ebook img

The Hamiltonian geometry of the space of unitary connections with symplectic curvature PDF

0.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Hamiltonian geometry of the space of unitary connections with symplectic curvature

The Hamiltonian geometry of the space of unitary 1 connections with symplectic curvature 1 0 2 JoelFine n a J 2 Abstract 1 LetL→M beaHermitianlinebundleoveracompactmanifold.Write ] S for thespaceofallunitary connections in L whosecurvatures define G symplecticformsonM andG forthegroupofunitarybundleisometries S of L, which acts on S by pull-back. The main observation of this note . h is that S carries a G-invariant symplectic structure, there is a moment t mapfortheG-actionandthatthisembedsthecomponentsofS asG - a 0 m coadjointorbits(whereG isthecomponentoftheidentity).Restrictingto 0 thesubgroupofG whichcoverstheidentityonM,weseethatprescribing [ thevolumeformofasymplecticstructurecanbeseenasfindingazeroof 1 amomentmap. WhenM isaKählermanifold,thisgivesamoment-map v interpretationoftheCalabiconjecture. Wealsodescribesomedirections 0 2 forfutureresearchbaseduponthepictureoutlinedhere. 4 2 . 1 Introduction 1 0 1 Let L → M be a Hermitian line bundle over a compact 2n-dimensional man- 1 ifold. We assume throughout that c (L) contains symplectic forms. This note : 1 v investigatesthespaceS ofallunitaryconnectionsA inL forwhichω = i F i A 2π A X isasymplecticformonM.ThegroupG ofunitarybundleisometries(notneces- r sarilycoveringtheidentityonM)actsonS bypull-back.Themainobservation a ofthisnoteisthefollowing. Theorem1. • S carriesaG-invariantsymplecticform; • Thereisanequivariantmoment-mapµ:S →Lie(G)∗fortheG-action; • The map µ embeds each component of S as a coadjoint orbit of G , the 0 identitycomponentofG. 1 This is proved in §2.1. In §2.2 we show that the coadjoint orbit of A ∈ S is integral if andonly if the Weinstein homomorphism π (Ham)→S1 is trivial 1 (whereHam=Ham(ω )isthegroupofHamiltoniandiffeomorphisms). A In§3weconsidertherestrictionofthemomentmapµfortheactionofthe subgroup T = Map(M,S1) ⊂ G of bundle isometries covering the identity on M. ItturnsoutthatthemomentmapsendsaconnectionA tothevolumeform ωn/n!.Inthiswaytheproblemofprescribingthevolumeofasymplecticstruc- A turecanbeseenintermsofmomentmapgeometry. Asweexplainin§3.1oneoutcomeofthisisthatwhenb (M)=0thespace 1 ofsymplecticformswithfixedvolumeformisnaturallyasymplecticmanifold. When b (M) 6= 0 this space carries a torus-fibration with fibres of dimension 1 b (M)whosetotalspaceisnaturallyasymplecticmanifold. 1 In §3.2 we consider the problem of prescribing the volume formof a Käh- ler metric. This is the renowned Calabi conjecture, now of course Yau’s theo- rem [Yau78]. Using the picture outlined above we show how the Calabi con- jecture canbephrasedasfindingazeroof themomentmapinside acomplex group orbit. This puts the problem into the same framework as the Hitchin– Kobayashi correspondence (concerning Hermitian–Einstein connections) and theDonaldson–Tian–Yauconjecture(concerningKählermetricswithconstant scalarcurvature). Thefocusofthisnoteistoexplaintheabovegeometricpicture;noattempt ismadehere,however,toexplorethepotentialapplications.Both§2and§3end with abriefdiscussion ofsome ofthesepossible directions forfutureresearch (somemorespeculativethanothers!). Acknowledgements Itisapleasuretoacknowledgetheinfluenceofconversationswiththefollowing people: Frédéric Bourgeois, Baptiste Chantraine, Dmitri Panov, Simone Gutt, JulienKellerandChrisWoodward. ThisworkwaswrittenupwhilstIwasaguestattheSimonsCenterforGeom- etryandPhysics,attheStateUniversityofNewYork,StonyBrook. Iamgrateful for the hospitality and the stimulating research environment which they pro- vided. 2 Thespaceofconnectionswithsymplecticcurvature Recall that L → M is a Hermitian line bundle over a compact 2n-dimensional manifold. WewriteS forthespaceofallunitaryconnectionsA inL forwhich 2 ω = i F isasymplecticformonM. A 2π A 2.1 Symplecticstructureandmomentmap Webeginbydescribingasymplectic structureonS . ThesetS isopeninthe spaceofallconnections(for,say,theC∞ topology). ThetangentspaceT S is A thespaceΩ1(M,iR)ofimaginary1-forms. Inordertoavoidfactorsof i inall 2π ourformulae,wemultiplyby−2πi attheoutsetinidentifyingT S ∼=Ω1(M,R). A GivenA∈S ,wewriteω = i F fortheassociatedsymplecticform. Ourcon- A 2π A ventionsmeanthatfora ∈Ω1(M,R)correspondstoaninfinitesimalchangeof da inω . A Definition2. Wedefinea2-formΩonS by 1 Ω (a,b)= a∧b∧ωn−1, A (n−1)!Z A X fora,b ∈Ω1(M,R). Proposition3. The2-formΩisasymplecticform. Proof. Toprovenon-degeneracyonT S ,let J beanalmostcomplexstructure A onM compatiblewithω .Then,foranon-zero1-forma, A 1 Ω (a,Ja)= |a|2ωn >0 A n!Z A X where|·|2istheRiemannianmetriccorrespondingto J andω . A NextwecheckΩisclosed. Forthisleta,b,c ∈Ω1(X,R),thoughtofasvector fieldsonS .Then dΩ(a,b,c)=a·Ω(b,c)+b·Ω(c,a)+c·Ω(a,b). (TheformulaforgeneralvectorfieldsalsoincludestermswithLiebrackets,but in our case these vanish since the vector fields a,b,c are linear on the affine spaceofallconnectionsandsocommute.)Now, 1 a·Ω(b,c)= b∧c∧da∧ωn−2. (n−2)!Z A M Hence 1 dΩ(a,b,c) = (da∧b∧c+db∧c∧a+dc∧a∧b)∧ωn−2, (n−2)!Z A M 1 = d a∧b∧c∧ωn−2 , (n−2)!Z A M € Š = 0. 3 WewriteG forthegroupofbundleisometriesofL,notnecessarilycovering the identity on M. G acts by pull-back on S , preserving Ω. To describe the moment map for this action, we first note that given a connection A in L and η∈Lie(G),onecandefineafunctionA(η)∈C∞(M,R).Thinkingofηasavector field on L, the connection A splits η into a vertical and a horizontal part. On eachfibre,theverticalpartismultiplicationby i A(η). 2π Alternatively, we can think of a connection A asanS1-invariant1-formon the principal circle bundle P →M corresponding to L →M. Then η is anS1- invariantvectorfieldonP andthefunctionA(η)givenbypairingthe1-formA withthevectorfieldηisthefunctionweseek,pulledbackto P.(Again,normally one considers connections on principal circle bundes as imaginary valued 1- forms,butwemultiplyby−2πi throughoutanduseinsteadreal1-forms.) This secondpointofview—via principalbundles—istheonewe normallyadoptin thissection. Proposition4. Themapµ:S →Lie(G)∗definedby 1 〈µ(A),η〉= A(η)ωn n!Z A M isaG-equivariantmomentmapfortheactionofG onS . Proof. Givenη∈Lie(G),leta ∈Ω1(M,R)bethevectorfieldonS correspond- η ingtotheinfinitesimalactionofη. Letb ∈Ω1(M,R)beanothervectorfieldon S .Theidentitytobeprovedisb·〈µ,η〉=Ω(b,a ). η We begin with the left-hand-side. We use the description in terms of the principal S1-bundle p:P → M given above, in which A is regarded as an S1- invariant 1-formon P. The vector fieldb ∈ Ω1(M,R) on S corresponds to an infinitesimalchangeofp∗b inA andhenceaninfinitesimalchangeofp∗b(η)= b(p η)inA(η).Meanwhile,theinfinitesimalchangeinω isdb.Hence, ∗ A 1 1 b·〈µ,η〉= b(p η)ωn+ A(η)db∧ωn−1 . Z (cid:18)n! ∗ A (n−1)! A (cid:19) M Tocomputetheright-hand-sideofthemoment-mapidentity,stillthinking ofA asa1-formonP,wehavethat a = L (A) η η = (d◦ι +ι ◦d)A, η η = d(A(η))+ι ω . p∗η A 4 (Wehaveimplicitlyidentifieda ∈Ω1(M,R)andp∗a ∈Ω1(P,R)inthefirsttwo η η lineshere.)Hence,evaluatedatthepointA∈S , 1 Ω(b,a )= b∧ d(A(η))+ι ω ∧ωn−1. η (n−1)!Z p∗η A A M € Š Next we use the following identity: on a 2n-dimensional manifold, given a 1- formαanda2-formβ the(2n+1)-formα∧βn necessarilyvanishes;hence,for anyvectorfieldv, 0=ι (α∧βn)=α(v)βn−nα∧ι β∧βn−1. v v Puttingα=b,β =ω andv =p η,thisgives A ∗ 1 1 Ω(b,a ) = b∧d(A(η))∧ωn−1+ b(p η)ωn , η (n−1)!Z (cid:18) A n ∗ A(cid:19) M 1 1 = A(η)db∧ωn−1+ b(p η)ωn , Z (cid:18)(n−1)! A n! ∗ A(cid:19) M = b·〈µ,η〉. Finally,G-equivariancefollowsimmediatelyfromthedefinitionofµ. Weremarkthatthispicture ismotivatedbythewell-known observation of AtiyahandBott[AB83]that“curvatureisamomentmap”.In[AB83],Atiyahand Bottconsiderunitaryconnectionsinbundlesofarbitraryrank,butoverabase withafixedsymplecitcform. TocompletetheproofofTheorem1weshowthatthecomponentsofS are identifiedviaµwithcoadjointorbits. Lemma5. Themapµ:S →Lie(G)∗embedseachcomponentofS asacoadjoint orbitofG . 0 Proof. Wemustshowtwothings:firstly,thatµisinjective;secondlythatG acts 0 transitivelyonthecomponentsofS . Toproveinjectivityofµ,supposethatA6=A′.Thenwecanfindavectorfield v onM suchthattheA′-horizontalliftηofv satisfiesA(η)>0,hence〈µ(A),η〉> 0.ButA′(η)=0andso〈µ(A′),η〉=0,henceµ(A)6=µ(A′). NextweshowthatG actstransitivelyonthecomponentsofS . GivenA ∈ 0 S , let ρ : Lie(G) → T S denote the infinitesimal action of G at A. We have A A alreadyseenthat ρ (η)=a =d(A(η))+ι ω . A η p∗η A 5 First we show that ρ is surjective. Given a ∈ Ω1(M,R), let v be the ω -dual A A vectorfieldandletηbetheA-horizontalliftofv toP.Thenρ (η)=a. A Now, givenapathA(t)inS ,letv(t)bethevectorfieldwhichisω -dual A(t) to dA(t)andletη(t)betheA(t)-horizontalliftofv(t)toP.Thetime-dependent dt vector field η(t) integrates up to a path g(t) in G with g(0) the identity. By 0 construction,g(t)·A(0)=A(t). 2.2 IntegralityandtheWeinsteinhomomorphism We next turn to the question of whether or not the orbits of S are integral coadjoint orbits. It turns out that the obstruction to this is a homomorphism π (Ham )→S1,firstintroducedbyWeinstein[Wei89]. 1 A Webrieflyrecallthedefinitionofanintegralcoadjointorbit.Formoredetails see,forexample,[Kir04]. GivenaLiegroupG withLiealgebrag,fix f ∈g∗. We writeStab(f)⊂G forthestabiliserof f underthecoadjointactionandhforthe Liealgebraofthestabiliser.Thelinearmapf :g→RrestrictstoaLiealgebraho- momorphism f :h→R.TheorbitO of f iscalledintegralwhenthemaph→R f is (up to a factor of i) the derivative of a group homomorphism Stab(f) →S1. This condition implies the existence of a line bundle L → O which carries a f connection whose curvatureis thesymplectic formon O ; moreover thesym- f plecticactionofG onO liftstoaconnection-preservingactiononL. f Accordingly, wenextinvestigatethestabiliserStab ⊂G ofapointA ∈S . A 0 Foranalternativeexpositionofthefollowing,seeWeinstein’sarticle[Wei89]. Westartfromtheashortexactsequence 1→Map (M,S1)→G →Diff (M)→1 0 0 0 (wherethesubscripts0denotetheidentitycomponents.) Lemma 6 (Weinstein [Wei89]). Restricting this sequence to Stab ⊂ G gives a A 0 shortexactsequence 1→S1→Stab →Ham →1 (1) A A whereS1⊂Map (M,S1)aretheconstantgaugetransformations. 0 Proof. FirstnotethattherestrictionofthemapG →Diff(M)toStab certainly 0 A takesvaluesinω -symplectomorphisms. ToverifythattheimageliesinHam , A A recall the formula for the infinitesimal action ρ (η) of η ∈ Lie(G) at A given A above. From this it follows that η ∈ Lie(Stab ) if andonly if p η is a Hamilto- A ∗ nianvectorfieldwithHamiltonian−A(η). Next we check that the map π: Stab → Ham is surjective. Given a ω - A A A Hamiltonian vector field v on M with Hamiltonian h we write v♭ for the A- horizontalliftofv.Thenthevectorfieldη=v♭−h ∂ onPisS1-invariant,hence ∂θ 6 inLie(G)andρ (η)=0. Soη∈Lie(Stab )andπ (η)=v,meaningπ issurjec- A A ∗ ∗ tive.Integratingthisshowsthatπ: Stab →Ham issurjective. A A ThekernelofπisStab ∩Map (M,S1). Given f :M →S1,thecorresponding A 0 change in A is fd(f−1). Hence kerπ=S1 is the constants, andtheshortexact sequenceforG restrictstoStab asclaimed. 0 A GivenA∈S themomentmapatA restrictstogiveaLiealgebrahomomor- phism µ(A): Lie(Stab )→R A Thekernelofthismapisanideal I ⊂Lie(Stab ); moreover, theinclusionS1 ⊂ A Stab determinesacopyofR⊂Lie(Stab )whichismappedisomorphicallyonto A A R byµ. It follows thatthederivative of Stab →Ham(A) identifies I ∼=HVect A A andsothereisasplitting Lie(Stab )∼=R⊕HVect (2) A A intoadirectsumofideals. Usingleft-multiplicationwecanviewthesplitting(2)asdefiningaconnec- tion on the principle S1-bundle Stab → Ham . Because the horizontal sub- A A space(theHVect summand)isaLiesub-algebraofLie(Stab ),thisconnection A A isflat.ItsholonomyistheWeinsteinhomomorphism, w:π (Ham )→S1. 1 A Proposition7. GivenA∈S ,thecorrespondingcoadjointorbitofG isintegralif 0 andonlyiftheWeinsteinhomomorphismw:π (Ham )→S1istrivial. 1 A Proof. Thecoadjoint orbitofA isintegralprecisely whenthekerneloftheho- momorphism µ(A): Lie(Stab ) → R integrates up to a subgroup of Stab . In A A our case this kernel defines the horizontal space of the flat connection whose holonomyisw. Sotheorbitisintegralifandonlyifparalleltransportidentifies alltheS1-fibresofStab →Ham . Thishappenspreciselywhentheholonomy A A istrival. Ontheonehand,thereareexamplesofsymplecticmanifoldsforwhichthe Weinsteinhomomorphismistrivial. Indeed,forasurfaceofgenusatleastone, the Hamiltonian group iseven contractible. Onthe otherhand, therearealso plentyofmanfioldsforwhichtheWeinsteinhomomorphismisnon-trivial;the simplest beingS2. Tosee this, restrict theshortexactsequence (1)tothesub- groupSO(3)⊂Hamtoobtainthesequence 1→S1→U(2)→SO(3)→1. 7 ∼ TheflatconnectioncorrespondstotheLiealgebraisomorphismu(2)=su(2)⊕ iR;itsholonomyisnon-trivialandgivesthestandardisomorphism U(2)∼=SU(2)× S1. ±1 SimiliarremarksapplytoCPn withtheFubini–Studymetricand,moregenerally to certain toric varieties. See the recent survey article of McDuff [McD10] for moreonthissubject. 2.3 Furtherquestions Given a subgroup H ⊂ Diff (M), the preimage under G → Diff (M) is a sub- 0 0 0 groupH′⊆G whichinheritsaHamiltonianactiononS .Themoment-mapµ′ 0 fortheactionofH′issimplytheprojectionofµunderLie(G )∗→Lie(H′)∗.One 0 mightlookforzerosofµ′inthehopethattheygivesymplecticstructureswhich respectinsomewaytheadditionalgeometryimposedinpassingfromDiff (M) 0 toH. We explore this idea in the next section in its most extreme form, when H =1isthetrivialgroup. Thisleadstotheproblemofprescribingthevolume formof a symplectic structure. In a forthcomingpaper[Fin11]we exploit this sameideaforcertainmanifoldsM andsubgroupsH. Themanifoldsinques- tionareS2-bundlesoverfour-manifoldsandinthiswaywegiveamoment-map interpretationoftheanti-self-dualEinsteinequationsforaRiemannianmetric onafour-manifold.Besidesthesetwosituations,however,therearemanyother possibilitiesonecouldstudyanditwouldbeinterestingtoseemoreexamples. Weclosethissectionwithaspeculativeremark.Theabovepictureassociates toeachisotopyclassofsymplecticformsinc (L)acertaincoadjointorbitofG . 1 0 Ontheonehand,distinguishingisotopyclassesofsymplecticformsisacentral problem in symplectic topology; on the other hand, distinguishing coadjoint orbitsisacentralprobleminthetheoryofinfintedimensionalLiegroups. One might hope that Theorem 1 opens up the path for a transferof ideas between thesetwoasyetpoorlyunderstoodquestions. Animportantapproachtothestudyofcoadjointorbitsisthecelebrated“or- bitmethod”(seeforexamplethetextofKirillov[Kir04]). ForthegroupG ,per- 0 hapsthefirstcasetoconsiderwouldbeasurfaceofgenusatleastone. There, thecorrespondingcoadjointorbitisintegral.Moreover,aswewillseeinthefol- lowingsection,itcomeswithanaturalisotropicfibrationwhoseinfinite-dimen- sional fibresfailtobecoisotropic byafinitedimensional discrepancy (see Re- mark12). Thuswe haveinplacemore-or-lesstheinitialdatarequiredbygeo- metricquantisation. Thisstillleaves,ofcourse,theprincipaldifficultyofwhat shouldplaytherôleofthe“square-integrablesections”oftheprequantumline 8 bundle, since thebase is infinitedimensional. Exactlyhowtoquantise such a coadjointorbitis,inmyopinionatleast,aninterestinganddifficultquestion. 3 Prescribingthevolumeformofasymplecticstructure Given a Hamiltonian action of a groupG with a moment map µ takingvalues in g∗, the action of a sub-group H ⊂G has moment map given by composing µ with the projection g∗ →h∗. In thissection we applythisobservation tothe action ofthesubgroup T ⊂G ofbundleisometriesof L →M which cover the identity. 3.1 Purelysymplecticcase Ofcourse,T =Map(M,S1)andsoLie(T)=C∞(X,R).(Onenormallyusesimag- inaryvaluedfunctionsherebutagainwehavemultipliedby−2πi throughout.) Byintegratingagainsttop-degreeforms,wecanidentifyΩ2n(M,R)withasub- set ofLie(T)∗. Withthisunderstood, we havethefollowing result, whichis an immediatecorollaryofProposition4. Proposition 8. There is an equivariant moment map ν:S → Lie(T)∗ for the actionofT onS givenbyν(A)=ωn/n! A Soprescribingthevolumeofasymplecticstructureinc (L)canbeseenas 1 findingazeroofamomentmap. Moreprecisely, since T isabelian,thecoad- jointactionistrivialandsowecanequallyuseν−θ asamomentmapforany θ ∈Lie(T)∗. Givenavolumeformθ ∈Ω2n(M,R)with[θ]= 1c (L)n,theequa- n! 1 tionforA ∈S givenbyωn/n!=θ isthesameasfindingazeroofthemoment A mapν−θ. Givensuchaθ,wenextturntothesymplecticreductionν−1(θ)/T .Bystan- dardtheorythisisasymplecticmanifold(ofinfinitedimension). Todescribeit wewriteX forthespaceofsymplecticformsω∈c (L)withωn/n!=θ. θ 1 Proposition9. Ifb (M)=0thenX =ν−1(θ)/T andso,inparticular,thespace 1 θ ofsymplecticformswithfixedvolumeformisnaturallyasymplecticmanifold.In generalthereisasubmersionfromthesymplecticreductionν−1(θ)/T →X with θ fibresisomorphictoH1(M,R)/H1(M,Z). Therestrictionofthesymplecticstruc- turetothesefibresisidentifiedwiththe2-formonH1(M,R)definedby(α,β)7→ 1 α∧β∧c (L)n−1. (n−1)! M 1 R Proof. Webeginwiththefollowingstandardfact. Givenasymplecticformω∈ c (L),writeS ⊂S forthesetofunitaryconnectionsAforwhichω =ω.Then 1 ω A S /T canbeidentifiedwithH1(M,R)/H1(M,Z). ω 9 More precisely, givenA ∈S ,anyotherconnection A ∈S isoftheform 0 ω ω A=A + i a foraclosed1-forma. Thereisthusasurjectionc:S →H1(M,R) 0 2π ω givenbyc(A)=[a]. NowT =Map(M,S1)actsonH1(M,R),theactionof f ∈T on H1(M,R) is by addition of 1 [fd(f−1)] ∈ H1(M,Z). With this action un- 2πi derstood, c is T-equivariant. Since any element of H1(M,Z) can be written in as 1 [fd(f−1)] for some f ∈ T, the map c descends to an identification 2πi S /T →H1(M,R)/H1(M,Z). ω The group T is abelian, so its orbits in S are isotropic and hence the re- ∼ strictionofthesymplecticformΩonS toS descendstoa2-formonS /T = ω ω H1(M,R)/H1(M,Z). ItfollowsfromthedefinitionofΩthatthe2-formisidenti- fiedwiththe2-formonH1(M,R)givenby 1 (α,β)7→ α∧β∧c (L)n−1. 1 (n−1)!Z M Theresultfollowsfromthesetwoobservationsappliedfibrewisetothemap ν−1(θ)→X whichsendseachconnectionAtoitscurvatureω . θ A Remark 10. Whenb (M)=0, the symplectic structureon X can be seen di- 1 θ rectly (and with no need for the condition that the fixed choice of symplectic class be integral). The tangent space at a point ω ∈ X is the space of exact θ 2-formsγsuchthatωn−1∧γ=0.WenowdefineaskewpairingΘonT X by ω θ 1 Θ(γ,γ′)= a∧a′∧ωn−1 (n−1)!Z M wherea,a′are1-formswithda =γ,da′=γ′.Ifa˜isanother1-formwithda˜=γ, then d(a −a˜) = 0 and so, since b (M) = 0, we can write a −a˜ = df for some 1 function f.Hence, (a−a˜)∧a′∧ωn−1=− fda′∧ωn−1 Z Z M M whichvanishessinceda′∧ωn−1=γ′∧ωn−1=0.ItfollowsthatΘ(γ,γ′)doesnot dependonthechoiceofa ora′. Whenthefixedsymplecticclass[ω]=c (L)isintegral,Θispreciselythe2- 1 form which arises from the identification ν−1(θ)/T ∼= X . It follows from the θ generaltheorythatΘisclosedandnon-degenerate,somethingwhichonecan verifydirectlyfromthedefinition. Remark 11. Still under the assumption that b (M) = 0, note that the group 1 Diff(M,θ)ofvolume-preservingdiffeomorphismsactsonthesymplecticmani- foldX . ThisactionisHamiltonianinthesensethattheinfinitesimalactionof θ 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.