The Hamiltonian geometry of the space of unitary 1 connections with symplectic curvature 1 0 2 JoelFine n a J 2 Abstract 1 LetL→M beaHermitianlinebundleoveracompactmanifold.Write ] S for thespaceofallunitary connections in L whosecurvatures define G symplecticformsonM andG forthegroupofunitarybundleisometries S of L, which acts on S by pull-back. The main observation of this note . h is that S carries a G-invariant symplectic structure, there is a moment t mapfortheG-actionandthatthisembedsthecomponentsofS asG - a 0 m coadjointorbits(whereG isthecomponentoftheidentity).Restrictingto 0 thesubgroupofG whichcoverstheidentityonM,weseethatprescribing [ thevolumeformofasymplecticstructurecanbeseenasfindingazeroof 1 amomentmap. WhenM isaKählermanifold,thisgivesamoment-map v interpretationoftheCalabiconjecture. Wealsodescribesomedirections 0 2 forfutureresearchbaseduponthepictureoutlinedhere. 4 2 . 1 Introduction 1 0 1 Let L → M be a Hermitian line bundle over a compact 2n-dimensional man- 1 ifold. We assume throughout that c (L) contains symplectic forms. This note : 1 v investigatesthespaceS ofallunitaryconnectionsA inL forwhichω = i F i A 2π A X isasymplecticformonM.ThegroupG ofunitarybundleisometries(notneces- r sarilycoveringtheidentityonM)actsonS bypull-back.Themainobservation a ofthisnoteisthefollowing. Theorem1. • S carriesaG-invariantsymplecticform; • Thereisanequivariantmoment-mapµ:S →Lie(G)∗fortheG-action; • The map µ embeds each component of S as a coadjoint orbit of G , the 0 identitycomponentofG. 1 This is proved in §2.1. In §2.2 we show that the coadjoint orbit of A ∈ S is integral if andonly if the Weinstein homomorphism π (Ham)→S1 is trivial 1 (whereHam=Ham(ω )isthegroupofHamiltoniandiffeomorphisms). A In§3weconsidertherestrictionofthemomentmapµfortheactionofthe subgroup T = Map(M,S1) ⊂ G of bundle isometries covering the identity on M. ItturnsoutthatthemomentmapsendsaconnectionA tothevolumeform ωn/n!.Inthiswaytheproblemofprescribingthevolumeofasymplecticstruc- A turecanbeseenintermsofmomentmapgeometry. Asweexplainin§3.1oneoutcomeofthisisthatwhenb (M)=0thespace 1 ofsymplecticformswithfixedvolumeformisnaturallyasymplecticmanifold. When b (M) 6= 0 this space carries a torus-fibration with fibres of dimension 1 b (M)whosetotalspaceisnaturallyasymplecticmanifold. 1 In §3.2 we consider the problem of prescribing the volume formof a Käh- ler metric. This is the renowned Calabi conjecture, now of course Yau’s theo- rem [Yau78]. Using the picture outlined above we show how the Calabi con- jecture canbephrasedasfindingazeroof themomentmapinside acomplex group orbit. This puts the problem into the same framework as the Hitchin– Kobayashi correspondence (concerning Hermitian–Einstein connections) and theDonaldson–Tian–Yauconjecture(concerningKählermetricswithconstant scalarcurvature). Thefocusofthisnoteistoexplaintheabovegeometricpicture;noattempt ismadehere,however,toexplorethepotentialapplications.Both§2and§3end with abriefdiscussion ofsome ofthesepossible directions forfutureresearch (somemorespeculativethanothers!). Acknowledgements Itisapleasuretoacknowledgetheinfluenceofconversationswiththefollowing people: Frédéric Bourgeois, Baptiste Chantraine, Dmitri Panov, Simone Gutt, JulienKellerandChrisWoodward. ThisworkwaswrittenupwhilstIwasaguestattheSimonsCenterforGeom- etryandPhysics,attheStateUniversityofNewYork,StonyBrook. Iamgrateful for the hospitality and the stimulating research environment which they pro- vided. 2 Thespaceofconnectionswithsymplecticcurvature Recall that L → M is a Hermitian line bundle over a compact 2n-dimensional manifold. WewriteS forthespaceofallunitaryconnectionsA inL forwhich 2 ω = i F isasymplecticformonM. A 2π A 2.1 Symplecticstructureandmomentmap Webeginbydescribingasymplectic structureonS . ThesetS isopeninthe spaceofallconnections(for,say,theC∞ topology). ThetangentspaceT S is A thespaceΩ1(M,iR)ofimaginary1-forms. Inordertoavoidfactorsof i inall 2π ourformulae,wemultiplyby−2πi attheoutsetinidentifyingT S ∼=Ω1(M,R). A GivenA∈S ,wewriteω = i F fortheassociatedsymplecticform. Ourcon- A 2π A ventionsmeanthatfora ∈Ω1(M,R)correspondstoaninfinitesimalchangeof da inω . A Definition2. Wedefinea2-formΩonS by 1 Ω (a,b)= a∧b∧ωn−1, A (n−1)!Z A X fora,b ∈Ω1(M,R). Proposition3. The2-formΩisasymplecticform. Proof. Toprovenon-degeneracyonT S ,let J beanalmostcomplexstructure A onM compatiblewithω .Then,foranon-zero1-forma, A 1 Ω (a,Ja)= |a|2ωn >0 A n!Z A X where|·|2istheRiemannianmetriccorrespondingto J andω . A NextwecheckΩisclosed. Forthisleta,b,c ∈Ω1(X,R),thoughtofasvector fieldsonS .Then dΩ(a,b,c)=a·Ω(b,c)+b·Ω(c,a)+c·Ω(a,b). (TheformulaforgeneralvectorfieldsalsoincludestermswithLiebrackets,but in our case these vanish since the vector fields a,b,c are linear on the affine spaceofallconnectionsandsocommute.)Now, 1 a·Ω(b,c)= b∧c∧da∧ωn−2. (n−2)!Z A M Hence 1 dΩ(a,b,c) = (da∧b∧c+db∧c∧a+dc∧a∧b)∧ωn−2, (n−2)!Z A M 1 = d a∧b∧c∧ωn−2 , (n−2)!Z A M € Š = 0. 3 WewriteG forthegroupofbundleisometriesofL,notnecessarilycovering the identity on M. G acts by pull-back on S , preserving Ω. To describe the moment map for this action, we first note that given a connection A in L and η∈Lie(G),onecandefineafunctionA(η)∈C∞(M,R).Thinkingofηasavector field on L, the connection A splits η into a vertical and a horizontal part. On eachfibre,theverticalpartismultiplicationby i A(η). 2π Alternatively, we can think of a connection A asanS1-invariant1-formon the principal circle bundle P →M corresponding to L →M. Then η is anS1- invariantvectorfieldonP andthefunctionA(η)givenbypairingthe1-formA withthevectorfieldηisthefunctionweseek,pulledbackto P.(Again,normally one considers connections on principal circle bundes as imaginary valued 1- forms,butwemultiplyby−2πi throughoutanduseinsteadreal1-forms.) This secondpointofview—via principalbundles—istheonewe normallyadoptin thissection. Proposition4. Themapµ:S →Lie(G)∗definedby 1 〈µ(A),η〉= A(η)ωn n!Z A M isaG-equivariantmomentmapfortheactionofG onS . Proof. Givenη∈Lie(G),leta ∈Ω1(M,R)bethevectorfieldonS correspond- η ingtotheinfinitesimalactionofη. Letb ∈Ω1(M,R)beanothervectorfieldon S .Theidentitytobeprovedisb·〈µ,η〉=Ω(b,a ). η We begin with the left-hand-side. We use the description in terms of the principal S1-bundle p:P → M given above, in which A is regarded as an S1- invariant 1-formon P. The vector fieldb ∈ Ω1(M,R) on S corresponds to an infinitesimalchangeofp∗b inA andhenceaninfinitesimalchangeofp∗b(η)= b(p η)inA(η).Meanwhile,theinfinitesimalchangeinω isdb.Hence, ∗ A 1 1 b·〈µ,η〉= b(p η)ωn+ A(η)db∧ωn−1 . Z (cid:18)n! ∗ A (n−1)! A (cid:19) M Tocomputetheright-hand-sideofthemoment-mapidentity,stillthinking ofA asa1-formonP,wehavethat a = L (A) η η = (d◦ι +ι ◦d)A, η η = d(A(η))+ι ω . p∗η A 4 (Wehaveimplicitlyidentifieda ∈Ω1(M,R)andp∗a ∈Ω1(P,R)inthefirsttwo η η lineshere.)Hence,evaluatedatthepointA∈S , 1 Ω(b,a )= b∧ d(A(η))+ι ω ∧ωn−1. η (n−1)!Z p∗η A A M € Š Next we use the following identity: on a 2n-dimensional manifold, given a 1- formαanda2-formβ the(2n+1)-formα∧βn necessarilyvanishes;hence,for anyvectorfieldv, 0=ι (α∧βn)=α(v)βn−nα∧ι β∧βn−1. v v Puttingα=b,β =ω andv =p η,thisgives A ∗ 1 1 Ω(b,a ) = b∧d(A(η))∧ωn−1+ b(p η)ωn , η (n−1)!Z (cid:18) A n ∗ A(cid:19) M 1 1 = A(η)db∧ωn−1+ b(p η)ωn , Z (cid:18)(n−1)! A n! ∗ A(cid:19) M = b·〈µ,η〉. Finally,G-equivariancefollowsimmediatelyfromthedefinitionofµ. Weremarkthatthispicture ismotivatedbythewell-known observation of AtiyahandBott[AB83]that“curvatureisamomentmap”.In[AB83],Atiyahand Bottconsiderunitaryconnectionsinbundlesofarbitraryrank,butoverabase withafixedsymplecitcform. TocompletetheproofofTheorem1weshowthatthecomponentsofS are identifiedviaµwithcoadjointorbits. Lemma5. Themapµ:S →Lie(G)∗embedseachcomponentofS asacoadjoint orbitofG . 0 Proof. Wemustshowtwothings:firstly,thatµisinjective;secondlythatG acts 0 transitivelyonthecomponentsofS . Toproveinjectivityofµ,supposethatA6=A′.Thenwecanfindavectorfield v onM suchthattheA′-horizontalliftηofv satisfiesA(η)>0,hence〈µ(A),η〉> 0.ButA′(η)=0andso〈µ(A′),η〉=0,henceµ(A)6=µ(A′). NextweshowthatG actstransitivelyonthecomponentsofS . GivenA ∈ 0 S , let ρ : Lie(G) → T S denote the infinitesimal action of G at A. We have A A alreadyseenthat ρ (η)=a =d(A(η))+ι ω . A η p∗η A 5 First we show that ρ is surjective. Given a ∈ Ω1(M,R), let v be the ω -dual A A vectorfieldandletηbetheA-horizontalliftofv toP.Thenρ (η)=a. A Now, givenapathA(t)inS ,letv(t)bethevectorfieldwhichisω -dual A(t) to dA(t)andletη(t)betheA(t)-horizontalliftofv(t)toP.Thetime-dependent dt vector field η(t) integrates up to a path g(t) in G with g(0) the identity. By 0 construction,g(t)·A(0)=A(t). 2.2 IntegralityandtheWeinsteinhomomorphism We next turn to the question of whether or not the orbits of S are integral coadjoint orbits. It turns out that the obstruction to this is a homomorphism π (Ham )→S1,firstintroducedbyWeinstein[Wei89]. 1 A Webrieflyrecallthedefinitionofanintegralcoadjointorbit.Formoredetails see,forexample,[Kir04]. GivenaLiegroupG withLiealgebrag,fix f ∈g∗. We writeStab(f)⊂G forthestabiliserof f underthecoadjointactionandhforthe Liealgebraofthestabiliser.Thelinearmapf :g→RrestrictstoaLiealgebraho- momorphism f :h→R.TheorbitO of f iscalledintegralwhenthemaph→R f is (up to a factor of i) the derivative of a group homomorphism Stab(f) →S1. This condition implies the existence of a line bundle L → O which carries a f connection whose curvatureis thesymplectic formon O ; moreover thesym- f plecticactionofG onO liftstoaconnection-preservingactiononL. f Accordingly, wenextinvestigatethestabiliserStab ⊂G ofapointA ∈S . A 0 Foranalternativeexpositionofthefollowing,seeWeinstein’sarticle[Wei89]. Westartfromtheashortexactsequence 1→Map (M,S1)→G →Diff (M)→1 0 0 0 (wherethesubscripts0denotetheidentitycomponents.) Lemma 6 (Weinstein [Wei89]). Restricting this sequence to Stab ⊂ G gives a A 0 shortexactsequence 1→S1→Stab →Ham →1 (1) A A whereS1⊂Map (M,S1)aretheconstantgaugetransformations. 0 Proof. FirstnotethattherestrictionofthemapG →Diff(M)toStab certainly 0 A takesvaluesinω -symplectomorphisms. ToverifythattheimageliesinHam , A A recall the formula for the infinitesimal action ρ (η) of η ∈ Lie(G) at A given A above. From this it follows that η ∈ Lie(Stab ) if andonly if p η is a Hamilto- A ∗ nianvectorfieldwithHamiltonian−A(η). Next we check that the map π: Stab → Ham is surjective. Given a ω - A A A Hamiltonian vector field v on M with Hamiltonian h we write v♭ for the A- horizontalliftofv.Thenthevectorfieldη=v♭−h ∂ onPisS1-invariant,hence ∂θ 6 inLie(G)andρ (η)=0. Soη∈Lie(Stab )andπ (η)=v,meaningπ issurjec- A A ∗ ∗ tive.Integratingthisshowsthatπ: Stab →Ham issurjective. A A ThekernelofπisStab ∩Map (M,S1). Given f :M →S1,thecorresponding A 0 change in A is fd(f−1). Hence kerπ=S1 is the constants, andtheshortexact sequenceforG restrictstoStab asclaimed. 0 A GivenA∈S themomentmapatA restrictstogiveaLiealgebrahomomor- phism µ(A): Lie(Stab )→R A Thekernelofthismapisanideal I ⊂Lie(Stab ); moreover, theinclusionS1 ⊂ A Stab determinesacopyofR⊂Lie(Stab )whichismappedisomorphicallyonto A A R byµ. It follows thatthederivative of Stab →Ham(A) identifies I ∼=HVect A A andsothereisasplitting Lie(Stab )∼=R⊕HVect (2) A A intoadirectsumofideals. Usingleft-multiplicationwecanviewthesplitting(2)asdefiningaconnec- tion on the principle S1-bundle Stab → Ham . Because the horizontal sub- A A space(theHVect summand)isaLiesub-algebraofLie(Stab ),thisconnection A A isflat.ItsholonomyistheWeinsteinhomomorphism, w:π (Ham )→S1. 1 A Proposition7. GivenA∈S ,thecorrespondingcoadjointorbitofG isintegralif 0 andonlyiftheWeinsteinhomomorphismw:π (Ham )→S1istrivial. 1 A Proof. Thecoadjoint orbitofA isintegralprecisely whenthekerneloftheho- momorphism µ(A): Lie(Stab ) → R integrates up to a subgroup of Stab . In A A our case this kernel defines the horizontal space of the flat connection whose holonomyisw. Sotheorbitisintegralifandonlyifparalleltransportidentifies alltheS1-fibresofStab →Ham . Thishappenspreciselywhentheholonomy A A istrival. Ontheonehand,thereareexamplesofsymplecticmanifoldsforwhichthe Weinsteinhomomorphismistrivial. Indeed,forasurfaceofgenusatleastone, the Hamiltonian group iseven contractible. Onthe otherhand, therearealso plentyofmanfioldsforwhichtheWeinsteinhomomorphismisnon-trivial;the simplest beingS2. Tosee this, restrict theshortexactsequence (1)tothesub- groupSO(3)⊂Hamtoobtainthesequence 1→S1→U(2)→SO(3)→1. 7 ∼ TheflatconnectioncorrespondstotheLiealgebraisomorphismu(2)=su(2)⊕ iR;itsholonomyisnon-trivialandgivesthestandardisomorphism U(2)∼=SU(2)× S1. ±1 SimiliarremarksapplytoCPn withtheFubini–Studymetricand,moregenerally to certain toric varieties. See the recent survey article of McDuff [McD10] for moreonthissubject. 2.3 Furtherquestions Given a subgroup H ⊂ Diff (M), the preimage under G → Diff (M) is a sub- 0 0 0 groupH′⊆G whichinheritsaHamiltonianactiononS .Themoment-mapµ′ 0 fortheactionofH′issimplytheprojectionofµunderLie(G )∗→Lie(H′)∗.One 0 mightlookforzerosofµ′inthehopethattheygivesymplecticstructureswhich respectinsomewaytheadditionalgeometryimposedinpassingfromDiff (M) 0 toH. We explore this idea in the next section in its most extreme form, when H =1isthetrivialgroup. Thisleadstotheproblemofprescribingthevolume formof a symplectic structure. In a forthcomingpaper[Fin11]we exploit this sameideaforcertainmanifoldsM andsubgroupsH. Themanifoldsinques- tionareS2-bundlesoverfour-manifoldsandinthiswaywegiveamoment-map interpretationoftheanti-self-dualEinsteinequationsforaRiemannianmetric onafour-manifold.Besidesthesetwosituations,however,therearemanyother possibilitiesonecouldstudyanditwouldbeinterestingtoseemoreexamples. Weclosethissectionwithaspeculativeremark.Theabovepictureassociates toeachisotopyclassofsymplecticformsinc (L)acertaincoadjointorbitofG . 1 0 Ontheonehand,distinguishingisotopyclassesofsymplecticformsisacentral problem in symplectic topology; on the other hand, distinguishing coadjoint orbitsisacentralprobleminthetheoryofinfintedimensionalLiegroups. One might hope that Theorem 1 opens up the path for a transferof ideas between thesetwoasyetpoorlyunderstoodquestions. Animportantapproachtothestudyofcoadjointorbitsisthecelebrated“or- bitmethod”(seeforexamplethetextofKirillov[Kir04]). ForthegroupG ,per- 0 hapsthefirstcasetoconsiderwouldbeasurfaceofgenusatleastone. There, thecorrespondingcoadjointorbitisintegral.Moreover,aswewillseeinthefol- lowingsection,itcomeswithanaturalisotropicfibrationwhoseinfinite-dimen- sional fibresfailtobecoisotropic byafinitedimensional discrepancy (see Re- mark12). Thuswe haveinplacemore-or-lesstheinitialdatarequiredbygeo- metricquantisation. Thisstillleaves,ofcourse,theprincipaldifficultyofwhat shouldplaytherôleofthe“square-integrablesections”oftheprequantumline 8 bundle, since thebase is infinitedimensional. Exactlyhowtoquantise such a coadjointorbitis,inmyopinionatleast,aninterestinganddifficultquestion. 3 Prescribingthevolumeformofasymplecticstructure Given a Hamiltonian action of a groupG with a moment map µ takingvalues in g∗, the action of a sub-group H ⊂G has moment map given by composing µ with the projection g∗ →h∗. In thissection we applythisobservation tothe action ofthesubgroup T ⊂G ofbundleisometriesof L →M which cover the identity. 3.1 Purelysymplecticcase Ofcourse,T =Map(M,S1)andsoLie(T)=C∞(X,R).(Onenormallyusesimag- inaryvaluedfunctionsherebutagainwehavemultipliedby−2πi throughout.) Byintegratingagainsttop-degreeforms,wecanidentifyΩ2n(M,R)withasub- set ofLie(T)∗. Withthisunderstood, we havethefollowing result, whichis an immediatecorollaryofProposition4. Proposition 8. There is an equivariant moment map ν:S → Lie(T)∗ for the actionofT onS givenbyν(A)=ωn/n! A Soprescribingthevolumeofasymplecticstructureinc (L)canbeseenas 1 findingazeroofamomentmap. Moreprecisely, since T isabelian,thecoad- jointactionistrivialandsowecanequallyuseν−θ asamomentmapforany θ ∈Lie(T)∗. Givenavolumeformθ ∈Ω2n(M,R)with[θ]= 1c (L)n,theequa- n! 1 tionforA ∈S givenbyωn/n!=θ isthesameasfindingazeroofthemoment A mapν−θ. Givensuchaθ,wenextturntothesymplecticreductionν−1(θ)/T .Bystan- dardtheorythisisasymplecticmanifold(ofinfinitedimension). Todescribeit wewriteX forthespaceofsymplecticformsω∈c (L)withωn/n!=θ. θ 1 Proposition9. Ifb (M)=0thenX =ν−1(θ)/T andso,inparticular,thespace 1 θ ofsymplecticformswithfixedvolumeformisnaturallyasymplecticmanifold.In generalthereisasubmersionfromthesymplecticreductionν−1(θ)/T →X with θ fibresisomorphictoH1(M,R)/H1(M,Z). Therestrictionofthesymplecticstruc- turetothesefibresisidentifiedwiththe2-formonH1(M,R)definedby(α,β)7→ 1 α∧β∧c (L)n−1. (n−1)! M 1 R Proof. Webeginwiththefollowingstandardfact. Givenasymplecticformω∈ c (L),writeS ⊂S forthesetofunitaryconnectionsAforwhichω =ω.Then 1 ω A S /T canbeidentifiedwithH1(M,R)/H1(M,Z). ω 9 More precisely, givenA ∈S ,anyotherconnection A ∈S isoftheform 0 ω ω A=A + i a foraclosed1-forma. Thereisthusasurjectionc:S →H1(M,R) 0 2π ω givenbyc(A)=[a]. NowT =Map(M,S1)actsonH1(M,R),theactionof f ∈T on H1(M,R) is by addition of 1 [fd(f−1)] ∈ H1(M,Z). With this action un- 2πi derstood, c is T-equivariant. Since any element of H1(M,Z) can be written in as 1 [fd(f−1)] for some f ∈ T, the map c descends to an identification 2πi S /T →H1(M,R)/H1(M,Z). ω The group T is abelian, so its orbits in S are isotropic and hence the re- ∼ strictionofthesymplecticformΩonS toS descendstoa2-formonS /T = ω ω H1(M,R)/H1(M,Z). ItfollowsfromthedefinitionofΩthatthe2-formisidenti- fiedwiththe2-formonH1(M,R)givenby 1 (α,β)7→ α∧β∧c (L)n−1. 1 (n−1)!Z M Theresultfollowsfromthesetwoobservationsappliedfibrewisetothemap ν−1(θ)→X whichsendseachconnectionAtoitscurvatureω . θ A Remark 10. Whenb (M)=0, the symplectic structureon X can be seen di- 1 θ rectly (and with no need for the condition that the fixed choice of symplectic class be integral). The tangent space at a point ω ∈ X is the space of exact θ 2-formsγsuchthatωn−1∧γ=0.WenowdefineaskewpairingΘonT X by ω θ 1 Θ(γ,γ′)= a∧a′∧ωn−1 (n−1)!Z M wherea,a′are1-formswithda =γ,da′=γ′.Ifa˜isanother1-formwithda˜=γ, then d(a −a˜) = 0 and so, since b (M) = 0, we can write a −a˜ = df for some 1 function f.Hence, (a−a˜)∧a′∧ωn−1=− fda′∧ωn−1 Z Z M M whichvanishessinceda′∧ωn−1=γ′∧ωn−1=0.ItfollowsthatΘ(γ,γ′)doesnot dependonthechoiceofa ora′. Whenthefixedsymplecticclass[ω]=c (L)isintegral,Θispreciselythe2- 1 form which arises from the identification ν−1(θ)/T ∼= X . It follows from the θ generaltheorythatΘisclosedandnon-degenerate,somethingwhichonecan verifydirectlyfromthedefinition. Remark 11. Still under the assumption that b (M) = 0, note that the group 1 Diff(M,θ)ofvolume-preservingdiffeomorphismsactsonthesymplecticmani- foldX . ThisactionisHamiltonianinthesensethattheinfinitesimalactionof θ 10