzzificationofcrispTHDvalues. . . . . . . . . . . . . . . . . . . . . . . 44 5.7 V vsphaseα withvariedloads. . . . . . . . . . . . . . . . . . . . . . 45 RMS 5.8 %V errorofeachtransformerphasevsSCRphaseanglecombinations. 46 RMS 5.9 THD ofeacheachtransformerphasevsSCRphaseanglecombinations. . . 47 5.10 Standard deviation of %V error of each transformer phase vs SCR RMS phaseanglecombinations. . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.11 THD vsphaseα withvariedloads. . . . . . . . . . . . . . . . . . . . . . . 50 5.12 THD ofeachφvsphaseα withasinglephase400KWload. . . . . . . . . 51 5.13 RepresentativeSCRinnerloop. . . . . . . . . . . . . . . . . . . . . . . . . 52 5.14 Representativeheattransferfromheatingelementtotestarticle. . . . . . . 53 5.15 Representative heat transfer from heating element to test article resultant graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.16 OpenloopplantwithSCR,heater,andsimulatedplant. . . . . . . . . . . . 55 5.17 RepresentativeSCRinnermodel. . . . . . . . . . . . . . . . . . . . . . . . 56 5.18 Drive%vs. T (◦F). . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 element 5.19 V andP withrespecttodrive%. . . . . . . . . . . . . . . . . . . . 58 RMS RMS 5.20 Simulinkmodeloftherepresentativeanalogcontrolsystem . . . . . . . . . 59 5.21 Rootlocusoftheopenlooptransferfunction . . . . . . . . . . . . . . . . 60 5.22 Simulinkmodeloftheanalogcontrolsystem . . . . . . . . . . . . . . . . 63 5.23 ResultantresponseoftheclosedloopclassicPIcontrolsystem. . . . . . . . 64 5.24 FuzzyPIcontrollerimplementationinSimulink. . . . . . . . . . . . . . . . 65 5.25 EquallyspacedmembershipfunctionsforthePIcontroller. . . . . . . . . . 65 5.26 RuleBaseforthestandardFuzzyProportionalPlusIntegralController. . . . 66 5.27 ResponseoftheevenlyspacedFuzzyLogicPIcontroller. . . . . . . . . . . 66 5.28 ThephaseangleoutputoftheevenlyspacedFuzzyPIcontroller. . . . . . . 67 5.29 ModifiedFuzzyPIcontrollerSystemResponse. . . . . . . . . . . . . . . . 68 5.30 ControlSurfacefortheerrorsignal. . . . . . . . . . . . . . . . . . . . . . 69 5.31 ResultantphaseangleoutputresponseoftheclosedloopclassicPIcontrol system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.32 Region of phase angles to be avoided to minimize harmonics. Classical controllerresponseshownintheavoidanceregion. . . . . . . . . . . . . . 70 5.33 Controlsurfaceforharmonicmitigationcontroller. . . . . . . . . . . . . . 72 5.34 Closeupoftheharmfulharmonicregioninthecontrolsurfaceforharmonic mitigationcontroller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.35 Errormembershipfunctionfortheharmonicmitigationcontroller. . . . . . 73 5.36 Outputmembershipfunctionfortheharmonicmitigationcontroller. . . . . 73 5.37 CompletesystemwithharmonicmitigationfuzzyController. . . . . . . . . 75 5.38 Resultant phase control output with and without harmonic reduction con- troller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.39 Resultantphasecontroloutputwithharmonicreductioncontroller. . . . . . 76 5.40 Resultantoutputresponsewiththeharmonicreductioncontroller . . . . . . 77 viii 5.41 Closeupoffigure5.38,visualizingtheswitchingmodeofcontroller. . . . . 77 ix

Description:
In addition, unbalanced three-phase distribution systems are difficult to The fuzzy harmonic reduction controller yielded a hybrid pulse width . 3.4 Graph of single phase line and load voltages with and without SCR . The apparent harmonic effect of all three SCRs firing is thought to create a back
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.