ebook img

The Hamiltonian H=xp and classification of osp(1|2) representations PDF

0.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Hamiltonian H=xp and classification of osp(1|2) representations

The Hamiltonian H = xp and classification of osp(1 2) representations | G.RegniersandJ.VanderJeugt DepartmentofAppliedMathematicsandComputerScience,GhentUniversity, Krijgslaan281-S9,B-9000Gent,Belgium. 0 [email protected],[email protected] 1 0 Abstract 2 n Thequantizationofthesimpleone-dimensionalHamiltonianH = xp a is of interest for its mathematical properties rather than for its physical J relevance. In fact, the Berry-Keating conjecture speculates that a proper 8 quantizationofH = xpcouldyieldarelationwiththeRiemannhypoth- esis. Motivated by this, we study the so-called Wigner quantization of ] H =xp,whichrelatestheproblemtorepresentationsoftheLiesuperalge- h braosp(1|2).Inordertoknowhowtherelevantoperatorsactinrepresenta- p tionspacesofosp(1|2),westudyallunitary,irreducible∗-representations - h ofthisLiesuperalgebra. SuchaclassificationhasalreadybeenmadebyJ. t W.B.Hughes,butwereexaminethisclassificationusingelementaryargu- a m ments. [ 1 Introduction 1 v 5 ThesuggestionthatthezerosoftheRiemannzetafunctionmightberelatedto 8 thespectrumofaself-adjointoperatorH goesbacktoHilbertandPo´lyainthe 2 early20thcentury.ItwasnotuntiltheworksofSelberg[1]andMontgomery[2] 1 thatthis conjecturegainedmuch credibility. Due to papersby Connes[3] and . 1 BerryandKeating[4,5]inthelate1990s,itappearsthattheHilbert-Po´lyacon- 0 jecturemightberelatedtotheclassicalone-dimensionalHamiltonianH = xp. 0 Moreprecisely,BerryandKeatingsuggestthatsomesortofquantizationofthis 1 v: aHraemthiletohneiiagnhtmsiogfhtthreesnuolnt-itnriavisapleRctireummancnonzseirsotisng1o+ftihte.vAalupersoptne,rwquhaenretizthaetiotnn i 2 n X revealingsuchacorrespondenceis,however,notknown. r Theseinterestingobservationsstimulatedustoperformadifferentquantization a oftheHamiltonianH =xp.InWignerquantizationoneabandonsthecanonical commutation relations and instead imposes compatibility between Hamilton’s equations and the Heisenberg equations as operator equations. The result is a setofcompatibilityconditionsthatareweakerthanthecanonicalcommutation relations.ThiswasappliedforthefirsttimeinafamouspaperbyWigner[6]. Wigner’sapproachhasbeenappliedtomanydifferentHamiltonians,leadingto various connectionswith Lie superalgebras[7–9]. In the present text, Wigner quantizationwillleadtotheLiesuperalgebraosp(12). Sinceitisourinterestto determinethespectrumoftheoperatorsHˆ andxˆ,o|neneedstheactionofthese operatorsinrepresentationspacesofosp(12). Wepresentaclassificationofall | irreducible -representations of this Lie superalgebra, thus reconstructing and ∗ improvingsomeresultsbyHughes[10]. 1 2 Wigner quantization of H = xp The simplest Hermitian operator that correspondsto our Hamiltonian is given by 1 Hˆ = (xˆpˆ+pˆxˆ). (1) 2 Withouttheassumptionofanycommutationrelationsbetweenthepositionand momentumoperatorsxˆandpˆ,onecanstillcomputeHamilton’sequations ∂Hˆ ∂Hˆ xˆ˙ = =xˆ, pˆ˙ = = pˆ ∂p −∂x − andtheequationsofHeisenberg i i xˆ˙ = [Hˆ,xˆ], pˆ˙ = [Hˆ,pˆ] ~ ~ andimposethattheyareequivalent. Theresultingcompatibilityconditions(we choose~=1) [ xˆ,pˆ ,xˆ]= 2ixˆ, [ xˆ,pˆ ,pˆ]=2ipˆ (2) { } − { } areweakerthantheusualcanonicalcommutationrelations[xˆ,pˆ] = i. Wewish tofindself-adjointoperatorsxˆ andpˆsuchthatthecompatibilityconditions(2) are satisfied. For that purpose we define new operators b+ and b−, satisfying (b±)† =b∓,as xˆ ipˆ b± = ∓ . √2 OnecanrewritetheHamiltonianHˆ intermsoftheb± asfollows: i Hˆ = ((b+)2 (b−)2). 2 − Evidentlytheoperatorsxˆandpˆcanbeexpressedaslinearcombinationsofthe b±. Eventhecompatibilityconditionscanbereformulated.Theyareequivalent to[Hˆ,b±]= ib∓,whichinturncanbewrittenas − b−,b+ ,b± = 2b±. (3) (cid:2) (cid:3) { } ± TheseequationsarerecognizedtobethedefiningrelationsoftheLiesuperalge- braosp(12), generatedbytheelementsb+ andb−. Sowehavefoundexpres- | sionsofallrelevantoperatorsintermsofLiesuperalgebragenerators. A question one might ask is to find the spectrum of Hˆ and xˆ in an osp(12) | representation space, which is only possible once these representation spaces are known. Thespectralproblemwill betackledin a subsequentpaper. Right now, we wish to present a straightforward way of classifying the irreducible -representationsofosp(12). ∗ | 2 3 Classification of irreducible -representations of ∗ osp(1 2) | Although we are aware of the classification by Hughes in [10], we think it is possibletoachievehisresultsinamoreaccessibleway,basedon[11]. Inaddi- tionwe willbeableto identifysomeequivalentrepresentationclasses. Before giving the details of our classification, we providethe readers with the neces- sary definitions and a general outline of how we will construct all irreducible -representationsofosp(12). ∗ | 3.1 Basicintroduction andoutline WewillbedealingwiththeLiesuperalgebraosp(12),generatedbytwoopera- torsb+ andb− thataresubjecttotherelations(3). T| hegeneratingoperatorsb+ andb−aretheoddelementsofthealgebra,whiletheevenelementsare 1 1 1 h= b−,b+ , e= b+,b+ , f = b−,b− . 2{ } 4{ } −4{ } Amongothers,thefollowingcommutationrelationscannowbecomputedfrom thedefiningrelations(3): [h,e]=2e, [h,f]= 2f, [e,f]=h. − One can define a -structure on osp(12), which is an anti-linear anti- multiplicative involut∗ion X X∗. For X| ,Y osp(12) and a,b C we have that (aX +bY)∗ = a¯X7→∗ +¯bY∗ and (XY∈)∗ = Y∗|X∗. Our -s∈tructure is provided by the dagger operation X X†, so we have b± ∗ ∗= b∓ and (cid:0) (cid:1) 7→ thereforeh∗ = h, e∗ = f and f∗ = e. Once we have constructedsuch a − − -algebra,weneedtodefinerepresentations. ∗ Definition1 Let be a -algebra, let be a Hilbert space and let be a A ∗ H D densesubspaceof . A -representationof on isamapπfrom intothe H ∗ A D A linearoperatorson suchthatπisarepresentationof regardedasanormal D A algebra,togetherwiththecondition π(X)v,w = v,π(X∗)w (4) h i h i for all X and v,w . The representation space , together with the ∈ A ∈ D D representationπ, iscalledan -module. Asubmoduleof isasubspacethat A D isclosedundertheactionof . Therepresentationπissaidtobeirreducibleif A the -module hasnonon-trivialsubmodules. A D Theevenoperatorsh,eandf,togetherwiththepreviouslydefined -structure, ∗ form the Lie algebra su(1,1). Both su(1,1) and osp(12) possess a Casimir | operator,denotedbyΩandC respectively: 1 1 Ω= (4fe+h2+2h), C = 4Ω+ (b−b+ b+b−). −4 − 2 − 3 The Casimir elements generate the center of the respective (enveloping)alge- bras. SoΩcommuteswitheveryelementofsu(1,1)andsimilaryforC. More- over,wehaveΩ∗ =ΩandC∗ =C. Wewillconstructallpossibleirreducible -representationsofosp(12)start- ∗ | ing from one assumption: h has at least one eigenvectorin the representation spacewitheigenvalue2µ,or π(h)v0 =2µv0. (5) Startingfromthisonevector,wewillbuildotherbasisvectorsoftherepresenta- tionspaceV bylettingoperatorsofosp(12)actonit. Afterhavingdetermined | theactionsofallosp(12)operatorsonallbasisvectorsofV,wewillextendthe | representationπ to a -representation. This is done by defining a sesquilinear form .,. :V C,w∗hichistobeaninnerproductthatsatisfies(4). h i → The stipulationthat .,. shouldbe an innerproductwill becrucialin limiting h i thepossiblerepresentationspaces.However,wewillpostponethedetailsofthis discussiontothepointwherewehaveenoughargumentsforthisend. Soletus startwiththeactualconstructionoftherepresentationspaceV. 3.2 Construction ofthe representation space In this section, the -structureis of no importance. We will constructan ordi- ∗ naryosp(12)representationspace thatwe willextendto a -representationin | ∗ thenextsection. Theembeddingofsu(1,1)inosp(12)impliesthatanyirreduciblerepresenta- | tion of osp(12)is a representationofsu(1,1), the latter beingnotnecessarily | irreducible.V canthereforebewrittenasadirectsumofirreduciblerepresenta- tionspacesofsu(1,1),or V =MWi. i Withoutlossofgenerality,wecanregardv asanelementofW . SinceW isa 0 0 0 representationspaceofsu(1,1),weknowthat v2k =π(e)kv0 and v−2k =π(f)kv0 mustbeelementsofW .AllthesevectorsspanthespaceW ,whichisgenerated 0 0 byasinglevectorv . 0 The action of b+ on any vector of W must be a vector outside W , provided 0 0 thatthisactiondiffersfromzero. Letusdefine v1 =π(b+)v0. Wecansaythatv isanelementofW . Similarly,wecanlookattheactionof 1 1 b−onv : 0 v−1 =π(b−)v0. Sinceb−b+ isa diagonaloperator(apparentfromthedefinitionoftheCasimir operatorC),π(b−)v1 isacertainmultipleofv0. Atthispointhowever,wecan- not be sure that π(b−)v1 is different from zero. Likewise, it is impossible to 4 tellwhetherπ(b+)v−1 = 0. Sincewecanneithersaythatπ(f)v1 isanonzero 6 multiple of v−1, nor that π(e)v−1 is a multiple of v1, we must regard v−1 as anelementof adifferentsubspaceW . NotethatW andW are thesame −1 1 −1 spaceswhen either π(b−)v1 or π(b+)v−1 differsfromzero. These actionsare zerosimultaneouslyonlywhenµ=0. WedenotethegeneratingvectorsofW−1 asv−2k−1 = π(f)kv−1 andthegen- eratingvectorsofW1 asv2k+1 =π(e)kv1. Lemma2 ThevectorsofW ,W andW areconnectedbytheactionsofb+ 0 −1 1 andb− inthefollowingmanner v2k+1 =π(b+)v2k and v−2k−1 =π(b−)v−2k, (6) foreverypositiveintegervalueofk. Proof: Applying π(b+) to the vector v1 results in a vector of W0 because π(b+)v1 = 2π(e)v0. Thuswefindπ(b+)v2 =π(e)v1 = v3. Itisclearthatthis can be generalizedto the stated formulafor v . The resultfor v can 2k+1 −2k−1 befoundanalogously. (cid:3) Figure1helpstovisualizehowtherepresentationspaceisconstructed. We emphasizethattherelationshipbetweenv andv isnotyetdetermined. 1 −1 (cid:27) f e - v−q3 v−q1 vq1 vq3 W−1 Sob− (cid:19)Sob− b+(cid:19)7S b+(cid:19)7S W1 S S (cid:19) (cid:19) (cid:19) S S S S (cid:19) (cid:19) S(cid:19)/q(cid:19)b− S(cid:19)q b+SSw(cid:19)q b+SSwq v−2 v0 v2 v4 W0 (cid:27) - f e Figure1: TherepresentationV =W W W −1 0 1 ⊕ ⊕ The action of h on the entire representationspace V can already be deter- mined. Lemma3 TheactionofhonV isgivenby π(h)v =(2µ+k)v , (7) k k forallk Z. ∈ Proof:Forevenvaluesofk,thisfollowsjustfromtherelations [h,ek]=2kek, [h,fk]= 2kfk. − 5 Fork = 1, thesearethe commutationrelations[h,e] = 2eand[h,f] = 2f, − andtherequiredidentitiesfollowbyinduction.Wethenobtain π(h)v2k = π(h)π(e)kv0 = (2µ+2k)v2k. Fortheoddvaluesofk,weneed[h,b±]= b±,whichisaninstantconsequence ± ofequation(3). Fromthis,weobtain π(h)v2k+1 = π(h)π(b+)v2k = (2µ+2k+1)v2k+1, andsimilarlyforv . (cid:3) −2k−1 Wewouldliketodeterminetheactionsofb+andb−oneveryvectorofW , 0 W andW . OurmethodinvolvesdefiningtheactionoftheCasimiroperators −1 1 ontherepresentationspace. Wewritetherespectivediagonalactionsas π(C)v =λv ( v V), ∀ ∈ π(Ω)v2k = δ(δ+1)v2k ( k Z). − ∀ ∈ Wewillarguethatthechoiceofλisnotindependentofδ. Itisaniceexercice toshowwiththehelpofequation(3)that (b−b+ b+b−)2 =4(b−b+ b+b−) 16Ω. − − − ThiscanbeusedtoshowthatC2 = (1 4Ω)(2C +4Ω). Ifweletbothsides − ofthisequationactonavectorv , wegetaquadraticequationinλ. Thetwo 2k possiblesolutionsare λ1 =2δ(2δ+1) and λ2 =2(δ+1)(2δ+1). We choose λ = λ1 and remark that the results for the choice λ = λ2 can be reproducedwiththetransformationδ δ 1. Inordertobeabletodeterminetheac→tio−nso−fb+ andb− oneveryvectorofV, westillneedtheactionofthesu(1,1)CasimiroperatorΩonW−1andW1. Lemma4 TheCasimiroperatorΩactsonW−1andW1 asgivenby 1 1 π(Ω)v2k+1 = (δ )(δ+ )v2k+1, (k Z). (8) − − 2 2 ∈ Asdesired,thesu(1,1)-CasimiroperatorisconstantonthesubspacesW−1and W aswell. Moreover,theactionsonbothsubspacesarethesame. 1 Proof:Toproveequation(8),wewillcalculateπ(Ω)v2k+1asπ(Ωb+)v2k.From (3)wecanimmediatelyderivethat [b−,b+]b+ =2b+ b+[b−,b+]. − UsingthisandtwicethedefinitionoftheCasimirelementC,weobtain 4Ωb+ =b+(1 2C 4Ω). − − 6 The same formula holds if we change b+ into b− in both sides of the equa- tion. All of the operators on the right hand side can be applied to vectors of W0.Sonowπ(Ωb+)v2kcanbeeasilycalculated,withequation(8)asaresult.(cid:3) Ithasnowbecomestraightforwardtofindtheactionsofb+andb−onallthe vectorsofV. Proposition5 Theactionsoftheoperatorsb+ andb− onthevectorsofV are givenby π(b−)v2k = (µ+k+δ)v2k−1, π(b−)v2k+1 = 2(µ+k δ)v2k, − (9) π(b+)v−2k = (µ k δ)v−2k+1, − − − π(b+)v−2k−1 = 2(µ k+δ)v−2k. − Afterthechoiceλ = λ2 onewouldfindtheseactionsbymeansofthetransfor- mationδ δ 1. →− − Sincetheactionsofh,eandf followdirectlyfromtheserelations,wehave nowconstructedallrepresentationsofosp(12)generatedbyaweightvectorv0. | Itremainstoinvestigateirreducibilityandthe -condition. ∗ 3.3 Extension to -representations ∗ RecallthatV isthespacespannedbyallthevectorsv ,k Z. Weintroducea k sesquilinearform .,. :V Csuchthat ∈ h i → π(X)v,w = v,π(X∗)w h i h i for all X osp(12) and for all v,w V. We see that h∗ = h implies that v ,v =∈0fork =| l. Thismeansthat∈theset = v k Z,v = 0 forms k l k k h i 6 S { | ∈ 6 } anorthogonalbasisforV. Wedenoteby theindexsetsuchthatv forall k I ∈S k . ∈I Theform .,. isdefinedbyputting h i v ,v =a δ , k,l , k l k kl h i ∈I with ak to be determined and a0 = 1. The definition of a -representation ∗ requiresthattherepresentationspaceisaHilbertspace,sooursesquilinearform needstobeaninnerproduct.Hence,wewanta >0fork . Fromtheaction k ∈I ofhandfromh∗ =hweobtain 2µ= π(h)v0,v0 = v0,π(h)v0 =2µ¯, h i h i so µ must be a real number. Similar calculations for the actions of Ω and C revealthatbothδ(δ+1)andδ(2δ+1)arereal. Thesetwoconditionstogether implythatδmustbereal. Fromtheactionsofb+andb−andfrom(b±)∗ =b∓,wederive a2k+1 =(cid:10)v2k+1,π(b+)v2k(cid:11)=(cid:10)π(b−)v2k+1,v2k(cid:11)=2(µ+k δ)a2k. − 7 Inthesamewaywefind 1 a2k = (µ+k+δ)a2k−1. 2 Somereadersmightcareforaclosedexpressionforthea . Thisisgivenby k 1 a = (3 ( 1)k)(µ δ) (µ+δ+1) , k 2 − − − ⌈k/2⌉ ⌊k/2⌋ where(x) =x(x+1) (x+k 1)istheclassicalPochhammersymbol. k ··· − We wish to determineunderwhich conditions .,. is an innerproduct. Alter- h i nativelyput,forwhichparametervaluesisa > 0forallk ? Startingfrom k ∈ I a0 = 1 this can be derived inductively using the two previousequations. We findthatalla canbepositiveonlyifµ δ >0andµ+δ+1>0. k − A similar reasoning should yield a positivity condition for the a for negative k k. However,theresultingconditionsµ δ+k > 0 canneverbesatisfied for ± allnegativevaluesofk. Hence,therepresentationπmusthavealowestweight vector,becauseotherwiseitwouldnotbepossibletodefineaninnerproducton the entire representationspace. In this case, the restriction of π to an su(1,1) subspaceisknownasapositivediscreteseriesrepresentation. There are two choices for δ to obtain a lowest weight representation. One choiceistohavev0asalowestweightvector,whichwillarisewhenδ = µas oneseesfromtheactions(9). Forδ =µ 1weobtainπ(b+)v−2 =0,in−which − case v is the lowestweightvector. Afterone ofthese choicesProposition5 −1 must obviously be rewritten. Before we do this, let us make use of the inner product .,. toconstructanorthonormalbasis e : k h i { } v v e2k = v22kk (k ≥0), e2k =(−1)k v22kk (k <0), k k k k and v v e2k+1 = v22kk++11 (k ≥0), e2k+1 =(−1)k−1 v22kk++11 (k <0), k k k k fork . Wecannowinvestigateallirreducible -representationsofosp(12). ∈I ∗ | Proposition6 The only class of irreducible -representations of osp(12) is ∗ | a direct sum of two positive discrete series representations of su(1,1), deter- mined by a parameter µ. For 0 < µ 1, there is only one irreducible - ≤ 2 ∗ representation of osp(12). The actionsof the generatorson the basis vectors | e k =0,1,2,... oftherepresentationspacearedeterminedby k { | } π(b+)e2k = p2(2µ+k)e2k+1, π(b−)e2k = √2ke2k−1, (10) π(b+)e2k+1 = p2(k+1)e2k+2, π(b−)e2k+1 = p2(2µ+k)e2k. 8 Forµ > 1,thisrepresentationcanoccuralongsideanotherone,forwhichthe 2 actionsofthegeneratorsonthebasisvectors e k = 1,0,1,2,... aregiven k { | − } by π(b+)e2k = p2(k+1)e2k+1, π(b−)e2k = p2(2µ+k−1)e2k−1, (11) π(b+)e2k+1 = p2(2µ+k)e2k+2, π(b−)e2k+1 = p2(k+1)e2k. Theactionsoftheothergeneratorsfollowimmediatelyfromtheserelationsand areleftforthereadertocalculate. Proof: For δ = µ, we get the first representation, which is a lowest weight − representationsinceπ(b−)e0 = 0. Itisclearthatµmustbestrictlypositiveso thatallthegivenactionsarewelldefined.Thecaseµ=0isexcludedtobesure thatπ(b+)e2k differsfromzero. In the case of the second representation, for δ = µ 1, we must add the conditionµ > 12 toguaranteethatπ(b+)e−1 iswelldefi−nedanddifferentfrom zero.Weendupwiththedesiredclassification. (cid:3) Notethatifweweretochooseλ = λ2 inthediscussionprecedingLemma 4,wewouldfindexactlythesameclassofirreducible -representations.Indeed, ∗ thesetworepresentationswouldpopupforthechoices δ 1= µor δ 1= − − − − − µ 1.Itimmediatelyfollowsthattheotheractionsremainthesameinthiscase. − Finally, we notice an equivalence between both representation classes in Proposition 6. Thus, we end up with only one class of irreducible represen- tationsofosp(12). | Theorem7 Theonlyclassofirreducible -representationsofosp(12)isadi- ∗ | rect sum oftwo positive discrete series representationsof su(1,1), determined by a parameter µ > 0. The actions of the generators on the basis vectors e k =0,1,2,... oftherepresentationspacearedeterminedby(10). k { | } Proof: Forµ > 12,definee¯k = e¯k−1 fork = 0,1,2,.... Thentheactions(11) provetobeequivalentto(10)forµ¯ = µ 1. Hence, bothrepresentationsare equivalent. − 2 (cid:3) 4 Conclusions and further results Inthistextwehaveobtainedaclassificationofallirreducible -representations ∗ of osp(12). The latter Lie superalgebra showed up naturally in the Wigner | quantizationof the consideredHamiltonianH = xp. Our main concernhow- ever, was to investigate the spectrum of the operators Hˆ and xˆ. Since these operatorsarewrittenintermsofgeneratorsofosp(12)we felttheneedtoex- | plorerepresentationsof thisLiesuperalgebra. Theyprovideuswitha suitable frameworkinwhichweknowhowthecrucialoperatorsact. 9 Results about the spectrum of Hˆ and xˆ have already been found and the detailswillbepublishedinasubsequentpaper,butitisinterestingtosummarize theresultshere. In order to find all eigenvalues of one of the operators, one defines a formal eigenvectorforaspecificeigenvaluet, ∞ v(t)= Xαn(t)en, n=0 wherethee aretheeigenvectorsoftheosp(12)representationspaceV andthe n | α (t)areunknowncoefficientsdependingontheeigenvaluet. Demandingthat n v(t)isaneigenvectoroftheoperatorinquestionwillgivesusathreetermrecur- rence relation for the coefficientsα (t). These coefficientsare then identified n withtheorthogonalpolynomialsthatcomplywiththesamerecurrencerelation. Thespectrumoftheoperatoristhenequaltothesupportoftheweightfunction ofthistypeoforthogonalpolynomials. ConcretelywehavethatthespectrumofHˆ isrelatedtoMeixner-Pollaczekpoly- nomialsandis equalto R with multiplicitytwo. GeneralizedHermitepolyno- mialsareconnectedwiththespectrumofxˆ,whichissimplyR. Recall that Wigner quantization is a somewhat more general approach than canonicalquantization.Thismeansthatoneshouldbeabletorecoverthecanon- icalcasefromtheresultsafterWignerquantization.Indeed,ourresultsproveto becompatiblewiththewell-knowncanonicalcasefortherepresentationparam- eterµ= 1. 4 Acknowledgments G. Regniers was supported by project P6/02 of the Interuniversity Attraction PolesProgramme(BelgianState—BelgianSciencePolicy) References [1] A.Selberg,J.IndianMath.Soc.20,47-87(1956). [2] H.Montgomery,in: Analyticnumbertheory,vol.24,pp.181-193(Provi- dence,RI,AmericanMathematicalSociety,1973). [3] A.Connes,Sel.Math.Newser.5,29-106(1999). [4] M.V.BerryandJ.P.Keating,Sel.Math.Newser.5,29-106(1999). [5] M.V.BerryandJ.P.Keating,SIAMRev.41,236-266(1999). [6] E.P.Wigner,Phys.Rev.77,711-712(1950). [7] S. Lievens,N.I.StoilovaandJ. VanderJeugt, J.Math.Phys.47, 113504 (2006). 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.